Al-Mg-Si系合金组织性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al-Mg-Si 系合金密度低、耐腐蚀、焊合性好,具有良好的综合机械性能。本文在Al-Mg-Si 系铝合金基础之上,调整合金元素和过渡族元素,改进其组织和性能,开发出一种适合舰载飞机的中强、耐蚀铝合金。本文研究的主要结果如下:
    正交实验表明,Cu 和Si 对Al-Mg-Si 系合金的强化效果最显著,Mg 次之,而稀土La 对强化不起作用。
    采用电子探针、EDS 分析和TEM 组织观察,得出含微量元素的Al-Mg-Si-Cu 系合金-T6 的时效析出相有:β(Mg2Si)相、θ(CuAl2)相和S(CuMgAl2)相,弥散相和夹杂相有α(AlFeSi)、β(AlFeSi)、AlMnFeSi、AlCrFeSi 和ZrAl3等。
    系统地研究了Cu、Si、Mg 和Mn 含量变化对Al-Mg-Si 系合金组织性能的影响。结果表明:Cu 含量增加可明显提高合金的强度和硬度,但塑性下降。Cu 含量增加,合金中的主要时效强化相θ”的数量相对增加;因含CuAl2相的共晶组织熔点较低,合金的过烧敏感倾向增加;合金的沿晶断裂倾向增加。Si 加快合金的硬化速度,合金中的针状β”相的析出密度随其含量增加而增大,合金显著强化,但含量过高时合金中析出较多的单晶Si,合金的强度和塑性明显下降。Mn 含量增加,增加了粗大夹杂相α(AlMnFeSi)的数量,合金的强度降低。同时,系统研究一些过渡族元素对Al-Mg-Si 系合金组织性能的影响。结果表明:Cr 和Ti 减少了铸态组织中粗大含Fe 杂质相β(Al9Fe2Si2)的数量,促进了尺寸较小、形状较利于变形的α(Al12(Fe,Cr)3Si)相的形成,增加了含Fe 弥散相的体积分数。Mn 和Zr
    同时添加对再结晶的抑制效果最显著,提高合金的再结晶温度,再结晶晶粒细化。Cr和Ti 对合金的时效特性基本没有影响,添加0.3%Mn 和0.08%Zr 的硬化效果最显著。添加Ag 和Zn 后合金的显微组织发生了明显不同的变化,使合金同时具有高密度细小的晶内析出相(T6 组织的特征)和较大、不连续分布的晶界析出相(T7 组织的特征)。微量的Cr、Ti、Mn 和Zr 提高合金的塑性,Cr 和Ti 对强度影响不大,但适当含量的Mn 和Zr 可提高合金强度。
    均匀化研究表明:少量的Mn可明显加快均匀化过程中片状的β-AlFeSi相向较小的、粒状α-AlFeSi 相的转变,转变过程中涉及到Fe/Si 比的增加和第二相颗粒的细化。实验合金在570℃均匀化空冷过程中析出粗大的β’相,在急冷中没有观察到。
    变形行为研究表明:实验合金在峰时效状态(170℃×7h)和过时效状态(170℃×32h)状态下的应变硬化指数n 值较低,合金的塑性较低。添加微量元素后,合金的断口由细小且深的韧窝组成,断裂方式由沿晶断裂转变为穿晶断裂。提出了断裂应变εf与第二相
Al-Mg-Si alloys are widely used in industry because of it's favorable properties such as low density, high corrosion resistance and excellent weldability and so on. On the base of Al-Mg-Si alloys, the alloying elements were adjusted and transitional metals were added to improve the microstructures and mechanical properties, a new type of alloy with medium strength and high corrosion resistance was developed, which is suitable for the need of carrier-based aircrafts. Some main research results are presented as the followings:
    The orthogonal experiments show that Cu and Si are the most important, Mg is less,whereas La is no useful to strengthening Al-Mg-Si alloys.
    The main precipitates and constituent phases of the Al-Mg-Si-Cu alloys with transitional Metals-T6 are researched through EPMA、EDS and TEM. The ageing precipitates are β(Mg2Si), θ(CuAl2) and S(CuMgAl2), the constituent phases are α(AlFeSi), β(AlFeSi), AlMnFeSi , AlCrFeSi and ZrAl3.
