三唑类手性杀菌剂苯醚甲环唑的立体选择性生物活性与环境行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性农药对映体在生物过程中存在较大的差异性,使其生物活性、生态毒理及环境行为往往存在很大不同,因而手性农药的使用及环境安全已成为一个新的关注中心。本文利用高效液相色谱手性固定相方法研究了三唑类手性杀菌剂苯醚甲环唑在设施蔬菜和土壤中的立体选择性环境行为,同时开展了苯醚甲环唑光学纯对映体的毒性和活性差异研究。
     在正相液相色谱条件下,考察比较了直链淀粉-三[(s)-α-甲基苯基氨基甲酸酯]、直链淀粉-三(3,5-二甲基苯基氨基甲酸酯)、纤维素-三(3,5-二甲基苯基氨基甲酸酯)及纤维素-三(对甲基苯基甲酸酯)等四种手性固定相对苯醚甲环唑及其手性代谢物CGA205375对映体的化学分离与手性分离效果,发现纤维素-三(对甲基苯基甲酸酯)固定相具有最高手性分离能力。通过进一步对醇改性剂种类及含量、分离温度等手性分离因素的优化,成功实现了苯醚甲环唑及其代谢物CGA205375对映体的同时基线分离。
     通过模拟实际生产田间茎叶喷雾法开展了苯醚甲环唑对映体在黄瓜与蕃茄植株上的选择性行为研究。数据表明苯醚甲环唑对映体在黄瓜和蕃茄果实内的降解符合一级动力学规律,且四个对映体在黄瓜和蕃茄果实中降解速度不同。在黄瓜果实内,四个对映体降解速度大小顺序为:(-)-苯醚甲环唑-A>(+)-苯醚甲环唑-A,(-)-苯醚甲环唑-B>(+)-苯醚甲环唑-B,随着施药后时间的推移,造成黄瓜果实中(+)-苯醚甲环唑-A和(-)-苯醚甲环唑-B的富集;在蕃茄果实内,四个对映体降解速度均慢于在黄瓜中的降解速度,并且也存在明显差异,在蕃茄内苯醚甲环唑降解速度大小顺序为:(+)-苯醚甲环唑-A>(-)-苯醚甲环唑-A,(-)-苯醚甲环唑-B>(+)-苯醚甲环唑-B,其中(-)-苯醚甲环唑-A和(-)-苯醚甲环唑-B在蕃茄果实中富集。
     通过向6种不同类型的农田土壤中添加外消旋苯醚甲环唑进行培养,研究了有氧和无氧条件下苯醚甲环唑在土壤中的降解动态和选择性降解情况。结果表明在有氧或无氧土壤中苯醚甲环唑的降解均符合一级动力学降解规律。在不同土壤及培养条件下,苯醚甲环唑对映体的降解速率差别较大。苯醚甲环唑在弱碱性土壤中降解速率最快,在中性土壤中其次,在酸性土壤中降解速率最慢,研究发现在碱性和酸性土壤中苯醚甲环唑对映体的立体选择性降解比在中性土壤中更加明显。苯醚甲环唑四个对映体在无氧条件下降解速度显著小于其在有氧条件下土壤中的降解速度。在有氧和无氧两种条件下,苯醚甲环唑对映体在供试土壤中均存在不同程度的选择性代谢,(+)-苯醚甲环唑A和(+)-苯醚甲环唑B均被优先降解,但两种条件下苯醚甲环唑对映体降解的立体选择性强度没有显著性差异。通过进一步的光学纯对映体实验,证明了苯醚甲环唑对映体在土壤降解过程中是保持手性稳定的,四个对映体之间没有发生构型转变。
     开展了手性三唑类杀菌剂苯醚甲环唑外消旋体及四个光学纯对映体对斜生栅藻、大型溞和斑马鱼三种水生生物的急性毒性差异研究。结果表明苯醚甲环唑四个对映体对三种水生生物的急性毒性存在不同,毒性顺序均为:(-)-苯醚甲环唑A>(+)-苯醚甲环唑B>(+)-苯醚甲环唑A>(-)-苯醚甲环唑B,外消旋苯醚甲环唑毒性处于四个对映体之间。
     开展了苯醚甲环唑外消旋体及四个对映体对番茄早疫病菌(Alternaria solani)、蕃茄灰霉病菌(Botrytis cinerea)、蕃茄叶霉病菌(Fulvia fulva (Cooke) Cifferri)、水稻纹枯病菌(Rhizoctonia solani)和西瓜炭疽病菌(Colletotrichum lagenarium)等5种病源真菌的活性差异研究。研究发现,对于试验选定的植物病原菌而言,苯醚甲环唑四个对映体的抑菌活性存在明显差异,活性大小顺序为:(-)-苯醚甲环唑B>(+)-苯醚甲环唑A>(+)-苯醚甲环唑B>(-)-苯醚甲环唑A,外消旋苯醚甲环唑活性处于四个对映体之间。
In gerenal, the enantiomers/diastereoisomers of chiral pesticides are different in some biologicalprocesses and thus pose enantioselective environmental behavior and ecotoxicity to nontarget biology.Consequently, the application and environmental safety of chiral pesticides have been becoming a newpoint of scientific researches. In the present study, the enantioselective degradation of chiral triazolefungicide difenoconazole in greenhouse vegetables and agriculture soils based on the high-performanceliquid chromatography (HPLC) with chiral stationary phases (CSPs) technology were investigated. Andthe optical pure diastereoisomers of difenoconazole were also selected to investigate theirenantioselective ecotoxicologies to three aquatic organisms and their enantioselective fungitoxicities to anumber of fungi.
     The separation of difenoconazole and its major metabolite CGA-205375including theirsimultaneous enantioseparation was studied using four different polysaccharide-type chiral stationaryphases inculding Amylose tris-[(S)–α-methylbenzylcarbamate](AS-H), Amylose tris(3,5-dimethylphenyl carbamate)(AD-H), Cellulose tris-(3,5-dimethylphenyl-carbamate)](OD-H) andcellulose tris-(4-methylbenzoate)(OJ-H) in combination with n-hexane-polar organic alcohols mobilephase. Compared with other three CSPs, cellulose tris-(4-methylbenzoate)(OJ-H) exhibited higherresolving ability for difenoconazole and CGA205375. And after the optimization of otherchromatographic conditions such as the mobile phase composition and column temperature, a baselinechemoseparation and enantioseparation of two enantiomers of CGA205375and four stereoisomers ofdifenoconazole was successfylly afforded.
     The greenhouse experiment was used to investigate the stereoselective behavior of difenoconazolestereoisomers in cucumber and tomato plants. The results indicated that the degradation of four isomersof difenoconazole followed first-order kinetics and significantly stereoselective behavior was observedin both cucumber and tomato fruits. Preferential dissipation of (-)-difenoconazole-A and(-)-difenoconazole-B were determined in cucumber fruits after foliar treatment, which resulted in plantsenriched with (+)-difenoconazole-A and (+)-difenoconazole-B. Results also showed that(+)-difenoconazole-A and (-)-difenoconazole-B degraded faster than their optical antipode in tomatofruits, which resulted in tomato enriched with stereoisomers of (-)-difenoconazole-A and(-)-difenoconazole-B.
