自噬在白血病K562/ADM细胞多药耐药性及三氧化二砷抗白血病效应中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:白血病是造血干细胞的恶性克隆性疾病,近几十年中,得益于化疗药物的联合应用及骨髓移植治疗技术的进展,使其治疗取得了长足的发展,但化学治疗药物诱发产生的白血病细胞多药耐药性(multi-drug resistance, MDR)是影响临床白血病治疗效果的主要障碍,也是影响白血病骨髓移植有效性和成功率的重要因素,目前仍对白血病耐药性缺乏有效而实用的干预措施。研究证实细胞自噬(autophagy)与肿瘤/白血病的发生、发展、预后和治疗效果的关系密切,但细胞自噬活性与肿瘤/白血病对治疗药物的敏感性及耐药性发生的关系尚不清楚。我们选用白血病多药耐药细胞株K562/ADM细胞及其亲本细胞株K562细胞为研究细胞模型,采用营养剥夺(饥饿)的方法诱导白血病细胞发生自噬,比较研究白血病耐药性细胞和敏感细胞的自噬活性的差异以及抑制自噬活性对耐药细胞药物敏感性的影响,探讨细胞自噬活性在白血病细胞多药耐药性中的作用及其调控机制。同时,三氧化二砷因与常规化疗药物无交叉耐受性而应用于临床耐药性白血病的治疗,研究三氧化二砷是否通过细胞自噬途径发挥抗耐药性白血病的作用,对于阐明三氧化二砷治疗耐药性白血病的机制有重要应用价值。
     方法:对数生长期的白血病细胞株K562和K562/ADM细胞,以无血清和无氨基酸的磷酸缓冲液(phosphate buffered solution, PB S)代替RPIM-1640+小牛血清培养液培养细胞,培养Oh、3h、6h、9h、12h后收集细胞,透射电镜观察自噬体形态,MDC(单丹磺酰戊二胺)荧光染色、荧光显微镜和流式细胞仪检测自噬体荧光染色;实时荧光定量PCR (RT-qPCR)检测微管相关蛋白1轻链3(microtubule-associated protein-1light chain3, LC3) LC3和自噬相关基因Beclin-1mRNA表达, Western Blotting检测LC3和Beclin-1蛋白的表达以及LC3-Ⅰ向LC3-Ⅱ的转化。同时,采用RT-qPCR法和流式细胞术分别检测细胞自噬过程中多药耐药基因1(mdrl)/P-糖蛋白(P-gp)表达的动态变化。不同浓度阿霉素单独或联合自噬抑制剂3-MA(5mmol/L)作用K562/ADM细胞24h-72h, MIT测定K562/ADM细胞的增殖活性,Annexin V/PI双染、流式细胞术测定K562/ADM细胞的凋亡。透射电镜观察自噬体形态,Western Blotting法检测LC3的表达及LC3-Ⅰ和LC3-Ⅱ的转化。不同浓度三氧化二砷作用K562细胞及K562/ADM细胞不同时间后,透射电镜观察自噬体形态,倒置荧光显微镜及流式细胞仪检测自噬体MDC染色;RT-qPCR法检测Benlin-1与Bcl-2的mRNA表达,Western Blotting分析检测Beclin-1、Bcl-2和LC3蛋白表达以及LC3-Ⅰ向LC3-Ⅱ的转化。不同浓度三氧化二砷单独或联合自噬抑制剂3-MA (5mmol/L)作用K562和K562/ADM细胞24-48h,MTT测定细胞的增殖活性,Annexin V/PI双染、流式细胞术测定细胞的凋亡。
     结果:1.与K562细胞相比,K562/ADM耐药细胞具有较高的基础自噬活性;饥饿法诱导K562与K562/ADM细胞发生自噬,在诱导的早期(3h) K562/ADM耐药细胞的自噬活性即迅速增高,而敏感的K562细胞的自噬活性发生较晚(9h),提示耐药白血病细胞早期而快速发生的自噬活性更有利于应对外界环境改变、保持细胞稳定性;自噬相关基因Beclin-1参与自噬的调节,K562/ADM细胞的表达高于K562细胞,与自噬活性的变化一致。有趣的是,K562/ADM细胞的mdrl/P-gp的表达随细胞自噬活性增强而表达增高,3-MA抑制自噬活性其表达相应降低。提示P-gp可能参与耐药性白血病细胞自噬活性的调控。
     2.K562/ADM细胞对阿霉素诱导的凋亡效应有很强的抵抗性。10μmol/L的阿霉素处理K562/ADM细胞48h,电镜下可见明显的自噬形态改变, Western Blotting检测可见LC3-Ⅰ向LC3-Ⅱ转化增强,说明阿霉素处理可诱导K562/ADM耐药细胞发生较强的自噬。若用3-MA处理可显著减低K562/ADM细胞的自噬活性,阿霉素诱导的K562/ADM细胞的凋亡显著增高、存活细胞率明显减少。提示抑制细胞自噬活性可提高K562/ADM细胞对阿霉素的敏感性、降低其耐药性。
     3.K562细胞和K562/ADM细胞均对三氧化二砷具有较高的敏感性,在不同浓度三氧化二砷诱导K562细胞和K562/ADM细胞增殖抑制和凋亡过程中,两种细胞均发生显著的自噬活性改变,自噬活性差异并不明显,但K562/ADM细胞自噬的出现较K562细胞为早。同时,三氧化二砷可增高K562和K562/ADM细胞Beclin-1基因mRNA及蛋白的表达,而显著降低Bcl-2基因mRNA及蛋白的表达,Beclin-1可能通过与Bcl-2的相互作用参与三氧化二砷诱导白血病细胞凋亡和自噬过程。3-MA抑制细胞自噬活性,可提高三氧化二砷诱导的K562细胞和K562/ADM细胞的死亡率,但增高的程度均并不十分显著。综合分析结果提示三氧化二砷在K562细胞和K562/ADM细胞中诱发的自噬活性,早期主要为应激性的保护反应,但随三氧化二砷作用时间的延长和诱导凋亡作用的增强,K562/ADM耐药细胞的自噬活性反而有所降低,提示三氧化二砷主要诱导耐药性白血病细胞发生细胞凋亡而非自噬性死亡,细胞自噬可能参与三氧化二砷的抗白血病机制但非主要因素。
     结论:1.白血病K562/ADM耐药细胞较其亲本K562敏感细胞具有更高的基础自噬活性,营养剥夺可引发白血病耐药性细胞发生早期而快速的自噬活性增强。Beclin-1参与自噬的调节,抑制细胞自噬活性可明显增高K562/ADM耐药细胞对阿霉素的敏感性、降低药物抵抗性,证明细胞自噬是参与白血病K562/ADM细胞多药耐药性形成的机制之一。
     2.营养剥夺诱导K562/ADM耐药细胞发生自噬过程中mdr1/P-gp的表达随细胞自噬活性增强而表达增高,细胞自噬活性被自噬抑制剂3-MA抑制其表达相应降低。mdr1/P-gp的表达变化与耐药细胞自噬活性的变化高度一致,提示P-gp可能参与耐药性白血病细胞自噬活性的调控,具体机制有待进一步探讨。
     3.三氧化二砷可诱发K562细胞和K562/ADM细胞发生自噬反应,Beclin-1及Bcl-2参与了其自噬形成机制,但随三氧化二砷作用时间的延长和诱导凋亡作用的增强,耐药细胞的自噬活性反而有所降低,抑制自噬活性白血病细胞对三氧化二砷的敏感性有所增强但不显著。提示三氧化二砷在耐药性白血病中诱发的早期自噬活性主要为应激性的保护反应,三氧化二砷主要诱导白血病细胞发生细胞凋亡而非自噬性死亡,细胞自噬可能参与三氧化二砷的抗白血病机制但非主要因素。
Objective:Leukemia is a malignant clonal disease of hematopoietic stem cells, characterized by abnormal primitive and naive cells increased in the bone marrow. The treatment was improved due to the use of combination of chemotherapy drugs and bone marrow transplantation recent decades, but the overall prognosis remains still poor. The major obstacle to clinical outcomes of AML is multidrug resistance of leukemia cells induced by chemotherapy drug, which also is the main factor to affect the effectiveness and success rate of