    The influences of the variations of Cu、Si、Mg and Mn contents were studied on the microstructures and performances of Al-Mg-Si alloys systematically. With increasing Cu content, strength and hardness of Al-Mg-Si alloys are greatly improved, but ductility dropped because that the number of the main strengthening phases (θ”) increased, that the low melting temperature of the eutectic structures including CuAl2 leads to the trend of the overheating sensibility of Al-Mg-Si alloys and that the trend of intergranular fracture increases. Si increases the hardening rate and strength of the alloys because of increasing density of β”phases. Whereas the primary Si appears when Si content is higher than the stoichiometric value of Mg/Si for Mg2Si, which is harmful to mechanical properties. The strength dropped also due to increasing the coarse α(AlMnFeSi) with higher Mn content.
    The effects of some transitional metals on the microstructures and properties were investigated. The transitional metals promote the formation of more dispersed phases (α(Al12(Fe,Cr)3Si)) which have smaller and more favorable shape. Adding both Mn and Zr is the most effective on recrystallization resistance, which increases recrystallized temperature and makes recrystallized grain finer of Al-Mg-Si alloys. Adding Cr and Ti has no effect on ageing characteristics, whereas addition of 0.3%Mn 、0.08%Zr leads to a much stronger effect on ageing characteristics. An apparent change takes place in the microstructures by adding Ag and Zn, fine precipitates with high density distribute homogeneously within grains and GBPs(grain boundary
    precipitates) become coarser and discontinuous. Trace Cr、Ti、Mn and Zr are favorable for ductility, Cr and Ti have a little effect on strength, however, suitable addition of Mn and Zr also can elevate the strength. Mn can promote the speed of transition from flaky β(AlFeSi) to spherical α(AlFeSi) in homogenization process, which increase the ratio of Fe/Si and refine secondary phase particles. Homogenized at 570℃, coarse β’is undiscovered after water quenching, it is found after air cooling. The strain hardening exponent(n) is low under the peak-aging(170 ℃×7h) and over-aging(170℃×32h) conditions. Added transitional metals, the fracture mode turns from intergranular to transgranular fracture and the fractograph is made of deep and fine dimples, The relations between the fracture stain (εf) and the volume fraction of secondary phases, or the width of PFZs(precipitate free zones) and the size and the number of GBPs are presented as the following: It is the first time to widely study the influences of the ageing conditions on the microstructures of Al-Mg-Si alloys. Through DSC, the ageing precipitation sequence of Al-Mg-Si-Cu alloys is: GP zones β”β’β. The orthogonal experiments show that the θ”optimum ageing procedure is 140℃×22h+170℃×5h. With increasing the ageing temperature, the softening rate of the alloy increases, which leads to the reduction of hardness. With increasing the ageing time, the precipitates within grains becomes coarser, PFZs become wider, and GBPs become discontinuous and coarse also. When pre-ageing temperature is 20℃, “negative effect on the strength”appears, on the contrary, “positive effect on the strength”appears if the pre-ageing temperature increase above 80℃. According to TEM observation, the needle-like precipitates are coarser when pre-aged at 20℃. But “positive effect”appears also when the pre-ageing time(20℃) is as long as 3 weeks. For a short aging time(5min), the hardness is lower than pre-ageing, because of the remelting of GP zones. The optimum retrogressive temperature is 200℃. It is found through TEM observation that there are fine and dense needle-like precipitates ,coarse secondary phases within grains, and two type of (one is big, the other is small) discontinuous precipitates at grain boundaries. The hardness of the alloys obtained by thermomechanical treatment is higher than that in single aging, with the deformation ratio increasing, the hardness of the alloys increases and the time to maximum hardness becomes shorter, and the aging hardenability εf = k???? 1?f f????orεf ?k"?Dw3N
引文
1. D.A.Lukasak and R.M.Hart. Aluminium alloy development efforts for compression dominated structure of aircraft.Light Metal Age,1991(10):11.
    2. K.H.Rendings. Aluminium structures used in aerospace-Status and Prospect-.Materials Science Forum,1997,242:11-20.
    3. 宮木美光,日野光雄,江藤武比古.Al-Li合金の製造上の問題點.輕金屬,1986,36(11):697.
    4. 今村次男.Al-Li系合金の實機適用へ向けて.輕金屬,1986,.36(11):705.