     Six soils with a wide range of soil properties were selected to investiate the stereoselective behaviorof difenoconazole stereoisomers. Racemic-and enantiopure stereoisomers of difenoconazole wereincubated under aerobic and anaerobic conditions. Results indicated that both aerobic and anaerobicdegradation of stereoisomers of difenconazole in the test soils during incubation period generallycomplied with the first-order kinetics. It could be proved that the dissipation rates of difenoconazoleisomers were greatly influenced by pH value. The results revealed that the dissipation rates of fourstereoisomers of difenoconazole in soils were different, the orders were alkali soil>normal soil>acid soil. Moreover, data showed that the stereoselective degradation of the stereoisomes of difenoconaozle inalkali soil and acid soil was more obivious than that in normal soil. All four stereoisomers ofdifenoconazole in test soils were more slowly degraded under anaerobic conditons as comparison of thatunder aerobic conditions, but anaerobic condition has no more significant enantioselectivity than aerobiccondition. The degradation of difenoconazole stereoisomers in all test soils is enantioselective underboth aerobic and anaerobic conditions, and the (+)-difenoconazole-A and (+)-difenoconazole-B werepreferentially degraded, resulting in relative enrichment of (-)-difenoconazole-A and(-)-difenoconazole-B. The enantiopure stereoisomers of difenoconazole were incubated under bothaerobic and anaerobic conditions, and it revealed that difenoconazole was configurationally stable in soil,showing no interconversion among the stereoisomers.
     Herein is reported, for the first time, the enantioselectivities of individual stereoisomers of triazolefungicide difenoconazole in acute aquatic toxicity to three aquatic orgnisms including S. obliquus, D.magna and Danio rerio. For the above three aquatic organisms, significant differences were observed inthe acute toxicity among the stereoisomers of difenoconazole. The order of the toxicity to three aquaticorganisms for the stereoisomers of difenoconazole was (-)-difenoconazole-A>(+)-difenoconazole-B>(+)-difenoconazole-A>(-)-difenoconazole-B, rac-difenoconazole had an intermediate potency oftoxicity as compared to its respective individual stereoisomers.
     It was also the first report about the enantioselectivities of individual stereoisomers of triazolefungicide difenoconazole in the fungitoxicity against a number of fungi including Alternaria solani,Botrytis cinerea, Fulvia fulva (Cooke) Cifferri, Rhizoctonia solani and Colletotrichum lagenarium.Significant differences were observed in the fungicidal activities among the stereoisomers ofdifenoconazole on the test fungi. The fungitoxicity for the stereoisomers of difenoconazole has beenfound to be (-)-difenoconazole-B>(+)-difenoconazole-A>(+)-difenoconazole-B>(-)-difenoconazole-A,rac-difenoconazole had an intermediate potency of fungitoxicity as compared to its respective individualstereoisomers.
引文
1.邓朱波.农用杀菌剂腈菌唑光学对映体的生物活性[J].农药,2011,50(5):371~374
    2.刁金铃.手性农药乳氟禾草灵及禾草灵的立体选择性环境行为研究[刁金铃博士学位论文].北京:中国农业大学,2010
    3.董丰收.手性农药三唑醇对映体在黄瓜植株和土壤中立体选择性行为研究[董丰收博士学位论文].北京:中国农业大学,2008
    4.杜英娟.国外杀菌剂发展近况[J].农药,1989,28(1):48~51
    5.冯雪玲.苯醚甲环唑在水稻中的农药残留分析研究[冯雪玲硕士学位论文].北京:北京化工大学,2007
    6.高如瑜,王笛,杨华铮,等.手性有机磷农药对映体在纤维素类手性固定相上的分离[J].农药学学报,1999,1(1):87~89
    7.高如瑜,祝凌燕,陈志远.手性菊酯类农药甲氰菊酯、氟胺氰菊酯光学异构体在HPLC上的分离[J].农药,1998,37(9):22~25
    8.韩喜莱.农药学概论[M].北京:北京农业大学出版社,1995:122~156
    9.韩小茜,温晓光,管永红,等.流动相组成及温度对4种1,2,4-三唑类农药对映体手性拆分的影响[J].应用化学,2004,21(2):140~143
    10.侯经国,周志强,陈立仁,等.高效液相色谱手性拆分中的“刷型”手性固定相[J].色谱,1997,15(3):206~211
    11.黄君珉,陈慧,高如瑜,等.有机磷化合物高效液相色谱保留和手性识别机理的研究[J].中国科学,2001,31(3):240~245
    12.黄杨萍.喹禾灵在土壤中的对映体选择性环境行为研究[黄杨萍硕士学位论文].天津:南开大学,2002
    13.蒋木庚,王鸣华,杨春龙,等.新型旋光性农药的研究与展望[J].农药,2000,39(12):1~3
    14.江正瑾,高如瑜,张锴,等.微径高效液相色谱法分离三唑类手性化合物的对映体[J].色谱,2001,19(3):253~255
    15.金琼,雷新有,韩小茜.农药戊唑醇在Chiralcel OJ-H柱上的拆分[J].天水师范学院学报,2006,26(2):59~60
    16.李铃.两类手性农药的对映体拆分及对映体选择性毒性研究[李玲博士学位论文].杭州:浙江工业大学,2010
    17.李朝阳.土壤中手性农药对映体选择性环境行为的研究[李朝阳博士学位论文].天津:南开大学,2003
    18.李海华,廖福广,王鹏,等.杀菌剂苯醚甲环唑的制备[J].北京理工大学学报,2006,26(4):365~367
    19.李军民,唐浩,祖智波,等.苯醚甲环唑的合成研究[J].农药研究与应用,2009,13(1):18~21
    20.李凌云,王立新,叶勇,等.含磷手性化合物在多聚糖类手性固定相上的手性分离[J].分析实验室,2004,23(5):14~17
    21.林玉锁,龚瑞忠,朱忠林.农药与生态环境保护[M].北京:化学工业出版社,2000:235~236
    22.凌代芬.10%苯醚甲环唑水分散粒剂对西瓜炭疽病防治效果的研究[J].安徽农业科学,2006,34(20):5289~5290
    23.刘丽梅,李志伟,于奕峰,等.三唑醇分子印迹整体柱用于结构类似物的分离与分析[J].农药,2007,46(10):767~769
    24.刘绍仁,叶纪明,宗伏霖.手性毛细管气相色谱法分离农药光学异构体的研究[J].农药科学与管理,1998,19(1):81~82
    25.刘维屏.农药环境化学[M].北京:化工工业出版社,2006:102~155
    26.刘月启,周文峰,韩小茜,等.直链淀粉-三(氨基甲基苯酯)手性固定相的手性拆分性能[J].分析测试学报,2001,20(1):43~45
    27.卢航,马云,刘惠君,等.手性污染物的色谱分离与分析[J].浙江大学学报,2002,28(5):585~590
    28.罗辽复.论生物手性的起源[J].内蒙古大学学报.1998,29(3):354~365
    29.马建标.手性配体交换色谱法直接拆分DL-氨基酸[J].色谱,1991,12(2):98~102
    30.牟树森.环境土壤学[M].北京:农业出版社,1993:201~202
    31.任国宾,詹予忠,郭士岭.手性拆分技术进展[J].河南化工,2002,11(2):1~3
    32.邵瑞链,李正名,陈宗庭,等.内吸性杀菌剂三唑醇立体异构体研究初报[J].农药,1983,22(5):2~4
    33.沈伟健,杨雯筌,沈崇钰,等.气相色谱-负离子源质谱法检测食品中苯醚甲环唑的残留量[J].色谱,2007,25(3):418~421
    34.史建荣,王裕中,方中达.三唑酮、三唑醇对小麦纹枯病菌形态和生理的影响.植物病理学报,1992,22(3):205~209
    35.王海强,田家顺,严清平,等.蕃茄早疫病对7种杀菌剂的敏感性比较及其对苯醚甲环唑的敏感性基线建立[J].农药,2008,47(4):294~296
    36.王军,花日茂,温家钧,等.苯醚甲环唑在梨和土壤中的残留动态与安全性评价[J].农药,2008,47(8):601~603
    37.王军,刘丰茂,温家钧,等.苯醚甲环唑在茶叶中的残留量及其在茶汤中的浸出动态研究[J].农药学学报,2010,12(3):299~302
    38.王军,温家钧,边陕玲,等.苯醚甲环唑在土壤中的降解动力学及其影响因子[J].西北农业学报,2009,18(6):342~346
