人体脊柱松质骨三维形态学指标的临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     随着显微成像技术(包括μCT, μMRI)广泛应用于实验研究和临床初期研究,研究者们已经能够获得骨骼的微观三维空间结构。然而,目前关于准确测量松质骨的结构参数和在临床实践中应用结构参数的研究很少。本研究的目的是探讨影响松质骨微观结构测量精确性的四个因素,并将微观结构测量的指标应用于骨水泥定量注射的计算。
     方法:
     本研究采集了6具人体颈椎椎体松质骨标本,进行显微CT扫描后,应用结构参数测量、显微有限元分析、力学参数计算方法、椎弓根螺钉拔出仿真模拟,研究了感兴趣区域体积、图像分割阈值、感兴趣区域形状、椎体内解剖部位对于结构参数和力学参数测量结果的影响,并结合骨质疏松椎弓根螺钉植入的骨水泥强化过程,应用文献中显微CT测量得到的腰椎松质骨骨体积分数,提出了一种计算腰椎椎弓根螺钉强化时骨水泥注射量的计算方法。
     结果:
     1.感兴趣区域体积是影响显微CT测量人椎体松质骨结构参数的一个重要因素。基于本研究,我们推荐一个最佳的采样体积为216mm3,当样本满足以下三个标准时,可以采取本采样体积。(1).标本来源为人体颈椎椎体。(2).样本形状为立方体。(3).显微CT扫描分辨率大于42um。
     2.图像分割的阈值是影响显微CT测量人椎体松质骨结构参数的一个重要因素。当阈值的改变超过2.9%时,在不同的阈值组和对照组之间,结构参数和力学参数存在显著的差异。
     3.感兴趣区域形状的改变(圆柱体Vs.立方体)对于人椎体松质骨显微结构参数的测量没有显著性影响。
     4.通过对颈椎椎体松质骨不同部位的结构参数和力学参数的对比研究发现:(1).在颈椎椎体松质骨,头侧和尾侧的结构参数均存在显著差异,其余部位的结构参数无显著差异。(2).在颈椎椎体松质骨,头侧和尾侧的力学参数在主方向上存在显著差异;此外,外侧和内侧的表观弹性模量在非主方向上存在显著差异,在主方向上无显著差异,表观剪切模量无显著差异。
     5.对于一个标准的直径为6.5mm的腰椎椎弓根螺钉,在骨质疏松患者椎体内,其有效体积是在螺钉周围的一个圆柱体带,直径为3.4mm,相应的骨水泥注射量为大约2.6ml。
     结论:
     在显微CT测量和显微有限元计算中,结构参数和力学参数受到感兴趣区域体积、图像分割的阈值、以及椎体内部解剖部位的显著影响;与感兴趣区域形状的关系不大;显微CT对于松质骨显微结构的测量有助于骨质疏松患者椎弓根螺钉植入时的骨水泥注射量的计算。
Objective:
     With the development of the micro imaging technology (including μCT andμMRI), scientists could acquire the three-dimensional spatial architecture ofhuman cancellous bone. However, there was few study on the clinicalapplication of the three-dimensional architectural parameters. In the currentstudy, we focused on whether the architectural parameters are sensitive to thevolume of interests, the threshold, ROI shape and anatomical site within thevertebral body. In addition, we proposed an algorithm for the injection volumeof the bone cement during the pedicle screw augmentation based on thearchitectural parameters acquired from μCT.
     Methods:
     Six human C5body samples were scanned by micro-CT. The measurement ofarchitectural parameters, large-scale finite element analysis, and calculation ofmechanical parameters were performed. We studied whether the architecturalparameters are sensitive to the volume of interests, the threshold, ROI shape andanatomical site within the vertebral body. In addition, we proposed an algorithm for the injection volume of the bone cement during the pedicle screw augmentationbased on the architectural parameters acquired from μCT.
     Results:
     1. Based on present study, a recommended size of volume interest wasconcluded. The recommended size is216mm3if the sample meet threeconditions:(1). The samples are from human vertebral bodies.(2). Theshape of the sample is cubic.(3). The resolution of micro-CT scanning is80um or higher.