leukemic bone marrow transplantation. Clinical leukemia is resistance to the lack of effective interventions. There are still no effective interventions to multidrug resistance of AML currently. Autophagy is very important for the pathogenesis and development of tumor/leukemia. Then the role of autophagy in Hematological malignancies and its relationship with drug-induced resistance mechanism is not yet fully understood. Therefore, the multidrug-resistant acute myeloid leukemia cell line K562/ADM and its parental cell line K562were used to investigate the change of autophagic activity induced by starvation and drugs, the relationship between autopahagy and the multi-drug resistance of K562/ADM cells, and the role of autophagy in the effect of arsenic trioxide in leukemia cells.
     Methods:We induced human multidrug-resistant leukemia K562/ADM cells and its drug-sensitive parental K562cells by starvation (0h,3h,6h,9h and12h) in vitro. Autophagic vacuoles were observed by electron microscope, the increased MDC (Monodansylcadaverin)-positive cells were detected by Fluorescence microscope and Flow cytometry; Furthermore, the expression of LC3mRNA and Beclin-1mRNA were detected by real-time quantitative PCR (RT-qPCR), the expression of LC3, Beclin-1and the result of LC3-Iconverted to LC3-Ⅱ were detected byWestern Blotting.The expression of mdrl mRNA was detected by RT-qPCR, P-glycoprotein of K562/ADM was detected by flow cytometry.The proliferation of K562/ADM cells treated with different concentrations of doxorubicinand in combination with3-MA for24-72h were detected with MTT assay, the apoptotic rates of K562/ADM treated with different concentrations of doxorubicinand in combination with3-MA for24-72h were detected with flow cytometry in order to explore the relationship between autophagy and apoptosis.Adriamycin inducedautophagic changes in K562/ADM cells, autophagic vacuoles were observed by electron microscope,and the result of LC3-Iconverted to LC3-II were detected by Western blotting. Autophagic vacuoles were observed in As2O3-treated K562and K562/ADM cells using electron microscope. MDC-labeled autophagic vacuoles were observed by fluorescent inverted phase contrast microscopy in As2O3-treated cells. The changes of LC3protein expression were detected byWestern Blotting. Furthermore, real-time quantitative PCR and Western blotting revealed that the expression of Beclin-1and Bcl-2. The apoptotic rates of K562/ADM treated with different concentrations of AS2O3and in combination with3-MA were detected with flow cytometry in order to study the possible molecular mechanism of leukemia cell death induced by arsenic trioxide.
     Results:1. Compared to K562cells, the autophagy activity of K562/ADM cells was higher under normal circumstances, Starvation could induce the changes of autophagic activity of K562and K562/ADM cells, the autophagic activity of K562/ADM cells occurred faster and earlier than K562cells to environmental changes in order to maintain the stability of cells; Beclin-1was involved in the regulation of autophagy, the expression of Beclin-1gene mRNA and protein in control K562/ADM cells were significantly higher than that in control K562cells, Moreover, we found that the expression of mdrl mRNA and P-gp in K562/ADM cells incresed as enhanced autophagic activity, after inhibited the autophagic activity of K562/ADM cells with3-MA, the expression of mdrl mRNA and P-gpdecreased. That suggested P-gp may be involved in the regulation of autophagic activity in K562/ADM cells.