    39.王鹏,江树人,邱静,等.纤维素衍生物手性固定相对戊唑醇对映体的拆分[J].色谱,2004,22(2):181~183
    40.王鹏,江树人,杨新玲,等.顺式、反式氯氰菊酯和烯唑醇对异构体的手性拆分[J].化学通报,2004,(8):606~610
    41.王鹏,江树人,张宏军,等.戊唑醇和三唑酮对映体的手性拆分[J].分析化学,2004,32(5):625~627
    42.王鹏.手性农药对映体分析及土壤中选择性降解行为研究[王鹏博士学位论文].北京:中国农业大学,2007
    43.王秋霞.手性农药对映体在动物体内立体选择性行为的研究[王秋霞博士学位论文].北京:中国农业大学,2006
    44.王荣富,王会福.30%苯醚甲环唑-丙环唑乳油防治水稻纹枯病药效研究[J].现代农业科技,2011,22(5):158~158
    45.王新全.六种手性农药对映体的立体选择性环境行为研究[王新全博士学位论文].北京:中国农业大学,2007
    46.王雅玲,杨代斌,袁会珠,等.低温胁迫下戊唑醇和苯醚甲环唑种子包衣对玉米种子出苗和幼苗的影响[J].农药学学报,2009,11(1):59~64
    47.王仪,刘素云.三唑酮及三唑醇在小麦和土壤中的残留分析[J].色谱,1988,6(1):57~59
    48.王莜芬,谢琳,史岩.苯醚甲环唑的毒性及致突变性试验研究[J].职业与健康,2005,21(12):1953~1955
    49.翁文,姚碧霞,陈秀琴,等.液相色谱手性拆分机理的热力学方法研究[J].化学进展,2006,18(7):1056~1063
    50.吴学宏,肖建华,张文华,等.2%三唑醇戊唑醇种衣剂对小麦纹枯病菌麦角甾醇含量的影响[J].农药学学报,2005,7(4):372~375
    51.徐晓白,戴树桂,黄玉瑶.典型化学污染物在环境中的变化和生态效应[M].北京:科学出版社,1998:203~208
    52.徐妍,江才鑫,徐林清,等.不同影响因子对苯醚甲环唑微乳剂理化性质的影响[J].农药,2007,46(4):243~245
    53.徐雅妮,张凤宝,王燕,等.手性化合物拆分方法的研究进展[J].天津化工,2002,12(6):20~22
    54.杨光富,袁继伟,刘钊杰.合成农用化学品的手性-生物活性及安全性的思考[J].农药译丛,1999,21(2):1~12
    55.杨光富.麦角甾醇生物合成抑制剂分子设计的研究进展[J].农药译丛,1996,21(1):88~89
    56.杨国生,高如瑜,沈含熙,等.在色谱极限条件下菊酯类化合物的手性分离[J].山东大学学报,1998,33(2):206~208
    57.杨丽萍,王立新,徐艳丽,等.纤维素类手性固定相高效液相色谱法拆分三唑类手性化合物[J].分析测试学报,2004,23(5):25~28
    58.姚建仁,郑永权,董丰收.理性认识化学农药[J].农药科学与管理,2005,26(1):1~5
    59.张高华,吴晓芳.用手性液谱柱法拆分及骠马农药旋光对映体含量的测定[J].现代商检科技,1998,8(1):22~25
    60.张智超,戴树桂,朱昌寿等.海口河口水和新港港湾水中α-HCH对映体选择性降解及α, β,γ-HCH浓度.中国环境科学,1998,18(3):197~201
    61.张祖新,曹秋文,董丽文,等.三唑醇和三唑酮的不同光学异构体在温室中对小麦锈病的生物活性测定.植物保护学报,1990,17(3):262~263
    62.周珊珊.手性有机磷农药的稳定性及立体选择性生物行为研究[周珊珊博士学位论文].杭州:浙江大学,2009
    63.赵扬.液相色谱手性固定相在农药拆分中的应用[赵杨硕士学位论文].北京:中国农业大学,2006
    64.周瑛.手性农药对映体的分离及环境行为差异性研究[周瑛博士学位论文].杭州:浙江大学,2007
    65.周英珍,单文志,王兴涌.刷型手性固定相及其在手性化合物分离中的应用[J].福建分析测试,2007,16(3):49~53
    66.周子燕,李昌春,高同春,等.三唑类杀菌剂的研究进展[J].安徽农业科学,2008,36(27):11842~11844
    67. Aboul-Enein H.Y. High-performance liquid chromatographic enantioseparation of drugscontaining multiple chiral centers on polysaccharide-type chiral stationary phases [J]. Journal ofChromatograph A,2001,906(1):185~193
    68. Aigner E.J., Leone A.D., Falconer R.L. Concentrations and enantiomeric ratios of organochlorinepesticides in soils from the U.S. Corn Belt [J]. Environmental Science Technology,1998,32(9):1162~1168
    69. Ali I., Aboul-Enein H.Y. Determination of chiral ratio of o,p-DDT and o,p-DDD pesticides onpolysaccharides chiral stationary phases by HPLC under reversed-phase mode [J]. EnvironmentalToxicology,2002,17(4):329~333
    70. Amstrong D.W., Reid G.L.III., Hilton M.L, et al. Relevance of enantiomeric separations inenvironmental science [J]. Environmental Pollution,1993,79(1):51~58
    71. Anigbogu V.C.,Woldeab H., Garrison A.W., et al. Enantioseparation of malathion, cruformate andfensulfothion organophosphorus pesticides by mixed-mode electrokinetic capillarychromatography [J]. International Journal of Environmental Analytical Chemistry,2003,83(2):89~100
    72. Anstassiades M., Lehotay S.J., Stajinbaher D., et al. Fast and easy multiresidue method employingacetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination ofpesticide residues in produce [J]. Journal of AOAC international,2003,86(2):412~431
    73. Babu R. R., Ramesh V. K. R. Pesticide residues in air from coastal environment [J]. Chemosphere,1999,39(10):1699~1706
    74. Barnes J.M., Verschoyle R.D. Toxicity of new pyrethroid insecticide[J]. Nature,1974,248(19):711~718
    75. Baycan-Keller R., Oehme M. Optimization of tandem columns for the isomer and enantiomerselective separation of toxaphenes [J]. Journal of Chromatography A,1999,837(2):201~210
    76. Beuerle T., Schwab W. Metabolic profile of linoleic acid in stored apples: formation of13(R)-hydroxy-9(Z),11(E)-ocadecadienoic acid[J]. Lipids,1999,34(4):375~380
    77. Bewick D.W. Stereochemistry of fluazifop-butyl transformations in soil [J]. Pesticide science,1996,17(4):349~356
    78. Booth T.D., Azzaoui K., Wainer I.W. Prediction of chiral chromatographic separations usingcombined multivariate regression and neural networks [J]. Analytical Chemistry,1997,69(19):3879~3883
    79. Booth T.D., Wahnon D., Wainer I.W. Is chiral recognition a three-point process [J]? Chirality,1997,9(2):96~98
    80. Buerge I.J., Poiger T., Muller M.D., et al. Enantioselective degradation of metalaxyl in soils:chiralpreference changes with soil pH [J]. Environmental Science and Technology,2003,37(12):2668~2674
    81. Buerge I.J., Poiger T., Muller M.D., et al. Influence of pH on the Stereoselective degradation ofthe fungicides epoxiconazole and cyproconazole in soils [J]. Environmental Science andTechnology,2006,40(17):5443~5450
    82. Buser H.R, Poiger T, Muller MD. Changed enantiomer composition of metolachor in surfacewater following the inreoduction of the enantiomerically enriched product to the market [J].Environment Science Technology,2000,34(13):13~23
    83. Buser H.R., Muller M.D. Enantiomer separation of chlordane components and metabolites usingchiral high-resolution gas chromatography and detection by mass spectrometric techniques [J].Analytical Chemistry,1992,64(24):3168~3175
    84. Buser H.R., Muller M.D. Environmental behavior of acetamide pesticide stereoisomers.1. Stereo-and enantioselective determination using chiral high-resolution gas chromatography and chiralhigh-performance liquid chromatography [J]. Environmental Science and Technology,1995,29(8):2023~2030