     2. The significant difference in architectural parameters and stiffness existedbetween the control group (threshold value determined by Otsu‘s method)and the other threshold groups when the variation of threshold value beyond2.9%.
     3. The architectural parameters and stiffness are not sensitive to the ROI shape.
     4. The architectural parameters and stiffness are sensitive to the anatomic sitewithin the vertebral body.
     5. The RoE and AIC was calculated based on a validated FE model in presentstudy. The results showed RoE was a circular region with a Δr of3.4mmaround the pedicle screw and the proper AIC was about2.6ml for a standard6.5mm pedicle screw augmentation in the osteoporosis patients.
     Conclusion:
     During the analysis of μCT image and LSFE, the architectural andmechanical parameters are sensitive to the ROI volume, threshold and theanatomical site within the vertebral body; not sensitive to the ROI shape. Thearchitectural parameters are helpful the calculation of AIC for pedicleaugmentation in the osteoporosis patients.
引文
[1] Cummings SR, Kelsey JL, Nevitt MC, O'Dowd KJ. Epidemiology of osteoporosis andosteoporotic fractures. Epidemiol Rev.1985;7:178-208.
    [2] Melton LJ,3rd. How many women have osteoporosis now? J Bone Miner Res.1995;10:175-7.
    [3] Hanson NA, Bagi CM. Alternative approach to assessment of bone quality usingmicro-computed tomography. Bone.2004;35:326-33.
    [4] Massafra U, Migliaccio S, Bancheri C, Chiacchiararelli F, Fantini F, Leoni F, et al.Approach in Glucocorticoid Induced Osteoporosis (Gio) Prevention: Results from theItalian Multicenter Observational Egeo Study. J Endocrinol Invest.2012.
    [5] Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M. The directexamination of three-dimensional bone architecture in vitro by computed tomography. JBone Miner Res.1989;4:3-11.
    [6] MacNeil JA, Boyd SK. Load distribution and the predictive power of morphologicalindices in the distal radius and tibia by high resolution peripheral quantitative computedtomography. Bone.2007;41:129-37.
    [7] Ciarelli TE, Tjhia C, Rao DS, Qiu S, Parfitt AM, Fyhrie DP. Trabecular packet-levellamellar density patterns differ by fracture status and bone formation rate in whitefemales. Bone.2009;45:903-8.
    [8] Ciarelli TE, Fyhrie DP, Schaffler MB, Goldstein SA. Variations in three-dimensionalcancellous bone architecture of the proximal femur in female hip fractures and incontrols. J Bone Miner Res.2000;15:32-40.
    [9] Homminga J, McCreadie BR, Ciarelli TE, Weinans H, Goldstein SA, Huiskes R.Cancellous bone mechanical properties from normals and patients with hip fracturesdiffer on the structure level, not on the bone hard tissue level. Bone.2002;30:759-64.
    [10] Hollister SJ, Fyhrie DP, Jepsen KJ, Goldstein SA. Application of homogenizationtheory to the study of trabecular bone mechanics. J Biomech.1991;24:825-39.
    [11]朱兴华,侯亚君,尚禹.胞元结构形式、材料性质对松质骨力学性能的影响.中国生物医学工程学报.2004:134-8.
    [12]侯亚君,朱兴华.松质骨弹性模量与表观密度的关系-基于杆-杆结构和带孔板结构相结合的模型.生物医学工程学杂志.2006;23:78-81.
    [13]裴葆青,王田苗,王军强.松质骨微观骨小梁结构的生物力学有限元分析.北京生物医学工程.2008;27:120-2.
    [14] Gong H, Zhang M, Qin L, Hou Y. Regional variations in the apparent and tissue-levelmechanical parameters of vertebral trabecular bone with aging using micro-finiteelement analysis. Ann Biomed Eng.2007;35:1622-31.
    [15]吴子祥,雷伟,胡蕴玉,王海强,万世勇,王军, et al.骨质疏松绵羊模型松质骨及皮质骨的微观结构及力学性能变化的研究.中国骨质疏松杂志.2007:537-41+46.
    [16]赵金东,唐海,包力,陈浩,贾璞,张寰, et al.去卵巢大鼠椎体松质骨骨小梁微结构改变及其对生物力学的影响.中华骨质疏松和骨矿盐杂志.2007;3:194-200.