     2. K562/ADM cell was resistant to doxorubicin. K562/ADM cells treated with10μmol/L of Adriamycin for48hours, obvious autophagic vacuoles were observed under electron microscope, enhanced expression of LC3-II protein was detected by Western Blotting, electron microscope and Western Blotting also revealed that doxorubicin could induce increased autophagic activity.3-MA, as an inhibitor of autophagy, could enhance the inhibited effect of K562/ADM cells induced by doxorubicin, the mortality rate of K562/ADM cells treated with3-MA and doxorubicin detected by flow cytometry was higher than treated with doxorubicin alone.
     3. After treated with different concentrations As2O3, The autophagic activity of K562and K562/ADM cells raised,the autophagic activity of K562/ADM cells increased earlier than K562cells treated with As2O3. The expression levels of Beclin-1, which play key roles in autophagy, increased in As2O3treated samples than in controls. The expression level of Bcl-2, an anti-apoptotic molecule, decreased in As2O3treated samples than in controls, Western Blotting also showed that As2O3up-regulated Beclin-1and LC3-Ⅱ protein and down-regulated Bcl-2protein, the mortality rates of K562and K562/ADM cells treated with3-MA and As2O3detected by flow cytometry were higher than treated with As2O3alone.The autophagic activity of K562/ADM cells decreased with prolonged duration with As2O3, suggested that the apoptosis is the main form of death of leukemia cells of anti-leukemia effect of arsenic trioxide but not autophagic death, autophagy may be involved in the anti-leukemia mechanism of arsenic trioxide, but not the main factor.
     Conclusion:1.The autophagic activity of K562/ADM cells is higher than K562cells; Under starvation condition, the autophagic activity of K562/ADMincreased earlier than K562cells, Beclin-1may be involved in the autophagic Molecular mechanisms; The inhibitedautophagic activity of K562/ADM cells with3-MA,couldenhancethe sensitivity of K562/ADM cells to doxorubicin, taken together, these results suggest that K562/ADM cells have more autophagy activity than K562cells. Autophagy may contribute to the mechanism of multi-drug resistance in K562/ADM cells.
     2. The expression of mdrl mRNA and P-gp in K562/ADM cells increased as enhanced autophagic activity under starvation, and decreased as inhibited autophagic activity by3-MA; The ability of multidrug-resistant in K562/ADM cells is increased after starvation, suggested that p-gp may be involved in the autophagicmolecular mechanisms of K562/ADM cells.
     3. Arsenic trioxide could induce autophagy in K562and K562/ADM cells, Beclin-1and Bcl-2may be involved in the autophagicmolecular mechanisms of K562and K562/ADM cells treated with As2O3, the changes of autophagic activity of leukemia cells are opposite to the apoptosis, inhibiting autophagy with3-MA, the mortality rate of K562and K562/ADM cells increased but not significantly, suggesting that this kind of autophagy is a protective mechanism and reduces the inhibited effect of AsaO3on leukemia cells, the main form of death of leukemia cells of anti-leukemia effect of arsenic trioxide is apoptosis. Autophagy may be involved in the anti-leukemia mechanism of arsenic trioxide, but not the main factor.
引文
[01]Yorimitsu T, Klionsky DJ. Autophagy:molecular machinery for self-eating [J]. Cell Death Differ,2005,12:1542-1552.
    [02]Singletary K, Milner J. Diet, autophagy, and cancer:a review [J].Cancer Epidemiology Biomarkers Prev,2008,17(7):1596-1601.
    [03]Kong D, Ma S, Liang B, et al. The different regulatory effects of p53 status on multidrug resistance are determined by autophagy in ovarian cancer cellsjJ]. Biomed Pharmacother, 2012,66(4):271-278.
    [04]Rubinstein DC. Autophagy:where next [J]. EMBO Rep,2010,11(1):313-327.
    [05]Pettigrew S, Espert L, Biard-Piechaczyk M, et al. Regulation ofmacro autophagy by mTOR and Beclin 1 complexes [J]. Biochimie,2008,90(2):313-323.
    [06]Yang Z, Kolinsky DJ. An overview of the molecular mechanism of autophagy [J]. CurrTop Microbiallmmune,2009,335:1-32.
    [07]He C, Kolinsky DJ. Regulation mechanisms and signaling pathways of autophagy [J]. Annul Rev Genet,2009,43:67-93.
    [08]Mathew R, Karana V, White E. Role of autophagy in cancer [J]. Nature Reviews Cancer, 2007,7:961-967.
    [09]Crightton D, Wilkinson S, Oprey J, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis[J]:Cell,2006,126(1):121-134.
    [10]Crightton D, Wilkinson S, Ryan KM. DRAM 1 inks autophagy to p53 and programmed cell death [J]. Autophagy,2007,3(1):72-74.
    [11]Nakatogawa H, Suzuki K, Kamala Y, et al. Dynamics and diversity in autophagy mechanisms:lessons from yeast [J]. NatRev Moll Cell Boil,2009,10(7):458-67.
    [12]Tandem RE, Yuri MC, Gallus IL, et al. Regulation of autophagy by cytoplasmic p53 [J].Nat Cell Boil,2008,10(6):676-687.
    [13]Meijer AJ, Cologne P. Regulation and role of autophagy in mammalian [J]. Into J Biochem Cell Biol,2004,36(12):2445-2462.
    [14]Sistani T, Kolinsky DJ. Autophagy in health and disease:a double-edged sword [J]. Science,2004,306:990-995.
    [15]Wei Y, Pettigrew S, Sinhala S, et al.JNKl-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy [J].MolL Cell,2008,30(6):678-688.
    [16]邱冬梅,陈莉.细胞自噬:病理学研究的新热点[J].临床与实验病理学杂志,2012,28(3):309-313.