    5. 堀久司,豐田勝三郎,津村善重.Al-Li系合金の電解製造法的研究.
    6. 小村俊郎,新家光雄,出川公雄.Al-Li系合金の韌性に及ぼす中間加工熱處理の影響.輕金 屬,1986,36(11):718.
    7. 里達雄,高橋垣夫.析出現象と機械特性.輕金屬,1986,36(11):728.
    8. 小島陽,福澤康,井上武司,武藏一浩,中村正久.2219合金の高溫特性に及ぼすリチゥム添加的影響.輕金屬,1986,36(11):737.
    9. 古城紀雄,石原知,張荻,堀茂德.Al-Li-Cu-Mg-Zr合金の引張り特性の溫度依存性.輕金屬,1986,36(11):744.
    10. 大塚正久,鶴牧惠一,新村素行,堀內良.Al-Li-Cu-Mg-Zr合金の超塑性舉動.輕金屬,1986,36(11):752.
    11. 曹亨鍋,大島民夫,平野賢一.Al-Li-Mg合金の時效析出舉動.輕金屬,1986,36(11):759.
    12. 藤川辰一郎.Al-Li合金にぉけるδ’-相(Al3Li)ぉょぴδ-相(AlLi)の溶解度線.輕金屬,1986,36(11):771.
    13. D.A.Lukasak and R.M.Hart. Strong aluminum alloy shaves airframe weight. Advanced materials and processes,1991(10):46.
    14. 林肇琦等编著.有色金属材料学.东北工学院出版社,1986:39.
    15. 金相图谱编写组著.变形铝合金金相图谱.冶金工业出版社,1975:120,122.
    16. 李行旦.仿美7075高强度铝合金.上海金属(有色分册),1992,13(4):13.
    17. R.S.Kaneko,L.Bakow and E.W.Lee. Aluminum alloy 6013 sheet for new U.S. navy aircraft.JOM,1990(5):16.
    18. J.Chaudhurl,Y.M.Tan,V.Gondhalekar and K.M.Patnl. Comparison of corrosion-fatigue properties of pre-corroded 6013 bare and 2024 bare aluminum alloy sheet materials.Journal of materials engineering and performance,1994,3(3):371.
    19. S.C.Bergsma and M.E.Kassner. The new aluminum alloy AA6069.Materials Science Forum, 1996,217-222:1801.
    20. Hidetoshi Uchida,Hideo Yoshida,Hirohito Hira and Takumi Amano.Development of high strength Al-Mg-Si-Cu alloy for aircraft.Sumtomo Light Metal Technical Reports,1997,38(1):37.
    21. Bergsma and Gralg S..High strength Mg-Si type aluminum alloy.European Patent 95105316.4,1995.
    22. たとぇぼ.ァルミニゥムの材料の基礎と工業技術.輕金屬協會,1985:286.
    23. 大堀宏一.ァルミニゥムの組織と性質.輕金屬学会,1991:278.
    24. M.Murayama and K.hono.Precipitate cluster and precipitation processes in Al-Mg-Si alloys.Acta Mater.,1999,47(5):1537.
    25. G..A.Edwards,K.Stiller,G..L.Dunlop and M.J.Couper.The precipitation sequence in Al-Mg-Si alloys.Acta Mater,1998,46(11):3893.
    26. M.Murayama,K.hono,M.Saga and M.Kikuchi.Atom probe studies on the early stages of precipitation in Al-Mg-Si alloys.Mater.Sci.Eng.,1998,A250:127.
    27. S.J.Andersen,H.W.Zandlbergen,J.Jansen,C.Traeholt,U.Tundal and O.Reiso.The crystal structure of the β’’phase in Al-Mg-Si alloys.Acta.Mater.,1998,46(9):3283.
    28. K.Matsude,H.Gamada,K.Fujii,Y.Ustani,T.Sato,A.Kamio and S.Ikeno.High-resolution electron microscopy on the structure of Guinier-Preston Zones in an Al-1.6mass Pct Mg2Si alloy.Met.Mater.Trans.,1998,29A(4):1161.
    29. J.D.Bryant.The effect of preaging treatments on aging kinetics and mechanical properties in AA6111 aluminum autobody sheet.Met.Mater.Trans.,1999,30A(8):1999.