    [17]刘石平,陈晶,杨淑敏,伍贤平,廖二元.糖皮质激素对大鼠胫骨松质骨密度和微结构的动态影响.中华医学杂志.2008;88:2281-4.
    [18]杨晓恩,朱锋,邱勇,唐盛平,秦岭,李广文, et al.特发性脊柱侧凸患者脊柱畸形段侧凸及凹侧关节突松质骨三维微结构比较.中华外科杂志.2008;43:777-80.
    [19]李展春,程光齐,张自明,戴力扬.骨质疏松与骨关节炎患者松质骨的显微结构.国际病理科学与临床杂志.2011:17-20.
    [20]张丽,戴如春,谢芬.男性骨质疏松患者股骨头松质骨微结构区域差异的研究.中华放射学杂志.2011;44:639-44.
    [21] Gibson LJ. The mechanical behaviour of cancellous bone. J Biomech.1985;18:317-28.
    [22] van Rietbergen B, Weinans H, Huiskes R, Odgaard A. A new method to determinetrabecular bone elastic properties and loading using micromechanical finite-elementmodels. J Biomech.1995;28:69-81.
    [23] Van Rietbergen B, Odgaard A, Kabel J, Huiskes R. Direct mechanics assessment ofelastic symmetries and properties of trabecular bone architecture. J Biomech.1996;29:1653-7.
    [24] Kim HS, Al-Hassani ST. A morphological model of vertebral trabecular bone. JBiomech.2002;35:1101-14.
    [25] Kowalczyk P. Elastic properties of cancellous bone derived from finite element modelsof parameterized microstructure cells. J Biomech.2003;36:961-72.
    [26] Dagan D, Be'ery M, Gefen A. Single-trabecula building block for large-scale finiteelement models of cancellous bone. Med Biol Eng Comput.2004;42:549-56.
    [27] Cowin SC. The relationship between the elasticity tensor and the fabric tensor.Mechanics of Materials.1985;4:137-47.
    [28] Keaveny TM, Yeh OC. Architecture and trabecular bone-toward an improvedunderstanding of the biomechanical effects of age, sex and osteoporosis. JMusculoskelet Neuronal Interact.2002;2:205-8.
    [29] Yeh OC, Keaveny TM. Biomechanical effects of intraspecimen variations in trabeculararchitecture: a three-dimensional finite element study. Bone.1999;25:223-8.
    [30] Odgaard A, Kabel J, van Rietbergen B, Dalstra M, Huiskes R. Fabric and elasticprincipal directions of cancellous bone are closely related. J Biomech.1997;30:487-95.
    [31] Kothari M, Keaveny TM, Lin JC, Newitt DC, Majumdar S. Measurement ofintraspecimen variations in vertebral cancellous bone architecture. Bone.1999;25:245-50.
    [32] Kabel J, Odgaard A, van Rietbergen B, Huiskes R. Connectivity and the elasticproperties of cancellous bone. Bone.1999;24:115-20.
    [33] Kabel J, van Rietbergen B, Odgaard A, Huiskes R. Constitutive relationships of fabric,density, and elastic properties in cancellous bone architecture. Bone.1999;25:481-6.
    [34] Homminga J, McCreadie BR, Weinans H, Huiskes R. The dependence of the elasticproperties of osteoporotic cancellous bone on volume fraction and fabric. J Biomech.2003;36:1461-7.
    [35] Liu XS, Sajda P, Saha PK, Wehrli FW, Bevill G, Keaveny TM, et al. Completevolumetric decomposition of individual trabecular plates and rods and itsmorphological correlations with anisotropic elastic moduli in human trabecular bone.J Bone Miner Res.2008;23:223-35.
    [36] Fields AJ, Lee GL, Liu XS, Jekir MG, Guo XE, Keaveny TM. Influence of verticaltrabeculae on the compressive strength of the human vertebra. J Bone Miner Res.2011;26:263-9.
    [37] Yeni YN, Zinno MJ, Yerramshetty JS, Zauel R, Fyhrie DP. Variability of trabecularmicrostructure is age-, gender-, race-and anatomic site-dependent and affectsstiffness and stress distribution properties of human vertebral cancellous bone. Bone.2011;49:886-94.