    [17]Baranov AV, Karin M. p53 target genes sestina and sestina con-net genotoxie stress and mTOR signaling[J].Cell,2008,134(3):451-460.
    [18]Yee KS, Wilkinson S, James J, et al. PUMA-and Ba-induced autophagy contributes to apoptosis [J].Cell Death Difer,2009,16(8):1135-1145.
    [19]Maura MC,Criollo A,Tasdemir E, et al. BH3-only proteins andBH3 mimetic induce autophagy by competitively disrupting the interaction between Beclin-1 and Bcl-2/Bcl-X (L) [J]. Autophagy,2007,3(4):374-376.
    [20]Zhang J, Ney PA. Role ofBNIP3 and NIX in cell death, autophagy and mitophagy[J]. Cell Death Differ,2009,16(7):939-946.
    [21]Martoriati A, Dumont G, Allay M, et al. Encoding an activator of ARF-p53mediated apoptotic checkpoint, is a transcription target ofp53[J]. Oncogene,2005,24(8): 1461-1466.
    [22]Morsel E, Tasdemir E, Maier MC, et al. Mutant p53 protein realized in the cytoplasm inhibits autophagy[J]. Cell Cycle,2008,7(19):3056-3061.
    [23]Maier MC, Gallus L, Morsel E, et al. Autophagy regulation by p53[J]. CurOpenCellBoil, 2010,22(2):181-185.
    [24]Levine B, Kroeber G. Autophagy in the Pathogenesis of Disease [J]. Cell,2008, 11:27-42.
    [25]Jin S, White E. Role of Autophagy in Cancer:Management of Metabolic Stress [J]. Autophagy,2007,3:28-31.
    [26]Levine B, Kolinsky DJ. Development by self-digestion:molecular mechanisms and biological functions of autophagy [J]. Develop-mental Cell,2004,6(4):463-477.
    [27]Qu X, Zou Z, Sun Q, et al.Autophagy gene-dependentclearance of apoptosis cells during embryonic development [J]. Cell,2007,128(5):938-946.
    [28]Levine B, Kolinsky DJ. Development by self-digestion:molecular mechanisms and biological functions of autophagy. DevCell,2004,6:463-477.
    [29]Cuero AM. Autophagy:in sickness and in health [J]. Trends Cell Biol,2004,14:70-77.
    [30]Sistani T, Kolinsky DJ. Autophagy in health and disease:a double-edged sword [J]. Science,2004,306:990-995.
    [31]Nikkei A, Yamaguchi Q, Takeda T. et al. The role of autophagy in cardio myocytes in the basal state and in response to hemodynamic stress [J]. Nature Medicine,2007,13(5): 619-624.
    [32]Nakagawa I, Amano A, Mizushima N, et al. Autophagy defends cells against invading group A Streptococcus [J]. Science,2004,306(5698):1037-1040.
    [33]Verge I, Singh S, Roberts E, et al. Autophagy in immune defenseminst Mycobacterium tuberculosis [J]. Autophagy,2(3):175-178.
    [34]Miller S, Kinsey, Locker J. Modification of intracellular membrane structures for Vitus replication [J]. Nature Reviews Microbiology,2009,6(5):363-374.
    [35]Mortensen M, Watson AS, Simon AK. Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and deregulated myeloid proliferation [J]. Autophagy,2011,7:1069-1070.
    [36]Sun Y, Liu JH, Jin L, et al. Over-expression of the Beclinlgene up regulateschemo sensitivity to anti-cancer drugs by enhancing therapy-induced apoptosis in cervix squamous carcinoma Cask cells [J]. Cancer Let,2010,294(2):204-210.
    [37]Amravati RK, Yu D, Lump JJ, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma [J]. Gin Invest,2007,117:326-336.
    [38]Wei H L, Su H X, Bai D C, et al. Arsenic triox ide inhibits P-glycoprotein expression of multidrug-resistant human leukemia cells that overexpress mdrlgene [J]. Chin Med J, 2003,116(11):1644-1648.
    [39]张亚莉,魏虎来,郭璐.三氧化二砷诱导K562/ADM细胞凋亡中mdrl和Survivin基因的表达[J].中华肿瘤防治杂志,2006,13(8):577-581.
    [40]Mizushima N, Levine B5 Cuero AM, et al. Autophagy fights disease through cellular self-digestion [J]. Nature,2008,451:1069-1075.
    [41]Mathew R, Karana W, Ads worth V, et al. Role of autophagy in cancer[J].Nat Rev Cancer, 2007,7(12):961-967.
    [42]Kondo Y, Kondo S. Autophagic and tumor suppressor activity of a novel Beclinl-binding protein U-VRAG[J].Nat Cell Biol,2006,8(7):688-699.
    [43]Yan CH, Liang ZQ, Gu ZL, et al. Arsenic trioxide induces autophagic cell deaih in malignant glioma cells by regulation or mitochondrial cell deity protein BNIP3 [J].Oncogene,2005,24(6):980-991.
    [44]Hair WN, Jin S, Yang JM. A matter of life or death (or both):understanding autophagy in cancer [J]. Clin Cancer Res,2006,12(71):1961-1965.
    [45]Mathew R, Konawa S, Beauvoir B, et al. Autophagy suppresses tumor progression by limiting chromosomal instability[J]. Genes Dev,2007,21 (11):1367-1381.
    [46]Qu X, Yu J, Braga G, et al. Promotion of tumor genesis by heterozygous disruption of the beclin 1 autophagy gene [J].Clin Invest,2003,112(12):1809-1820.
    [47]Qian W, Liu J, Jin J, et al. Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1[J]. Leuk Res, 2007,31(3):329-39.
    [48]Meridio G, Salvador-Mongolia N, Fluey A, et al. Fissuresheltie autophagy alterations an increased tumor genesis in mice deficient AtS4C/autophagin-3[J]. Boil Chem,2007, 282(25):18573-17583.