    85. Cai X.Y., Liu W.P., Jin M.Q., et al. Relation of diclofop-methyl toxicity and degradation in algaecultures [J]. Environmental Toxicology and Chemistry,2007,26(5):970-975
    86. Cairns T., Siegmund E.G., Chiu K.S., et al. Residue characterization of triadimefon in grapes bygas chromatography and mass spectrometry/mass spectrometry [J]. Biomedical andEnvironmental Mass Spectrometry,1989,18(2):110~115
    87. Cartwright D. The synthesis, stability and biological activity of the enantiomers ofpyridyloxyphenoxypropionates [J]. Brighton crop Port Council,1989,2(2):707~711
    88. Cayley G. R., Simpson B.W. Separation of pyrethroid enantiomers by chiral high-performanceliquid chromatography [J]. Journal of chromatography,1986,356:123~134
    89. Champion Jr WL., Lee J., Garrison A.W., et al. Liquid chromatographic separation of theenantiomers of trans-chlordane, cis-chlordane, heptachlor, heptachlor epoxide andhexachlorocyclohexane with application to small-scale preparative separation [J]. Journal ofChromatography A,2004,1024(1):55~62
    90. Clark T., Wong W.C., Wogeler K. Comparative Fate in Soil of the Enantiomers of TriadimenolWhen Applied Individually to Barley Seed [J]. Pesticide Science,1991,33(4):447~453
    91. Deas A.H.B., Clark T., Carter G.A. The Enantiomeric Composition of Triadimenol ProducedDuring Metabolism of Triadimefon by Fungi.1. Influence of Dose and Time of Incubation [J].Pesticide Science,1983,15(1):63~70
    92. Deas A.H.B., Clark T., Carter G.A. The Enantiomeric Composition of Triadimenol ProducedDuring Metabolism of Triadimefon by Fungi.2. Differences between Fungal Species [J].Pesticide Science,1984,15(1):71~77
    93. Diamantino T.C., Ribeiro R., Goncalves F., et al. Metier (Modular ecotoxicity tests incorporatingecological relevance) for difficult substances.5. Chlorpyrifos toxicity to Daphnia magna in static,semi-static, and flow-through conditions. Bulletin of Environmetal Contamination and Toxicology,1998,61(4):433-439
    94. Dong F.S., Liu X.G., Zheng Y.Q., et al. Stereoselective degradation of fungicide triadimenol incucumber plants [J]. Chirality,2010,22(2):292~298.
    95. Dorothee W., Volker S. Enatiomer separation of chiral pharmacerticals by capillaryelectrochromatography [J]. Journal of Chromatography A,2000,875(2):255~276
    96. Edwards D. P., Ford M.G. Separation and analysis of the diastereomers and enantiomers ofcypermethrin and related compouns [J]. Journal of Chromatography A,1997,777(2):363~369
    97. Ellington J.J., Evans J.J., Prickett K. B., et al. High-performance liquid chromatographicseparation of the enantiomers of organophosphorus pesticides on polysaccharide chiral stationaryphases [J]. Journal of Chromatography A,2001,928(2):145~154
    98. Elliott M., Janes N.F., Potter C. Future of pyrethroids in insect control[J]. Annual Review OfEntomology,1978,23(1):443~469
    99. Falconer R.L, Bidleman T.F, Gregor D.J, et al. Enantioselective breakdown ofα-hexachlorocyclohexane in a small arctic lake and its watershed [J]. Environmental Science andTechnology,1995,29(5):1297~1302
    100. Falconer R.L., Bidleman T.F., Szeto S.Y. Chiral pesticide in soils of the Fraser Valley, BritishConlumia [J]. Journal of Agriculture and Food Chemistry,1997,45(5):1946~1951
    101. Faller J., Huhnerfuss H., Konig W.A., et al. Do marine bacteria degrade α-HCH stereoselectivity[J]. Environment Science Technology,1991,25(2):676~678
    102. Faraoni M., Messina A., Polcaro C.M., et al. Chiral separation of pesticides by coupled-columnliquid chromatography application to the stereoselective degradation of fenvalerate in soil [J].Journal of Liquid Chromatography and Related Technologies,2004,27(6):995~1012
    103. Finizio A., Bidleman T.F., Szeto S.Y. Emission of chiral pesticides from and agricultural soil inthe Fraser valley, British Columbia [J]. Chemosphere,1998,36(2):345~355
    104. Fraccotte E., Wolf R. M., Lohmann D, et al. Chromatographic resolution of racemkates on chiralstationary phasesⅠinfluence of the supramolecular structure of cellulose triacetate [J]. Journal ofChromatography A,1985,347:25~37
    105. Francotte E., Jung M. Enantiomer separation by open-tubular liquid chromatography andelectrochromatography in cellulose-coated capillaries [J]. Chromatographia,1996,42(9-10):521~527
    106. Fu R. N. The applying of cyclodextrin and its derivatives in capillary electrophoresis [J]. ChineseJournal of Chromatography A,1993,11(5):271~275
    107. Gadher P., Mercer EI., Baldwin B.C., et al. A comparison of the potency of some fungicides asinhibitors of sterol14-demethylation [J]. Pesticide biochemistry and physiology,1983,19(11):1~10
    108. Gal, J. When did Louis Pasteur present his memoir on the discovery of molecular chirality to theAcadémie des sciences [J]? Analysis of a discrepancy. Chirality,2008,20(10):1072~1084.
    109. Garrison A.W., Nzengung V.A., Avants J.K., et al. Phytodegradtion of p,p’-DDT and enantiomersof o,p’-DDT [J]. Environmental Science and Technology,2000,34(9):1663~1670
    110. Garrison A.W., Schmitt P., Martens D., et al. Enantiomeric selectivity in the environmentaldegradation of dichlorprop as determined by high-performance capillary electrophoresis[J].Environmental Science and Technology,1996,30(8):2449~2455
    111. Garrison, A.W. Probing the enantioselectivity of chiral pesticides [J]. Environmental Science andTechnology,2006,40(1):16~23.