    30. D.G..Eskin,V.Massardier and P.Merle.A study of high-temperature precipitation in Al-Mg-Si alloys with an excess of silicon.J.Mater.Sci.,1999,34:811.
    31. H.W.Vries and G Ouden.Influence of welding on structure of Al-Mg-Si matrix composites.Mater.Sci.Tech.,1999,15(2):202.
    32. P.Donnadieu,M.Roux-Michollet and V.Chastagnier.A HRTEM study of the aging precipitates of Al-Mg-Si alloys.Philo.Mag.A,1999,79:1347.
    33. A.Perovic,D.D.Perovic,G.G.Weatherly and D.J.Lloyd.Precipitation in aluminum alloys AA6111 and AA6016,Scripta Mater.,1999,41(7):703.
    34. M.Takeda,F.Ohkubo,T.Shirai and K.Fukui.Stability of metastable phases and microstructures in the ageing process of Al-Mg-Si ternary alloys.J.Mater.Sci.,1998,23:2385.
    35. 松田健二,蒲田裕志,藤井要,吉田朋夫,里達雄,神尾彰彥,池野進.Al-Mg2Si系合金にぉける準安定相の高分解能電子顯微境觀察.輕金屬,1997,47(9):494.
    36. 鈴木寿,管野干宏,白石泰久.Al-1.2%Mg2Si合金の時效現象に及ぼす過剩マグネシゥムぉょびシリコンの影響.輕金屬,1978,28(5):240.
    37. 管野干宏,鈴木寿,白石泰久.けぃ素過剩のAl-Mg2Si系合金の時效硬化性.輕金屬,1978,28(11):553.
    38. G.Thomas.The aging characteristics of aluminium alloys electron-transmission studies of Al-Mg-Si alloys.J.Inst.Metals,1961-1962,90:57.
    39. J.M.Silcock,T.J.Heal and H.K.Hardy.Structural ageing characteristics of binary aluminium-copper alloys.J.Inst.Metals,1953-1954,82:239.
    40. I.Dutta and S.M.Allen.A calorimetric study of precipitation in commercial aluminium alloy 6061.J.Mater.Sci.Letter,1991,10:323.
    41. I.Dutta,S.M.Allen and J.L.Hafley.Effect of reinforcement on the aging response of cast 6061 Al-Al2O3 particulate composites.Met.Trans.A,1991,22A:2553.
    42. L.Zhen,W.D.Fei,B.Kang and H.W.Kim.Precipitation behavior of Al-Mg-Si alloys with high silicon content.J.Mater.Sci.,1997,32:1895.
    43. Z.W.Huang,M.H.Loretto,R.E.Smallman and J.White.Mechanism of nucleation and precipitation in 6061-Li alloys.Mater.Sci.Tech.,1994,10(10):869.
    44. A.K.Jena,A.K.Gupta and M.C.Chaturvedi.A differential scanning calorimetric investigation of precipitation kinetics in the Al-1.53wt%Cu-0.79wt%Mg alloy.Acta Metall.,1989,37(3):885.
    45. M.Bournane,M.Nedjar and A.F.Sirenko.Precipitation in solid solutions in Al-Mg.Script Materialia,1999,40(3):375.
    46. 松田健二,池野進,多マ靜夫.Al-1.0mass%Mg2Si合金にぉける棒狀析出物の結晶構造.日本金屬學會志,1993,57(10):1107.
    47. K.Matsuda,S.Ikeno,S.Tada,T.Sato and A.Kamio.Crystal system of rod-shaped precipitates in an Al-1.0mass%Mg2Si-0.4mass%Si alloy.Script Met. Mater.,1995,32(8):1175.
    48. K.Matsuda,S.Ikeno,T.Sato and A.Kamio.A metastable phase having the orthorhombic crystal lattice in an Al-1.0mass%Mg2Si-0.4mass%Si alloy.Script Mater.,1996,34:1797.
    49. J.P.lynch,L.M.Brown and M.H.Jacobs.Microanalysis of age-hardening precipitates in aluminium alloys.Acta metall.,1982,30:1389.
    50. N.Maruyama,R.Uemori,N.Hashimoto,M.Saga and M.Kikuchi.Effect of silicon addition on the composition and structure of fine-scale precipitates in Al-Mg-Si alloys.Script Mater.,1997,36(1):89.