    [49]李楠,张真.大黄素对鼻咽癌CNE-1细胞放射增敏作用与细胞自噬关系的研究[J].中国药理学通报,2012,28(11):1535-1538.
    50] Longo L, Platinic F, Sardine A, et al. Autophagy inhibition enhances anthocyanin-induced apoptosis in hepatocellular carcinoma [J]. Moll Cancer Ther,2008, 7(8):2476-2485.
    [51]Mizushima N. The role of the Atgl/ULKI complex in autophagy regulation [J]. Curr Opin Cell Boil,2010,22(2):132-139.
    [52]高雅,邢皓,于爱鸣.自噬与肿瘤[J].中国肿瘤,2012,14:115-116.
    [53]Kondo Y, Kanawha T, Seaway R, et al. The role of autophagy in cancer development and response to therapy [J].Nat Rev Cancer,2005,5(9):726-734.
    [54]ApeA, Herr I, Schwarz H,et al. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy [J].Cancer Res,2008,68(5):1485-1494.
    [55]Demisters G, Di X, News ham I, et al. Potentiation of radiation sensitivity in breast tumor cells by the vitamin D3analogue, EB 1089, through promotion of autophagy and interference with proliferative recovery [J]. Moll Cancer Ther,2006,5(11):2786-2797.
    [56]Ito H, Daido S, Kanawha T, et al. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells[J].Int J Oncol,2005,26(5):1401-1410.
    [57]Houwerzij EJ, Pol HW, Bloom NR, et al. Elytroid precursors from patients with low-risk myelo dysplasia demonstrate ultra-structural features of enhanced autophagy of mitochondria [J]. Leukemia,2009,23(5):886-891.
    [58]Houwerzij EJ, Bloom NR, van der Want JJ, et al. Megakaryocytic dysfunction in myelody splastic syndromes and idiopathic thrombocytopenic purport is in part due to different forms of cell death [J]. Leukemia,2006,20(11):1937-1942.
    [59]Palacios C, Martin-P. Autophagy inhibition sensitizes multiple myeloma cells to 1 7-dimethylaminoethylamino-17-demethoxygeldanamycin-induced apoptosis [J]. Leuk Res,2010,34(11):1533-1538.
    [60]Nakamura M, Kiktkawa Takeya M, et al.Clarithromycin attenuates autophagy in myeloma cells [J]. Int J Oncol,2010,37(4):815-820.
    [61]Leu R, Pembina Frank A, et al. A small molecule inhibitor of inducible heat shock protein 70[J]. Moll Cell,2009,36(1):15-27.
    [62]Amravati R Yu D. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma [J]. Clin Invest,2007,117(2):326-336.
    [63]Ether A, Huber V, Gulch S, et al. The anticancer drug imatinib induces cellular autophagy [J]. Leukemia,2007,21(5):936-942.
    [64]Mishmi Y, Terumi Y, Mishmi Y, et al. Autophagy and autophagic cell death are next targets for elimination of the resistance to tyrosine kinase inhibitors [J]. Cancer Sci,2008, 99(11):2200-2208.
    [65]Horrent R, Beheshti Zavareh R, Dalili S, et al. A novel diquinolonium displays preclinical anti-cancer activity and induces caspase-independent cell death [J]. Apoptosis, 2008,13(6):748-755.
    66] Wang J, Lian H, Zhao Y, et al. Vitamin D3 induces autophagy of human myeloid leukemia cells [J]. Boil Chem,2008,283(37):25596-25605.
    [67]Saeki K, Yuo A, Okuma E, et al. Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells[J]. Cell Death Differ,2000,7 (12):1263-1269.
    [68]Turzanski J, Daniels I, Haynesa P. Involvement of macro autophagy in the caspase-independent killing of Burkitt lymphoma cell lines by rituximab [J]. Amatol, 2009,145(1):137-140.
    [69]Rojewski MT, Baldur C, Knout W, et al. Dual effects of arsenic trioxide (As2O3) on non-acute promyelocytic leukaemia myeloid cell lines:induction of apoptosis and inhibition of proliferate ion [J]. Haemato,2002,116(3):555-563.
    [70]Wang DH, Wei HL, Zhao H S, et al. Arsenic trioxide overcomes apoptosis inhibition in K562/ADM cells by regulating vital components in apoptotic pathway [J]. Pharmacol Res,2005,52(5):376-378.
    [71]Wei H L, Su H X, Bai DC, et al. Arsenic triox ide inhibits P-glycoprotein expressidnof multidrug-resistant human leukemia cells that overexpressmdrlgene [J]. Chin Med,2003, 116(11):1644-1648.
    [72]严俊,吴祖泽,王立生.白血病细胞自噬调控的研究进展[J].中国实验血液学杂志.2010,18(2):540-543.
    [73]Erlanger ZH, Karasuyama H, Yamada E, et al. Set 20-like Kinase(SLK), a regulatory kinase for polo-like kinase(PIK)during the G2/M transition in somatic cells[J]. Genes Cells,2000,5(6):191-198.
    [74]ParkJW, Choi YJ, Jang MA, et al. Arsenic trioxide induces G2/M growth arrest and apoptosis after caspase-3 activation and bcl-2 phosphorylation in promonocytic U937 cell [J]. Biopsy Res Common,2004,286(4):726-734.
    [75]Knudsen KE, Diehl JA, Hayman CA, et al. cyclin Dl:polymorphism, aberrant splicing and cancer risk [J]. Oncogene,2006, (25):1620-1628.
    [76]Miller WH. Mole regular targets of anarsenic trioxide in malignant cells [J]. Oncologist, 2002,7:14-19.
    [77]Kim H, Rafiuddin-Shah M, Tu HC, et al. Hierarchical regulation of mitochondrion-dependent apoptosis by BCI-2 subfamilies [J]. Nat Cell Boil,2006,8(12): 348-358.