    112. Glausch A., Blanch G.P., Schurig V. Enantioselective analysis of chiral polychlorinated biphenylsin sediment samples by multidimensional gas chromatography electron-capture detection aftersteam distillation-solvent ectraction and sulfur removal [J]. Journal of chromatograph A,1996,723(2):399~404
    113. Gubitz G., Jellenz W., Santi W. Separation of the optical isomers of amino acids byligand-exchange chro-matography using chemically bonded chiral phases [J]. Journal ofChromatography A,1981,203:377~384
    114. Guillaume Y.C., Truong T.T., Millet J., et al. Chiral discrimination of phenoxypropionic acidherbicides on teicoplanin phase: effect of mobile phase modifier [J]. Chromatographia,2002,55(3):143~148
    115. Gylenhaal O., Stefansson M. Reversal of elution order for profen acid enantiomers inpacked-column SFC on Chiralpak AD [J]. Chirality,2005,17(5):257~265
    116. Haginaka J. Enantiomer separation of drugs by capillary electrophorsis using proteins as chiralselectors [J]. Journal of Chromatography A,2000,875(2):235~254
    117. Harner T., Wiberg K., Norstrom R.Enantiomer fractions are preferred to enantirmer ratios fordescribing chiral signatures in environmental analysis [J]. Environment science technology,2000,34(1):218~220
    118. Harner T., Kylin H., Bidlenan T.F, et al. Removal of α-and γ-hexachlorocyclohexane in the easternarctic ocean [J]. Environment Science technology,1999,33(8):1157~1164
    119. Heckmann L.H., Callaghan A., Hooper H.L., et al. Chronic toxicity of ibuprofen to Daphniamagna: effects on life history traits and population dynamics. Toxicology Letters,2007,172(3):137~145
    120. Hegeman W.J.M., Lanne R.W.P.M. Enantiomeric enrichment of chiral pesticides in theenvironment [J]. Reviews of Environmental Contamination and toxicology,2002,173(5):85~116
    121. Hesse G., Hagel R.A. Complete separation of a racemic mixture by elution chromatography oncellose triacetate [J]. Chromatographia,1973,6(6):277~280
    122. Hu R.W., Hennion B., Urruty L., et al. Solid phase microextraction of pesticide residues fromstrawberries [J]. Food Additices and Contaminants,1999,16(3):111~117
    123. Huhnerfuss H., Faller J., Konig W.A., et al. Gas chromatography separation of the enantiomers ofmarine pollutants.4. Fate of hexachlorcyclohexane isomers in the Baltic and North Sea [J].Environment Science technology,1992,26(11):2127~2133
    124. Hummert K., Vetter W., Luckas B. Levels of α-HCH, lindane, and enantiomeric ratios of α-HCHin marine mammals from the northern hemisphere [J]. Chemosphere,1995,31(6):3489~3500
    125. Hutta M, Rybar I, Chalanyova M. Liquid chromatographic method development for determinationof fungicide epoxiconazole enantiomers by achiral and chiral column switching technique inwater and soil [J]. Journal of Chromatography A,2002,959(2):143~152
    126. Ichida A., Shibata T., Okamoto I., et al. Resolution of enantiomers by HPLC on cellulosederivatives [J]. Chromatographia,1984,19(1):280~284
    127. Ikenaka Y., Eun H., Ishizaka M., et al. Metabolism of pyrene by acquatic crustancean, Daphniamagna. Acuatic Toxicology,2006,80(2):158~165
    128. Imran A., Aboul-Enein H.Y. Determination of chiral ratio of o,p-DDT and o,p-DDD pesticides onpolysaccharides chiral stationary phases by HPLC under reversed-phase mode [J]. EnvironmentalToxicology,2002,17(4):329~333
    129. Itoh K. Characteristics of microflora degrading insecticide salithion in soil [J]. Journal ofPesticide Science,1991,16(1):77~83
    130. Itoh K. Stereoselective degradation of organophosphorus insecticide in upland soils [J]. Journal ofPesticide Science,1991,16(1):35~40
    131. Iwta H., Tanabe S., Lida T., et al. Enantioselectve accumulation of α-HCH in northern fur sealsand double-crested cormorants: effects of biological and ecological factors in the higher trophiclevels [J]. Environmental Science and Technology,1998,32(15):2244~2249
    132. Jantumen L.M, Bidleman T.F. Air-water gas exchange of hexachloro-cyclohexanes (HCH) and theenantiomers of α-HCH in Arctic regions [J]. Journal of Geophysical Research,1996,101(28):837~846
    133. Jantumen L.M., Bidleman T.F. Organochlorine pesticides and enantiomers of chiral pesticides inArctic Ocean water [J]. Archives of Environmental Contamination and toxicology,1998,35(2):218~228
    134. Jarman J.L, Jones W.J, Howell L.A, et al. Application of capillary electrophoresis to study theenantioselective transformation of five chiral pesticides in aerobic soil slurries [J]. Journal ofAgriculture and Food Chemistry,2005,53(16):6175~6182
    135. Kaliszan R., Noctor T.A.G., Wainer I.W. Quantitative structure-enantioselective retentionrelationships for the chromatography of1,4-benzodiazepiines on a human serum albumin basedHPLC chiral stationary phase: an approach to the computational predication of retention andenantioselectivity [J]. Chromatographia,1992,33(11):546~550
    136. Kallenborn R., Oehme M., Vetter W., et al. Enantiomer selective separation of toxaphenecongeners isolated from seal blubber and obtained by synthesis [J]. Chemosphere,1994,28(1):89~98
    137. Karlsson H., Oehme M., Skopps H., et al. Enantiomer ratios of chlordane congeners are genderspecific in cod (Gaius morhua) from the Barents Sea [J]. Environmental Science and Technology,2000,34(11):2126~2130
    138. Kartozia I., Kanyonyo M., Happaerts T. Comparative HPLC enantioseparation of new chiralhydantoin derivatives on three different polysaccharide type chiral stationary phased [J]. Journalof Pharmacceutical and Biomedical Analysis,2002,27(3-4):457~465
    139. Kato M.J., Chu A., Davin L.B., et al. Biosynthesis of antioxidant lignants in Sesamum indicumseeds [J]. Phytochemistry,1998,47(4):583~591
    140. Kelvin, L., Baltimore lLCtures on molLCular dynamics and the wave theory of light [J]. C.J.Clayand Sons,1904:449~455.