    51. S.D.Dumolt,D.E.Laughlin and J.C.Williams.Formation of a modified β’phase in aluminum alloy 6061.Scripta Metall.,1984,18:1347.
    52. 松田健二,多マ靜夫,池野進.Al-1.0mass%Mg2Si-0.4mass%Si合金の板狀析出物の形態と母相との結晶方位關系.日本金屬學會志,1994,58(3):252.
    53. K.Matsuda,T.Naoi,K.Fujii,Y.Uetani,T.Sato,A.Kamio and S.Ikeno.Crystal structure of the β”phase in an Al-1.0mass%Mg2Si-0.4mass%Si alloy.Mater.Sci.Eng.,1999,A262:232.
    54. 松田健二,蒲田裕志,上谷保裕,蓮覺寺聖一,品川不二雄,池野進.加工後時效處理したAl-Mg2Si合金に現れる特異な形状の析出物.輕金屬,1998,48(9):471.
    55. 池野進,上乘正信,石動正和,松田健二,多マ靜夫,上谷保裕.Mg過剩型Al-1mass%Mg2Si合金にぉける晶界析出物の透射電子顯微鏡觀察.輕金屬,1993,43(10):503.
    56. 上谷保裕,石動正和,松田健二,多マ靜夫,池野進.Si過剩型Al-Mg-Si系合金的晶界析出物.輕金屬,1992,42(10):578.
    57. 池野進,角地秀介,前健彥,多マ靜夫.Al-1%Mg2Si基合金の時效硬化舉動に及ぽす加工熱處理の影響.輕金屬,1983,33(1):3.
    58. 松田健二,橋本功一,上古盩#徲X寺聖一,品川不二雄,池野進.過剩マグネシゥム型Al-Mg2Si合金にぉける加工熱處理の影響.材料,1999,48(1):16.
    59. 松田健二,橋本功一,上古盩#徲X寺聖一,品川不二雄,池野進.過剩シリコン型Al-Mg2Si合金にぉける中間相に對する加工の影響.材料,1999,48(1):10.
    60. 里達雄,小島陽,高橋垣夫.Al-CuぉょぴAl-Zn合金のG..P.バ-ン生成に及ぽす燒入れ溫度の影響.輕金屬,1978,28(10):506.
    61. 堀仁,平野賢一.Al-Cu合金にぉけるG..P. バ-ンの溶解度線に關する一提案.日本金屬學會志,1973,37(2):142.
    62. 長村光造,古市繁樹,神林干,高木京晴三,村上陽太郎.Al-4%Cu合金にぉける复元現象.日本金屬學會志,1976,40(12):1228.
    63. P.Ratchev,B.Verlinden and P.Van Houtte.S’phase precipitation in Al-4wt%Mg-1wt%Cu alloy.Scripta Met.Mater.,1994,30:599.
    64. W.M.Rainforth and H.Jones.Coarsening of S’-Al2CuMg in Al-Cu-Mg base alloy.J.Mater.Sci.Let.,1997,16:420.
    65. N.Sen and D.R.F.West.Some factor influencing S precipitation in Al-Cu-Mg and Al-Cu-Mg-Ag alloys.J.Inst.Metals,1969,97:87.
    66. V.Radmilovic,G.Thomas,G..J.Shiflet and E.A.Starke.On the nucleation and growth of Al2CuMg(S’) in Al-Li-Cu-Mg alloys.Script Met.,1989,23:1141.
    67. J.T.vietz and I.J.Polmear.The influence of small additions of silver on the ageing of aluminium alloys:observations on Al-Cu-Mg alloys.J.Inst.Metals,1966,94:410.
    68. J.M.silcock and B.Sc..The structural ageing characteristics of Al-Cu-Mg alloys with copper:magnesium weight ratios of 7:1 and 2.2:1.J.Inst.Metals,1960-61,89:203.
    69. たとぇぱ,合金の析出,幸田成康監修,丸善,1972:403.
    70. 邵华,刘兆晶,刘君,李凤珍,武高辉,杨峰.分级时效和冷热循环对2024铝合金微塑变抗力的影响.中国有色金属学报,2000,10(3):330.