    [38] Yeni YN, Zelman EA, Divine GW, Kim DG, Fyhrie DP. Trabecular shear stressamplification and variability in human vertebral cancellous bone: relationship withage, gender, spine level and trabecular architecture. Bone.2008;42:591-6.
    [39] Un K, Bevill G, Keaveny TM. The effects of side-artifacts on the elastic modulus oftrabecular bone. J Biomech.2006;39:1955-63.
    [40] Lievers WB, Petryshyn AC, Poljsak AS, Waldman SD, Pilkey AK. Specimen diameterand "side artifacts" in cancellous bone evaluated using end-constrained elastic tension.Bone.2010;47:371-7.
    [41] Bevill G, Keaveny TM. Trabecular bone strength predictions using finite elementanalysis of micro-scale images at limited spatial resolution. Bone.2009;44:579-84.
    [42] Mueller TL, van Lenthe GH, Stauber M, Gratzke C, Eckstein F, Muller R. Regional,age and gender differences in architectural measures of bone quality and theircorrelation to bone mechanical competence in the human radius of an elderlypopulation. Bone.2009;45:882-91.
    [43] Sode M, Burghardt AJ, Kazakia GJ, Link TM, Majumdar S. Regional variations ofgender-specific and age-related differences in trabecular bone structure of the distalradius and tibia. Bone.2010;46:1652-60.
    [44] Podshivalov L, Fischer A, Bar-Yoseph PZ.3D hierarchical geometric modeling andmultiscale FE analysis as a base for individualized medical diagnosis of bonestructure. Bone.2011;48:693-703.
    [45] Teo JC, Si-Hoe KM, Keh JE, Teoh SH. Relationship between CT intensity,micro-architecture and mechanical properties of porcine vertebral cancellous bone.Clin Biomech (Bristol, Avon).2006;21:235-44.
    [46] Pothuaud L, Carceller P, Hans D. Correlations between grey-level variations in2Dprojection images (TBS) and3D microarchitecture: applications in the study ofhuman trabecular bone microarchitecture. Bone.2008;42:775-87.
    [47] Muller R, Ruegsegger P. Micro-tomographic imaging for the nondestructive evaluationof trabecular bone architecture. Stud Health Technol Inform.1997;40:61-79.
    [48] Stauber M, Muller R. Volumetric spatial decomposition of trabecular bone into rodsand plates--a new method for local bone morphometry. Bone.2006;38:475-84.
    [49] Yeni YN, Hou FJ, Vashishth D, Fyhrie DP. Trabecular shear stress in human vertebralcancellous bone: intra-and inter-individual variations. J Biomech.2001;34:1341-6.
    [50] Wu ZX, Lei W, Hu YY, Wang HQ, Wan SY, Ma ZS, et al. Effect of ovariectomy onBMD, micro-architecture and biomechanics of cortical and cancellous bones in asheep model. Med Eng Phys.2008;30:1112-8.
    [51] Siu WS, Qin L, Cheung WH, Leung KS. A study of trabecular bones in ovariectomizedgoats with micro-computed tomography and peripheral quantitative computedtomography. Bone.2004;35:21-6.
    [52] Foldager C, Bendtsen M, Nygaard JV, Zou X, Bunger C. Differences in earlyosteogenesis and bone micro-architecture in anterior lumbar interbody fusion withrhBMP-2, equine bone protein extract, and autograft. Bone.2009;45:267-73.
    [53] Ding H, Zhu ZA, Dai KR. Evaluation of damage to trabecular bone of the osteoporotichuman acetabulum at small strains using nonlinear micro-finite element analyses.Chin Med J (Engl).2009;122:2041-7.
    [54] Liu XS, Bevill G, Keaveny TM, Sajda P, Guo XE. Micromechanical analyses ofvertebral trabecular bone based on individual trabeculae segmentation of plates androds. J Biomech.2009;42:249-56.
    [55] Renders GA, Mulder L, Langenbach GE, van Ruijven LJ, van Eijden TM.Biomechanical effect of mineral heterogeneity in trabecular bone. J Biomech.2008;41:2793-8.
    [56] Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphologyand its contribution to vertebral fracture strength. Bone.2007;41:946-57.