    141. Khoury R., Geahchan A., Coste C.M., et al. Behavior of triadimefon in two Lebanese soils [J].Journal of Environment Science and Health,2001,36(6):741~756
    142. Kientz C.E., Langenberg J.P., De Jong G.J., et al. Microcolumn liquid chromatography of theenantiomers of organophosphorus pesticides with thermionic and ultraviolet detection [J]. Journalof High Resolution Chromatography,1991,14(7):460~464
    143. Kraemer W, Buechel K H, Draber W. In: IUPAC pesticide chemistry, Human welfare and theenvironment. New York: Pergamon Press,1983:223~235
    144. Kurihara N, Miyamoto J, Paulson G. D, et al. Chirality in synthetic agrochemicals: bioactivityand safety consideration [J]. Pure and Applied Chemistry,1997,69(9):2007~2025
    145. Kurt-Karakus P., Bidleman T., Jones K. Chiral organochlorine pesticides signatures in globalbackground soils [J]. Environmental Science and Technology,2005,39(22):8671~8677
    146. Law S.A, Diamond M.L, Helm P.A, et al. Factors affecting the occurrence and enantiomericdegradation of hexachlorocyclohexane isomers in northern and temperate aquatic systems [J].Environmental Toxicology and Chemistry,2001,20(12):2690~2698
    147. Lee W., Kim B.H. Liquid chromatographic resolution of pyrethroic acids and their esters on chiralstationary phases [J]. Journal of High Resolution Chromatography,1998,21(3):189~192
    148. Lewis D.L, Garrison A.W, Wommack K.E, et al. Influence of environmental changes ondegradation of chiral pollutants in soils [J]. Nature,1999,401(6756):898~901
    149. Li Z.Y, Zhang Z.C, Zhou Q.L, et al. Fast and precise determination of phenthoate and itsenantiomeric ratio in soil by the matrix solid-phase dispersion method and liquid chromatography[J]. Journal of Chromatography A,2002,977(1):17~25
    150. Li Z.Y., Zhang Z.C.,Zhou Q., et al. Stereo-and enantioselective determination of pesticides in soilby using achiral and chiral liquid chromatography in combination with matrix solid-phasedispersion [J]. Journal of AOAC International,2003,86(3):521~523
    151. Li, J., Dong F.S., Xu J., et al. Enantioselective determination of triazole fungice tetraconazole bychiral high-performance liquid chromatography and its application to pharmacokinetic study incucumber, muskmelon, and soils [J]. Chirality,2012,24(4):294~302.
    152. Li J., Dong, F.S., Xu, J., et al. Enantioselective determination of triazole fungicide simeconazolein vegetables, fruits, and cereals using modified QuEChERS (quick, easy, cheap, effective, ruggedand safe) coupled to gas chromatography/tandem mass spectrometry [J]. Analytica Chimica Acta,2011.702(1):127~135.
    153. Liu W.P, Gan J,Y, Schlenk D., et al. Enantioselectivity in environmental safety of current chiralinsecticides [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(3):701~706
    154. Liu H., Xiong, M. Comparative toxicity of racemic metolachlor and S-metolachlor to Chlorellapyrenoidosa [J]. Aquatic Toxicology,2009,93(2):100~106.
    155. Liu W., Gan, J., Lee, S., Werner, I. Isomer selectivity in aquatic toxicity and biodegradation ofbifenthrin and permethrin [J]. Environmental Toxicology and Chemistry,2005,24(8):1861~1866.
    156. Liu W., Gan, J., Qin, S.,. Isolation, identification and aqueous toxicity of enantiomers ofcypermethrin and cyfluthrin [J]. Chirality,2005,17(1):127~133.
    157. Ludwig P., Huhnerfuss H., Konig W.A., et al. Gas chromatographic separation of the enantiomersof marine organic pollutants: distribution of alpha-HCH enantiomers in the north sea [J]. Marinepollution bulletin,1991,22(2):82~86
    158. Maftouh M., Granier-Loyaux C., Marini E.C.J., et al. Screening approach for chiral separation ofpharmaceuticals Part Ⅲ, Supercritical fluid chromatography for analysis and purification in drugdiscovery [J]. Journal of Chromatography A,2005,1088(2):67~81
    159. Marucchini C., Zdara C. Stereoselective degradation of metalaxyl and metalaxyl-M in soil andsunflower plants [J]. Chirality,2002,14(1):32~38
    160. Mattina M.J.I., White J.C., Eitzer B.D., et al. Cycling of weathered chlordane residues in theenvironment: compostional and chiral profiles in contiguous soil, vegetation, and aircompartments [J]. Environmental Toxicology and Chemistry,2002,21(2):281~288
    161. Mayer S., Schuring V. J. Enantiomer separation by electrochromatography in open tubularcolumns coated with Chirasil-Dex [J]. Journal of Liquide Chromatography.1993,16(4):915~931
    162. Mechref Y, Rassi Z E. Capillary electrophoresis of herbicides II. Evaluation of alkylglucosidechiral surfactants in the enantiomeric separation of phenoxy acid herbicides [J]. Journal ofChromatography A,1997,757(1):263~273
    163. Mesnard F., Girard s., Fliniaux O., et al. Chiral specificity of the degradation of nicotine byNicotiana plumbaginifolia cell suspension cultures [J]. Plant Science,2001,161(5):1011~1018
    164. Meyer V. R. Accuracy in the chromatographic determination of extreme enantiomeric ratios: acritical reflection [J]. Chirality,1995,7(8):567~571
    165. Miyamoto J. Degradation, metabolism and toxicity of synthetic pyrethroids [J]. EnvironmentalHealth perspectives,1976,14(1):427~420
    166. Moller K., Huhnerfuss H., Rimkus G. On the diversity of enzymatic degradation pathways ofα-hexachlorocyclohexane as determined by chiral gas chromatography [J]. Journal of HighResolution Chromatography,1993,16(11):672~673
    167. Monkiedje A, Spiteller M, Bester K. degradation of racemic and enantiopure metalaxyl in tropicaland temperate soils [J]. Environmental Science and Technology,2003,37(4):707~712
    168. Muller M.D, Buser H.R. Environmental behavior of acetamide pesticide stereoisomers.2.Stereoselective and enantioselective degradation in sewage-sludge and soil [J]. EnvironmentalScience and Technology,1995,29(8):2031~2037
    169. Muller M.D., Poiger T., Buser H.R. Isolation and identification of the metolachlor stereoisomersusing high-performance liquid chromatography, polarimetric measurements, and enantioselectivegas chromatography [J]. Journal of Agriculture and Food Chemistry,2001,49(1):42~49
    170. Muller M.D, Schlabach M, Oehme M. Fast and precise determination ofα-hexachlorocyclohexane enantiomers in environmental samples using chiral high-resolution gaschromatography [J]. Environmental Science and Technology,1992,26(3):566~569
    171. Narayana C.L., Suresh T., Rao S.M., et al. A validated chiral HPLC method for the enantiomericseparation of Linezolid on amylose based stationary phase [J]. Journal of Pharmacetical andBiomedical Analysis,2003,32(1):21~28
    172. Navarro S, Barba A., Navarro G., et al. Multiresidue method for the rapid determination in grape,must and wine of fungicides frequently used on vineyards [J]. Journal of Chromatography A,2000,882(1):221~229
    173. Ngabe B, Bidleman T.F, Falconer R.L. Base hydrolysis of α-and γ-hexachlorocyclohexanes [J].Environmental Science and Technology,1993,27(9):1930~1933
    174. Ning J.G. Direct chiral separation with Chiralpak AD converted to the reversed-phase mode [J].Journal of Chromatography A,1998,805(1):309~314
    175. Nomeir A.A., Dauterman W.C. Studies on the optical isomers of EPN and EPNO [J]. PesticideBiochemistry and Physiology,1979,10(2):121~127.