    71. G.W.Lorimer and R.B.Nicholson.Further results on the nucleation of precipitates in the Al-Zn-Mg system.Acta Met.,1966,14:1009
    72. 里達雄,三田健太郎,神尾彰彦. 中断燒入れしたAl-Mg-Si 系合金の二段時效舉動. 輕金屬,1999,49(9):450.
    73. L.zhen,S.B.Kang and H.W.Kim.Effect of natural aging and presaging on subsequent precipitation process of an Al-Mg-Si alloy with high excess silicon.Mater.Sci.Tech.,1997,13:905.
    74. L.Zhen and S.B.Kang.The effect of pre-aging on microstructure and tensile properties of Al-Mg-Si alloys.Scripta Met.,1997,36(10):1089.
    75. 鈴木壽,管野干宏,伊藤吾朗.Al-Mg-Si合金の二段時效に關する一考察.輕金屬,1980,30(11):609.
    76. 鈴木壽,管野干宏,白石泰久.Al-Mg2Si合金の二段時效現象に及ぽす過剩マグネシゥムぉょぴけぃ素の影響.輕金屬,1979,29(5):197.
    77. 室町繁雄,前健彥.Al-1.3wt%Mg2Si合金の二段時效につぃて.日本金屬學會志,1974,38(2):130.
    78. I.Kovacs,J.Lendvai and E.Nagy.The mechanism of clustering in supersaturated solid solutions of Al-Mg2Si alloys.Acta Metall.,1972,20:975.
    79. D.W.Pashley,J.W.Rhodes and A.Sendorek.Delayed ageing in Aluminium-Magnesium-Silicon alloys:Effect on structure and mechanical properties.J.Inst.Metals,1966,94:41.
    80. C.Panseri and T.Federighi.A resistometric study of precipitation in an aluminium-1.4%Mg2Si alloy.J.Inst.Metals,1966,94;99.
    81. D.W.Pashley,M.H.Jacobs and J.T. Vietz.The basic processes affecting two-step ageing in an Al-Mg-Si alloy.Philo.Mag.,1967,16:51.
    82. 池野進,荒城昌弘,松田健二,品川不二雄,上古保裕.ァルミナ粒子分散Al-Mg2Si合金複合材料にぉける時效析出物の觀察.輕金屬,1999,49(6):244.
    83. 池野進,松田健二,寺木武志,荒城昌弘,蓮覺寺聖一,寺山清志,上古保裕.TiC粒子/Al-Mg-Si合金複186. 合材料の時效過程.輕金屬,1998,48(1):8.
    84. 池野進,松田健二,蓮覺寺聖一,品川不二雄,上古保裕.SiC粒子分散型Al-Mg-Si合金複合材料にぉける中間相析出物に及ぼす粒子体積率の影響.輕金屬,1997,47(8):421.
    85. 池野進,松田健二,寺木武志,寺山清志,蓮覺寺聖一,品川不二雄,上古保裕.SiC粒子分散型Al-1%Mg2Si合金複合材料の時效析出舉動.輕金屬,1997,47(10):527.
    86. L.Pinto and E.Zschech.Mechanical properties and corrosion behavior of extrusions for aircraft applications made by discontinuously silicon-carbide-reinforced aluminum matrix composites.Materials Science Forum.1996,212-217:1593.
    87. T.Das P.R.Mundor and S.Bandyopadhyay.The effect of Al2O3 particulates on the precipitation behavior of 6061 aluminium-matrix composites.J.Mater,Sci.,1996,31:5351.
    88. Z.Ahmad and B.J.Abdul Aleem.Effect of temper on seawater corrosion of an aluminum-silicon carbide composite alloy.Corrosion Science,1996,52(11):857.
    89. Z.Li,Y.Zhou and T.H.North.Counteraction of particulate segregation during transient liquid-phase bonding of aluminium-based MMC material.J.Mater,Sci.,1995,30:1075.
    90. A.P.Sannino and H.J.Rack.Effect of reinforcement size on age hardening of PM 2009Al-SiC20vol% particulate composites.J.Mater,Sci.,1995,30:4316.
    91. T.Das,S.Bandyopadhyay and S.Blairs.DSC and DMA studies of particulate reinforced metal matrix composites.J.Mater,Sci.,1994,29:5680.