    [78]Guillemin MC, nafoux E, Vitoux D, et al.In vivo affection of cAMP sigmdinginducetooth arrest and differentiation in acute pmmyelyticleukemia [J]. Exp Med,2002,196(10):1373-1380.
    [79]Tan B, Huang JF, Wei Q, et al,Anti-hepatoma effect of arsenic trioxide on experimental liver cancer induced by acetum idofluorene in rats[J].World J Gastioenterol,2005, 11(38):5938-5943.
    [80]Liu B, Pan S, Dong X, et al.Opposing effects of arsenic trioxide on hepatocelinlarcw cmomas in mice [J].Cancer Sci,2006,97(7):675.
    [81]Struan S, Baum Gartner M, Roth E, et al. Docosahexaenoic acid enhances arsenic trioxide mediated apoptosis in arsenic trioxide resistant 60 cells [J]. Blood,2003,101(12): 4990-4997.
    [82]Yoshi H, Koriyama S, Noguchi R, et al. Angiopoietin Z diaplays a vascular endothelial growth factor dependent synergistic effect in hepatocellular Eareinoma development in mice [J]. Gut,2005,54(4):1768-1775.
    [83]Li XQ, Ding XZ, Adrian TE. Arsenic trioxide induces apoptosis in pancreatic cancer cells via changes in cell cycle, caspase activation, and GADD expression [J]. Pancreas, 2003,27(2):174-179.
    [84]Au wY, Kumara CR, Lam CW, et al. Solid tumors subsequent to arsenic trioxide treatment for acute promyeloeytic leukemia [J]. Leuk Res,2006,5(23):8.
    [85]McCollum G, King PC, States C. Trioxide induces apoptosis and autophagy [J]. Pharmacolk ExpTher,2005,313(2):877-887.
    [86]俞军.三氧化二砷对鼠移植性肝癌端粒酶活性的影响[J].中国临床医学,2002,9(2):121-123.
    [87]Koenig A, Weasel L, Worrall RP, et al. Comparative activity of melarsoprol and arsenic trioxide in chronic B-cell leukemia lines [J]. Blood,1997,90(2):562-570.
    [88]Perkins C, Kim CN, Fang G, et al.Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Ber-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-x(L)[J]. Blood,2000,95(3):1014-1022.
    [89]卓家才,汪明春.三氧化二砷耐药白血病细胞株K562/AS2的建立及其与多药耐药的关系[J].中国病理生理杂志,2002,18(7):840-843.
    [90]李明,卢学春.三氧化二砷对非APL急性白血病细胞的毒性作用观察[J].山东医药,2003,43(34):20-21.
    [91]张亚莉,魏虎来,孙利军.三氧化二砷诱导K562/ADM细胞凋亡过程中对bcl-2、 survivin, ROS表达的影响[J].中国肿瘤,2008,17(6):495-498.
    [92]Jing Chen, Yanyun Ma, Bei Wang, et al.The apoptosis of leukemia K562 cells induced by arsenic trioxide and the participation of mitochondria and endoplasmic reticulum [J]. ZhonghuaXue Ye XueZaZhi,2009,30(7):477-479.
    [93]黄明,孟凡义,王治香.三氧化二砷逆转HL60/ADR细胞耐药的研究[J].中国组织工程研究与临床康复,2011,15(19):3518-3521.
    [94]陈牧,张建东,张育等.三氧化二砷对阿霉素耐药的白血病细胞血管新生相关因子的影响[J],安徽医学,2011,2:87-90.
    95]李君君,周园芳,刘小军等.亚砷酸对白血病K562/A02细胞的作用及机制[J].中南医学科学杂志,2011,4:21-24.
    100]史立军,闫彬彬,李双星等.三氧化二砷对胰腺癌细胞株的抑制作用及其机制的初 步探讨[J].中国病理生理杂志,2005,21(8):1572-1574.
    [101]何景利,王贵英,单保恩.三氧化二砷联合顺铂对人结肠癌细胞株colon26抑制作用机理的研究[J].中国肿瘤临床,2005,32(19):1125-1128.
    [102]曲志博,刘连新,尹大龙等.三氧化二砷对乳腺癌细胞凋亡及线粒体跨膜电位的影响[J].中华外科杂志,2007,45(13):883-884.
    [103]Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin-1 autophagy gene[J].J Clin Invest,2003,112(12):1809-1820.
    [104]王德志.三氧化二砷逆转人肝癌耐药细胞株BeL-7402/ADM多药耐药作用的体外实验研究[D].安徽:安徽医科大学,2010.
    [105]汤大纬.三氧化二砷逆转裸小鼠人肝癌原位移植瘤多药耐药的实验研究[D].安徽医科大学,2009.
    [106]刘春来,薛东炜,刘屹立等.三氧化二砷对膀胱癌细胞耐药性的影响[J].实用肿瘤杂志,2011,5:37-41.
    [107]Kanawha T, Zhang L, Lian Chun X. Arsenic trioxide induces autophagic cell death in malignant glioma cells by up regulation of mitochondrial cell death protein BNIP3 [J]. Oncogene,2005,24:980-991.
    [108]王绩英,赵雪强,王昌明等.三氧化二砷抑制肺癌HTB-56/DDP细胞增殖及诱导凋亡的研究[J].时珍国医国药,2011,7:2125.
    [109]龙璐璐,许文林,沈慧玲等.YB-1抑制三氧化二砷诱导的胃癌细胞自噬机制[J].山东’医药,2012,52(13):4-6.
    [01]Altman BJ, S R Jacobs SR, Mason EF, et al.Autophagy is essential to suppress cell stress and to allow BCR-Abl-mediated leukemogenesis [J]. Oncogene,2011,30:1855-1867.