    176. Norinder U., Hermansson J. Chiral separation of n-aminoalkylsuccinimides on analpha-1-acidglycoprotein column: A quantitative structure-enantioseletivity relationship study [J].Chirality,1991,3(5):422~426
    177. Nozal J., Bernal J.L., Jimenez J.J., et al. Determination of azolic fungicides in wine by solid phaseextraction and high performance liquid chromatography atmospheric pressure chemicalionization-mass spectrometry [J]. Journal of Chromatography A,2005,1076(1-2):90~96
    178. Oehme M., Muller L., Karlsson H. High-resolution gas chromatographic test for thecharacterization of enantioselective separation of organochlorine compounds application totert-butyldimethylsilyl β-cyclodextrin [J]. Journal of Chromatography A,1997,775(1):275~285
    179. Ohkawa H, Mikami N, Kasamatsu K, et al. Stereo-selectivity in toxicity and acetyl cholin esteraseinhibition by the optical isomers of papthion and papoxon [J]. Agriculture Biological Chemistry,1976,40(9):1857~1861
    180. Okamoto M., Nakazawa H. Stereoselectiveity of abscisic acid-oxygenase in avocado fruits [J].Bioscience, Biotechnology and Biochemistry,1993,57(10):1768~1769
    181. Okamoto Y., Aburatani R., Hatada K. Cellulose tribenzoate derivatives as chiral stationary phasesfor high-performance liquid chromatography [J]. Journal of Chromatography A,1987,389(2):95~102
    182. Okamoto Y., Hatano K., Aburatani R., et al. Tris(4-tert-butylphenylcarbamate)s of cellulose andamylose as useful chiral stationary phases for chromatographic optical resolution [J]. ChemistryLetters,1989,18(5):715~718
    183. Okamoto Y., Kauashima M., Hatada K. Chromatographic resolution XL Controlled chiralrecognition of cellulose triphenylcarbamate derivatives supported on silica gel [J].Chromatographia,1986,363(1):173~186
    184. Okamoto Y., Yashima E. Polysaccharide derivatives for chromatographic separation ofenantiomers [J]. Angewandte Chemie(International Edition in English),1998,37:1020~1043
    185. Oumeliotis P., Kurganov A., Davankov A. Sepatation of the optical isomers of amino acids byligand-exchange chromatography using chemically bonded chiral phases [J]. Journal ofChromatography A,1981,203:377~384
    186. Padiglioni P., Polcaro C.M., Marchese S., et al. Enantiomeric separations of halogen-substitured2-aryloxypropionic acids by high-performance liquid chromatography on a terguride-based chiralstationary phase [J]. Journal of Chromatography A,1996,756(1-2):119~127
    187. Pan C.X., Shen B.C., Xu B.J., et al. Comparative enantioseparation of seven triazole fungicideson (S,S)-Whelk O1and four different cellulose derivative columns [J]. Journal of SeparationScience,2006,29(13):2004~2011
    188. Pasteur, L. Memoire sur la relation qui peut exister entre la forme crystalline et la compositionchimique, et sur la cause de la polarization rotatoire [J]. Comptes Rendus de LAcademie desSciences,1848,26,535~538.
    189. Persson B.A., Andersson S.J. Unusual effects of separation conditions on chiral separations [J].Journal of Chromatography A,2001,906(1-2):195~203
    190. Pfaffenberger B., Huhnerfuss H., Kallenborn R. Chromatographic-separation of the enantiomersof marine pollutants.6. Comparison of the enantioselective degradation ofalpha-hexachlorocyclohexane in marine biota and water [J]. Chemosphere,1992,25(2):719~725
    191. Pieters B.J., Liess M. Population delvelopmental stage determines the recovery potential ofDaphnia magna populations after fenvalerate application. Environmental Science Technology,2006,40(19):6157~6162
    192. Pirkle W.H., Briee L.J., Terfloth G.J. Liquid and subcritical CO2separation of enantiomers on abroadly applicable polysiloxane chiral stationary phase [J]. Journal of Chromatography A,1996,753(1):109~119
    193. Reist M., Testa B., Corrupt P.A., et al. Racemization, enatiomerization, diasteromerization, andepimerization: their meaning and pharmacological significance [J]. Chirality,1995,7(6):396~400
    194. Romero E., Matallo M.B., Pena A., et al. Dissipation of racemic mecoprop and dichlorprop andtheir pure R-enantiomers in three calcareous soils with and without peat addition [J]. EnvironmentPollution,2001,111(2):209~215
    195. Roussel C., Suteu C., Shaimi L., et al. Chiral separation of some4a-methyl-1,2,3,4,4a,9a-hexahydro-fluoren-9-one derivatives as a probe for difference insalvation by2-propanol of carbamate moiety in chiralcel OD-H, Chiralpak AD, and Chiralpak ASchiral stationary phases [J]. Chirality,1998,10(8):770~777
    196. Sakata S., Mikami N., Yamada H. Degradation of pyrethroid optical isomers by soilmicroorganisms [J]. Journal of Pesticide Science,1992,17(3):181~189
    197. Sanchez-Rasero F, Matallo M.B, Dios G, et al. Simultaneous determination and enantiomericresolution of mecoprop and dichlorprop in soil samples by high-performance liquidchromatography and gas chromatography-mass spectrometry [J]. Journal of chromatography A,1998,799(1-2):355~360
    198. Sand D.M., Schlenk H. A cylated cyclodextrins as tolar stationary phases for gas chromatography[J]. Journal of the American Chemical Society,1961,33(2):1624~1630
    199. Schneiderheinze J.M., Armstrong D.M., Berthod A. Plant and soil enantioselective biodegradationof racemic phenoxyalkanoic herbicides [J]. Chirality,1999,11(4):330~337
    200. Schurig V, Negura S, Mayer S, et al. Enantiomer Separation On a Chiralsil-Dex-polymercoatedstationary phase by conventional and micro-packed high-performance liquid chromatography [J].Journal of Chromatography A,1996,755(2):299~307