    92. Y.Song and T.N.Baker.Accelerated aging processes in ceramic reinforced AA6061 composites.Mater.Sci.Eng.,1994,10(5):406.
    93. Y.B.liu,S.C.lim,L.Lu and M.O.Lai.Recent development in the fabrication of metal matrix-particulate composites using powder metallurgy techniques.J.Mater,Sci.,1994,29:1999.
    94. 戶田訴×挚±桑录夜庑?SiCァィスカ—強化6061ァルミ合金複214. 合材料の破壞特性に及ぼす時效處理の影響.日本金屬學會志,1994,58(4):468.
    95. D.Yu and T.Chandra.Age hardening in 6061Al alloy and Al2O3/6061Al composite.Mater.Trans.JIM,1993,34(12):1184.
    96. R.D.Schueller,A.K.Sachdev and F.E.Wawner.Identification of a cubic precipitate observed in an Al-4.3Cu-2Mg/SiC cast composite.Scripta Met.Mater.,1992,27:617.
    97. 林水根,管又信,金子純一.遷移金屬を添加したAl-9%Zn-2.5%Mg-1%Cu合金の急冷凝固P/M材の時效硬化と機械的性質.輕金屬,1991,41(7):440.
    98. M.S.N.Bhat,M.K.Surappa and H.V.Sudhaker Nayak.Corrosion behavior of silicon carbide particle reinforced 6061/Al alloy composites. J.Mater,Sci.,1991,26:4991.
    99. 池野進,川島一浩,松田健二,穴田博,多マ靜夫.Al-1%Mg2Si合金を母相としたァルミナ粒子分散型複合材料の分析透過電子顯微鏡觀察.輕金屬,1990,40(7):501.
    100. I.Dutta and D.L.Bourell.Theoretical and experimental study of aluminum alloy 6061-SiC metal matrix composite to identify the operative mechanism for accelerated aging.Mater.Sci.Eng.,1989,A112:67.
    101. S.R.Nutt and R.W.Carpenter.Non-equilibrium phase distribution in an Al-SiC composite.Mater.Sci.Eng.,1985,75:169.
    102. A.Conte and T.H.Sanders Jr.Interaction between iron cooling rate from the melt on the dispersoid distribution in AA6013.Materials Science Forum,1997,242:119.
    103. D,G,Eskin.Effect of melt overheating on primary solidification in aluminium alloys. Z.Metallkd.,1996,87(4):295.
    104. 肖亚庆,唐桂林.稀土在6063铝合金中存在的形式和对组织性能的影响.轻合金加工技术,1996,24(11):33.
    105. W.D.Fei and S.B. Kang.Effect of cooling rate on solidification process in Al-Mg-Si alloy. J.Mater.Sci.Lett.,1995,14:1795.
    106. M.Johnson.Influence of Si and Fe on the grain refinement of aluminium. Z.Metallkd.,1994,85(11):781.
    107. A.M.Hammad,Z.M.Yousef and A.EL-Nakooh.High-temperature deformation of solution-treated Al-0.6%Si-1%Mn-0.7%Fe alloy.J.Mater.Sci.,1993,28:5630.
    108. M.Johnson and L.Backerud.Nucleants in grain refined aluminium after addition of Ti-and B-containing master alloys.Z.Metallkd.,1992,83(11):774.
    109. Christian M.bickert.Light Metals.The minetals,Metals and Materials Society,1990:951.
    110. M.Kanno and B.L.Ou.Heterogeneous precipitation of intermediate phases on Al3Zr particles in Al-Cu-Zr and Al-Li-Cu-Zr alloys.Mater.Trans.JIM,1991,32(5):445.
    111. 吉田英雄.7475ァルミニゥム合金の結晶粒微細化にぉける第二相粒子と溶質原子の役割.輕金屬,1991,41(5):331.
    112. 伊藤吾郎,歐炳隆,鈴木壽,管野干宏.CrまたはZrを添加したAl-Zn-Mg-Cu合金冷延板の再結晶組織に及ぽす冷延前組織の影響.輕金屬.1987,37(2):153.
    113. 伊藤吾郎,奇藤澤,歐炳隆,鈴木壽.クロムを含むAl-Zn-Mg-Cu合金の再結晶組織に及ぽす均質化條件の影響.輕金屬,1986,36(8):485.