    [02]Reason Wilkes, Mysore S Verna, Marilee B Wang, et al. Curcumin:A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma[J]. Molecular Cancer,2011,10:9-12.
    [03]Jin S, White E. Role of Autophagy in Cancer:Management of Metabolic Stress [J]. Autophagy,2007,3:28-31.
    [04]Meijer AJ, Cologne P. Regulation and role of autophagy in mammalian [J]. Biochem Cell Biol,2004,36(12):2445-2462.
    [05]严俊,吴祖泽,王立生.白血病细胞自噬调控的研究进展[J].中国实验血液学杂志.2010,18(2):540-543.
    [06]Yoshiro T. Autophagy:a regulated bulk degradation process inside cells[J]. Biochemical & Biophysical Res Communication,2004,313:453-458.
    [07]Levine B, Yuan J Y Autophagy in cell death:an innocent convict?[J]. Clin Invest, 2005,115(10):2679-2688.
    [08]Ether A, Huber V, Gulch S, et al. The anticancer drug imatinib induces cellular autophagy [J]. Leukemia,2007,21(5):936-942.
    [09]Mortensen M, Watson AS, Simon AK. Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and deregulated myeloid proliferation[J]. Autophagy, 2011,7:1069-1070.
    [10]Sistani T, Kolinsky DJ. Autophagy in health and disease:a double-edged sword[J]. Science, 2004,306:990-995.
    [11]Tandem RE, Yuri MC, Gallus IL, et al. Regulation of autophagy by cytoplasmic p53 [J].Nat Cell Boil,2008,10(6):676-687.
    [12]QuX, YuJ, BhagatG, et al. Promotion of tumorigenesis by the terozygous disruption of thebeclin-1 autophagy gene [J]. Clin Invest,2008,112(12):1809-1820.
    [13]白海,胡晓燕,马晓慧等.急性白血病患者骨髓单个核细胞自噬作用的超微结构观察[J].西北国防医学杂志,2012,33:104-106.
    [14]Chen CJ, Clark D, Ueda K. Genomic organization of the human multidrug resistance (MDRI) gene and origin of P-glycoproteins [J]. Biological chemistry,1990,265(1):506-514.
    [15]MTineKuo. Roles of Multidrug Resistance Genes in Breast Cancer Chemo resistance[J]. Exp Medicine and Biology,2007,608:23-30.
    [16]Michael G Constantinides, Damien Picard, et al. A naive-like population of human CD Id-restricted T cells expressing intermediate levels of promyelocytic leukemia zinc finger[J]. Immunol,2011,187(1):309-315.
    [17]Abed El-Ghaffar HA, Aladle DA, Farahat SE, et al. P-glycoprotein(P-170)expression in acute leukemias[J].Hematology,2006.
    [01]Mary C, Abraham,ShaiShaham. Death without caspases, caspases without death [J]. Trends Cell Boil,2004,14(4):184-193.
    [02]Aita VM, Liang XH, Murty W, et al. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21[J].Genomics,1999,59(1):59-65.
    [03]李婉丽,杨惠军,张本山等.自噬基因Beclin-1在儿童急性淋巴细胞白血病细胞的表达[J].中国误诊学杂志,2011,(16):3795-3797.
    [04]Hurren R, Beheshti Zavareh R, Dalili S, et al. A novel diquinolonium displays preclinical anti-cancer activity and induces caspase-independent cell death[J].Apoptosis,2008,13(6):748-755.
    [05]Saeki K, Yuo A, Okuma E, et al.Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells[J].Cell Death Differ,2000,7(12):1263-1269.
    [06]Ertmer A, Huber V, Gilch S, et al.The anticancer drug imatinib induces cellular autophagy [J].Leukemia,2007,21 (5):936-942.
    [07]Mishima Y, Terui Y, Taniyama A, et al. Autophagy and autophagic cell death are next targets for elimination of the resistance to tyrosine kinase inhibitors[J].Cancer Sci,2008,99(11):2200-2208.
    [08]Chen GQ, Shi XG, Tang W, et al.Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL):I. AS2O3 exerts dose-dependent dual effects on APL cells[J].Blood,1997,89(9):3345-3353.
    [09]Stroikin Y, Johansson U, Asplund S, et al.Increased resistance of lipofuscin-loaded prematurely senescent fibroblasts to starvation-induced programmed cell death[J].Biogerontology,2007,8(1):43-53.
    [10]Soignet SL, Maslak P, Wang ZG, et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide[J].N EnglJ Med,1998,339(19):1341-1348.
    [11]Akao Y, Mizoguchi H, Kojima S, et al. Arsenic induces apoptosis in B-cell leukaemic cell lines in vitro:activation of caspases and down-regulation of Bcl-2 protein[J].Haematol,1998,102(4):1055-1060.
    [12]Lu M, Levin J, Sulpice E, et al.Effect of arsenic trioxide on viability, proliferation, and apoptosis in human megakaryocytic leukemia cell lines[J].Exp Hematol,1999,27(5):845-852.
    [13]Li YM, Broome JD.Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells[J].Cancer Res,1999,59(4):776-780.
    [14]Wang DH, Wei HL, Zhao HS, et al.Arsenic trioxide overcomes apoptosis inhibition in K562/ADM cells by regulating vital components in apoptotic pathway [J].Pharmacol Res,2005,52(5):376-385.
    [15]Wei HL, Yao XJ, Li YN, et al.Arsenic trioxide inhibits P-glycoprotein expression in multidrug-resistant human leukemia K562/ADM cell line that overexpresses mdr-1 gene and enhances their chemotherapeutic sensitivity[J].Zhonghua Xue Ye Xue Za Zhi,2003,24(1):28-31.