    201. Sekhon, B.S. Chiral pesticides [J]. Journal of Pesticide Science,2009,34(1):1~12.
    202. Shea D., Penmetsal K.V., Leidy, R. B. Enantiomeric and isomeric separation of pesticides bycyclodextrin-modified micellar electrokinetic chromatography [J]. Journal of Aoac International,1999,82(6):1550~1561
    203. Silva J.P.D., Silva A.M.D., Khmelinskii L.V., et al. Photophysics and photochemistry of azolefungicides: triadimefon and triadimenol [J]. Journal of Photochemistry and Photobiologya-Chemistry,2001,142(1):31~37
    204. Smith R J, Taylor D R, Wilkins S M. Temperature-dependence of chiral discarimination insupercritical-fluid chromatography and high-performance liquid-chromatography [J]. Journal ofChromatography A,1995,697(1-2):591~596
    205. Soetaert A., van-der Ven K., Moens L.N., et al. Daphnia magna and ecotocicogenomics: geneexpression profiles of the anti-ecdysteroidal fungicide fenarimol using energy-, molting-and lifestage-related cDNA libraries. Chemosphere,2006,67(1):60~71
    206. Spitze T, Yashima E, Okamoto Y. Enantiomer separation of fungicidal triazolyl alcohols bynormal phase HPLC on polysaccharide-based chiral stationary phase [J]. Chirality,1999,11(3):195~200
    207. Stinson S.C. Chiral drugs [J]. Chemical Engineering News,1994,72(38):38~42
    208. Stuart D.A., Mccall C.M. Induction of somatic embryogenesis using side chain and ring modifiedforms of phenoxy acid growth regulators [J]. Plant Physiology,1992,99(1):111~118
    209. Sun Y.W, Liang X.M, Zhou Z.Q, et al. Preparation of cellulose derivative as stationary phase ofhigh performance liquid chromatography and its application to the separation of enantiomers[J].Chinese Journal of Analytical Chemistry,2006,34(9):257~259
    210. Tanabe S., Kumaran P., Iwata H., et al. Enantiomeric ratios of α-hexachlorocyclohexane inblubber of small cetaceans [J]. Marine Pollution Bulletin,1996,32(1):27~31
    211. Tomlin C.D.S. The Pesticide Manual (Thirteenth Edition). British Crop Protection Council.2003:987~988
    212. Toribio L., del Nozal M.J., Bernal J.L., et al. Chiral separation of some triazole pesticides bysupercritical fluid chromatography [J]. Journal of Chromatography A,2004,1046(1-2):249~253
    213. Ueji M., Omizawa C. Metabolism of chiral isomers of isofenphos in the rat liver microsomealsystem [J]. Journal of Pesticide Science,1987,12(2):269~271
    214. Ulrich E.M., Willett K.L., Grant A.C., et al. Understanding enantioselective processes: Alaboratory rat model for α-HCH accumulation [J]. Environmental Science and Technology,2001,35(8):1604~1609
    215. Vetter W., Schurig V. Enantioselective determination of chiral organochlorine compounds in biotaby gas chromatography on modified cyclodextrins [J]. Journal of Chromatography A,1997,774(1-2):143~175
    216. Vetter W., Kirchberg D. Production of toxaphene enantiomers by enantioselective HPLC afterisolation of the compounds from an anaerobically degraded technical mixture [J]. EnvironmentalScience and Technology,2001,35(5):960~965
    217. Vetter W., Klobes U., Luckas., et al. Use of6-O-tert-butyldimethylsilylated-cyclodextrins for theenantioseparation of chiral organochlorine compounds [J]. Journal of Chromatography A,1999,846(1-2):375~381
    218. Villarroel M.J., Sancho E., Ferrando M.D., et al. Acute, chronic and sublethal effects of theherbicide propanil on Daphnia magna. Chemospere,2003,53(8):857~864
    219. Vogt U., Zugenmaier P. Structural models for some liquid-crystalline cellulose derivatives [J].Berichteder Bunsen-gesellschaft-physical chemistry chemical physics,1985,89(11):1217~1224
    220. Wakabayashi K., Hizue M., Nozaki H., et al. Ennatiotopic selectivity in monodemethylation offenitrothion by rat liver glutathione S-transferase isoenzymes and mouse liver cytosol [J].Pesticide science,1994,19(4):277~284
    221. Wang P., Jiang S.R., Zhou Z.Q., et al. Direct enantiomeric resolutions of chiral triazole pesticidesby high-performance liquid chromatography [J]. Journal of Biochemistry and BiophysicalMethods.2005,62(3):219~230
    222. Wang P., Jiang S.R., Qiu J., et al. Stereoselective degradation of ethofumesate in turfgrass and soil[J]. Pesticide Biochemistry and Physiology,2005,82(3):197~204
    223. Wang Q.X., Qiu J., Wang P., et al. Stereoselective kinetic study of hexaconazole enantiomers inthe rabbit [J]. Chirality,2005,17(4):186~192
    224. Wang Q.X., Qiu J., Zhu W.T., et al. Stereoselective degradation kinetics of theta-cypermethrine inrats [J]. Environmental Science and Technology,2006,40(3):721~726
    225. Wang T., Chen Y.W. Application and comparison of derivatized cellulose and amylose chiralstationary phases for the separation of enantiomers of pharmaceutical compounds byhigh-performance liquid chromatography [J]. Journal of Chromatography A,1999,855(2):411~421
    226. Wang X.Q., Jia G.F., Qiu J., et al. Stereoselective degradation of fungicide benalaxyl in soils andcucumber plants [J]. Chirality,2007,19(4):200~306
    227. Wiberg K., Haner T., Wideman J.L., et al. Chiral analysis of organochlorine pesticides in alabamasoils [J]. Chemosphere,2001,45(6-7):843~848
    228. Wiberg K., Letcher R., Sandau C., et al. Enantioselective analysis of organochlorines in the Arcticmarine food chain: chiral biomagnification factors and relationship of enantiomeric ratios,chemical residues and biological data [J]. Organohalogen Compd,1998,35(2):371~374
    229. Wiberg K., Letcher R.J., Sandau C.D., et al. The enantioselective bioaccumulation of chiralchlordane and α-HCH contaminants in the polar bear food chain [J]. Environmental Science andTechnology,2000,34(13):2668~2674
    230. William H. W. Direct enantiomeric resolution of ibuprofen and flurbiprofen by packed columnSFC [J]. Chirality,1994,6(3):216~219
    231. Williams B.D., Trenerry V.C. The direct separation of the diastereoisomers and enantiomers of thefungicide Triadimenol by miceller electrokinetic capillary chromatography [J]. Journal ofCapillary Electrophoresis,1996,3(4):223~228
    232. Williams G.M., Harison K., Carlick C.A. et al. Changes in enantiomeric fraction as evidence ofnatural attenuation of mecoprop in a limestone aquifer [J]. Journal of Contamination Hydrology,2003,64(3):253~267
    233. Wink O., Luley U. Enantioselective transformation of the herbicides diclofop-methyl andfenoxaprop-ethyl in soil [J]. Pesticide Science,1998,22(1):31~40
    234. Wolfram K. Plant growth regulator activities of stereochemical isomers of Triadimenol [J].Physilogia plantrum,1987,71(3):309~315
    235. Wong C.S., Garrison A.W., et al. Enantiomeric composition of chiral polychlorinated biphenylatropisomers in aquatic and riparian biota [J]. Environmental Science and Technology,2001,35(12):2448~2454
    236. Wong, C.S. Environmental fate processes and biochemical transformations of chiral emergingorganic pollutants [J]. Analytical and Bioanalytical Chemistry,2006,386(3):544~558.
    237. Wu Y.S., Lee H.K., Li S.F.Y. High-performance chiral separation of fourteen triazole fungicidesby sulfated beta-cyclodextrin-mediated capillary electrophoresis [J]. Journal of ChromatographyA,2001,912(1):171~179
    238. Wu Y.S., Lee H.K., Li S.F.Y. Simultaneous chiral separation of triadimefon and triadimenol bysulfated beta-cyclodextrin-mediated capillary electrophoresis [J]. Electrophoresis,2000,21(8):1611~1619
    239. Zadra C, Marucchini C, Zazzerini A. Behavior of metalxyl and its pure R-enantiomers insunflower plants(Helianthus anns)[J]. Journal of Agriculture and Food Chemistry,2002,50(19):5373~5377
    240. Zhang Y., Wu D.R., Wang-Iverson D.B., et al. Enantioselective chromatography in drug discovery[J]. Drug Discovery Today,2005,10(8):571~577
    241. Zhou, Y., Li, L., Lin, K.D., Zhu, X.P., Liu, W.P. Enantiomer separation of triazole fungicides byhigh-performance liquid chromatography [J]. Chirality,2009,21(4):421~427.
    242. Zhu W.T, Qiu J., Dang Z.H., et al. Stereoselective degradation kinetics of tebuconazole in rabbits[J]. Chirality,2007,19(2):141~147
    243. Zipper C, Suter MJ-F, Haderlein SB. et al. Changes in the enantiomeric ratio of (R)-to(S)-mecoprop indicate in situ biodegradation of this chiral herbicide in a polluted aquifer [J].Environment Science technology,1998,32(21):2070~2076

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700