    114. 管野干宏,鈴木壽,系井一博.Al-Cu-Mg合金の時效現象に及ぽすZrの影響.輕金屬,1986,36(8):211.
    115. 加藤銳次,上田淑完,森英視.高純度Al-Zn-Mg合金の韌性に及ぽすZr,Cr添加量の影響.轻金属,1986,36(12):791.
    116. 聂波,苏学常.过渡元素在铝中存在形式对其性能的影响.轻合金加工技术,1993,21(2):32.
    117. 田加凯等编.合金及显微结构设计.北京:冶金工业出版社,1985:6,15.
    118. P.哈森著,肖纪美等译.物理金属学.科学出版社,1984:299,320.
    119. 李超主编.金属学原理.哈尔滨:哈尔滨工业大学出版社,1989:303.
    120. 胡赓祥等主编.金属学.上海科学出版社,1980:290.
    121. 王祝堂、田荣璋等主编.轻合金及其加工手册.长沙:中南工业大学出版社,1989:44.
    122. J.D.Embury.Strengthening mechanisms in Al alloys-an overview of natural limits and engineering possibilities.Materials Science Forum,1996,217-222:57.
    123. J.Lendvai.Precipitation and strengthening in aluminium alloys.Materials Science Forum,1996,217-222:43.
    124. T.D.Burleigh.The mechanisms of SCC of aluminium.Corrosion,1991,47(2):2.
    125. 萁田正,吉田英雄.6061ァルミゥム合金押出材の粒界腐食性に及ぽすミクロ組織の影響.輕金屬,1999,49(11):548.
    126. M.Keddam,C.Kuntz,H.Takenouti,D.Schuster and D.Zuili.Exfoliation corrosion of aluminium alloys examined by electrode impedance.Elechimica Acta,1997,42(1):87.
    127. Th.Magnin.Recent advances in the environment sensitive fracture mechanisms of aluminium alloys.Materials Science Forum,1996,217-222:83.
    128. A fatigue-life prediction methodology for notched aluminium-magnesium alloy in gulf seawater environment.J.Mater.Eng.Perf.,1995,4(5):617.
    129. J.Chaudhurl,Y.M.Tan,K.Patnl and A.Ettekharl.Comparison of corrosion-fatigue properties of 6013 bare,Alclad2024,and 2024bare aluminum alloy sheet materials.J.Mater.Eng.Perf.,1992,1(1):91.
    130. 阎大京,张宇东王洪顺,王少曼.时效制度对7475和7050铝合金应力腐蚀及剥层腐蚀性能的影响.材料工程,1993(2):13.
    131. R.Braun.On the stress corrosion cracking behavior of aluminium alloy sheet in an aqueous solution of 3%Nacl+0.3%H2O2.Werkstoffe and Korrosion,1994,45:255.
    132. D.M.Jiang,B.D.Hong,T.C.Lei,D.A.Downham and G.W.Lorimer.Fatigue fracture behavior of an underaged Al-Mg-Si alloy.Scripta Met.Mater.,1990,24:651.
    133. Dae-June Han and Su-ⅡPyun.The effect of ageing conditions on the electrochemical corrosion and stress corrosion characteristics of Al-Zn-Mg-Cu alloys.Aluminium,1981,57(11):737.
    134. 村上陽太郎.ァルミゥム合金の應力腐食割れ.輕金屬,1981,31(11):748.
    135. 吉田英雄.高強度ァルミゥム合金の加工熱處理法とその應用.住友輕金屬技報,1995,36(1-2):37.
    136. 吉田英雄.7475ァルミゥム合金の下部組織形成にょる超塑性特性の向上.輕金屬,1991,41(7):453.
    137. John A.Weat,N.E.Paton,C.H.Hamilton and M.W.Mahoney.Grain refinement in 7075 aluminum by thermo-mechanical processing.Met.Trans.A,1981,12A(7):1267.
    138. 宇野照生,馬場義雄.Al-Mg-Si系合金の延性と破壞特性にぉょぼす加工熱處理の影響.日本金屬學會志,1981,45(4):405.
    139. 宇野照生,馬場義雄.Al-Zn-Mg-Cu系合金の加工熱處理と機械的性質の關系.輕金屬,1976,26(7):347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700