    [16]张亚莉,魏虎来,郭璐.三氧化二砷诱导K562/ADM细胞凋亡中mdrl和Survivin基因的表达[J].中华肿瘤防治杂志,2006,(08):577-581.
    [17]胡晓燕,白海,潘耀柱等.自噬相关基因Beclinl和MAPLC3在急性白血病骨髓单个核细胞中的表达及其意义[J].中国实验血液学杂志,2011,(03):598-601.
    [18]Levine B, Sinha S, Kroemer G.Bcl-2 family members:dual regulators of apoptosis and autophagy[J].Autophagy,2008,4(5):600-606.
    [19]Kessel D.Protection of Bcl-2 by salubrinal[J].Biochem Biophys Res Commun,2006,346(4):1320-1323.
    [20]Yanagjsawa H, Miyashita T, Nakano Y, et al.HSpinl, a transmembrane protein interacting withBcl-2/Bcl-xL, induces a caspase-independent autophagic cell death[J].Cell Death Differ,2003,10(7):798-807.
    [21]Swerdlow S, Distelhorst CW.Bcl-2-regulated calcium signals as common mediators of both apoptosis and autophagy[J].Dev Cell,2007,12(2):178-179.
    [22]Pattingre S, Levine B.Bcl-2 inhibition of autophagy:a new route to cancer?[J].Cancer Res,2006,66(6):2885-2888.
    [23]Chen CJ, Clark D, Ueda K, et al.Genomic organization of the human multidrug resistance (MDR1) gene and origin of P-glycoproteins[J]. Biol Chem,1990,265(1):506-514.
    [24]Constantinides MG, Picard D, Savage AK, et al.A naive-like population of human CDld-restricted T cells expressing intermediate levels of promyelocytic leukemia zinc finger[J].Immunol,2011,87(1):309-315.
    [25]Abd El-Ghaffar HA, Aladle DA, Farahat SE, et al.P-glycoprotein (P-170) expression in acute leukemias[J].Hematology,2006,11(1):35-41.
    [26]DiPaola RS, Dvorzhinski D, Thalasila A, et al.Therapeutic starvation and autophagy in prostate cancer:a new paradigm for targeting metabolism in cancer therapy[J].Prostate,2008,68(16):1743-1752.
    [27]严俊,吴祖泽,王立生.白血病细胞自噬调控的研究进展[J].中国实验血液学杂志,2010,(02):540-543.
    [28]Spaner DE, Masellis A.Toll-like receptor agonists in the treatment of chronic lymphocytic leukemia[J].Leukemia,2007,21(1):53-60.
    [29]Lim SC, Kim SM, Choi JE, et al.Sodium salicylate switches glucose depletion-induced necrosis to autophagy and inhibits high mobility group box protein 1 release in A549 lung adenocarcinoma cells[J].Oncol Rep,2008,19(5):1165-1171.
    [30]梁瑞韵,尹柯,伍卫等.氨茶碱诱导T淋巴细胞自噬现象的观察[J].中国免疫学杂 志,2008,(04):300-304.
    [31]Nakatogawa H, Suzuki K, Kamada Y, et al.Dynamics and diversity in autophagy mechanisms: lessons from yeast[J].Nat Rev Mol Cell Biol,2009,10(7):458-467.
    [32]Petiot A, Ogier-Denis E, Blommaart EF, et al.Distinct classes of phosphatidylinositol 3-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells[J]. Biol Chem,2000,275(2):992-998.
    [33]Wei HL,Yao XJ, Li YN, et al. Arsenic Trioxide inhibits P-glycoprotein expression in multidrug-resistant human leukemia K562/ADM cell line that overexpresses mdr-lgene and enhances their chemotherapeutic sensitivity [J]. Zhonghua XueYe Xue Za Zhi.2003, 24(1):28-31.
    [34]张亚莉,魏虎来,孙利军等.三氧化二砷对K562/ADM耐药细胞凋亡抑制的逆转作用[J].实用医学杂志,2007,23(23):3651-3654.
    [35]Kanzawa T, Zhang L, Lianchun X. Arsenic trioxide induces autophagic cell death in malignant glioma cells by up-regulation of mitochondrial cell death protein BNIP3 [J].Oncogene,2005,24:980-991.
    [36]Qian W, Liu J, Jin J, et al. Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1 [J]. Leuk Res,2007,31(3):329-339.
    [37]沈景刚,周梅华,李雪等.雷帕霉素诱导人黑素瘤细胞M14自噬及Bcl-2,Bax表达的变化[J].南京医科大学学报(自然科学版),2013,3:18-21.
    [38]Wang DH, Wei HL, Zhao HS, et al. Arsenic trioxide overcomes apoptosis inhibition in K562/ADM cells by regulating vital components in apoptotic pathway [J]. Pharmacol Res, 2005,52(5):376-378.
    [39]Dongle L,Yang Y, Quan L, et al. Inhibition of autophagy by 3-MA potentiates cisplatin-induced apoptosis in esophageal squamous cell carcinoma cells [J].Med Oncol, 2009,(30):235-239.
    [40]Huang S, SinicropeFA. Celecoxib-induced apoptosis is enhanced by ABT-737 and by inhibition of autophagy in human colorectal cancer cells [J].Autophagy,2010,6(2):865-870.
    [41]Cui Q, ashore S, Onodera S, et al. Autophagy preceded apoptosis in ordain-treated human breast cancer MCF-7 cells [J].Boil Pharm Bull,2007,30(5):859-864.
    [42]齐亚莉,张震宇,王洪艳等.电离辐射诱导人乳腺癌细胞自噬与凋亡的关系[J].吉林大学学报(医学版),2009,35(6):1007-1010.
    [43]Abadan MJ, Wang D, McDonnell MA, et al. Autophagy delays apoptotic death in breast cancer cells following DNA damage [J].Cell Death Differ,2007,14(3):500-510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700