    [57] Perilli E, Baleani M, Ohman C, Baruffaldi F, Viceconti M. Structural parameters andmechanical strength of cancellous bone in the femoral head in osteoarthritis do notdepend on age. Bone.2007;41:760-8.
    [58] Muller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J,Hildebrand T, et al. Morphometric analysis of human bone biopsies: a quantitativestructural comparison of histological sections and micro-computed tomography. Bone.1998;23:59-66.
    [59] Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Systems,Man, and Cybernetics.1979;9:62-6.
    [60] Ding M, Odgaard A, Hvid I. Accuracy of cancellous bone volume fraction measured bymicro-CT scanning. J Biomech.1999;32:323-6.
    [61] Hara T, Tanck E, Homminga J, Huiskes R. The influence of microcomputedtomography threshold variations on the assessment of structural and mechanicaltrabecular bone properties. Bone.2002;31:107-9.
    [62] Parkinson IH, Badiei A, Fazzalari NL. Variation in segmentation of bone frommicro-CT imaging: implications for quantitative morphometric analysis. AustralasPhys Eng Sci Med.2008;31:160-4.
    [63] Ito M, Nishida A, Koga A, Ikeda S, Shiraishi A, Uetani M, et al. Contribution oftrabecular and cortical components to the mechanical properties of bone and theirregulating parameters. Bone.2002;31:351-8.
    [64] Gibson LJ. Biomechanics of cellular solids. J Biomech.2005;38:377-99.
    [65] Ciarelli MJ, Goldstein SA, Kuhn JL, Cody DD, Brown MB. Evaluation of orthogonalmechanical properties and density of human trabecular bone from the majormetaphyseal regions with materials testing and computed tomography. J Orthop Res.1991;9:674-82.
    [66] Nicholson PH, Cheng XG, Lowet G, Boonen S, Davie MW, Dequeker J, et al.Structural and material mechanical properties of human vertebral cancellous bone.Med Eng Phys.1997;19:729-37.
    [67] Ding M, Hvid I. Quantification of age-related changes in the structure model type andtrabecular thickness of human tibial cancellous bone. Bone.2000;26:291-5.
    [68] Waarsing JH, Day JS, Weinans H. An improved segmentation method for in vivomicroCT imaging. J Bone Miner Res.2004;19:1640-50.
    [69] Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P. Direct three-dimensionalmorphometric analysis of human cancellous bone: microstructural data from spine,femur, iliac crest, and calcaneus. J Bone Miner Res.1999;14:1167-74.
    [70] Liu XS, Zhang XH, Guo XE. Contributions of trabecular rods of various orientations indetermining the elastic properties of human vertebral trabecular bone. Bone.2009;45:158-63.
    [71] Mc Donnell P, Harrison N, Liebschner MA, Mc Hugh PE. Simulation of vertebraltrabecular bone loss using voxel finite element analysis. J Biomech.2009;42:2789-96.
    [72] McDonald K, Little J, Pearcy M, Adam C. Development of a multi-scale finite elementmodel of the osteoporotic lumbar vertebral body for the investigation of apparentlevel vertebra mechanics and micro-level trabecular mechanics. Med Eng Phys.2010;32:653-61.
    [73] Mosekilde L. Normal vertebral body size and compressive strength: relations to ageand to vertebral and iliac trabecular bone compressive strength. Bone.1986;7:207-12.
    [74] Carter DR, Orr TE, Fyhrie DP. Relationships between loading history and femoralcancellous bone architecture. J Biomech.1989;22:231-44.
    [75] Fernandes P, Rodrigues H, Jacobs C. A Model of Bone Adaptation Using a GlobalOptimisation Criterion Based on the Trajectorial Theory of Wolff. Comput MethodsBiomech Biomed Engin.1999;2:125-38.
    [76] Bevill G, Eswaran SK, Gupta A, Papadopoulos P, Keaveny TM. Influence of bonevolume fraction and architecture on computed large-deformation failure mechanismsin human trabecular bone. Bone.2006;39:1218-25.
    [77] Lai YM, Qin L, Yeung HY, Lee KK, Chan KM. Regional differences in trabecularBMD and micro-architecture of weight-bearing bone under habitual gait loading--apQCT and microCT study in human cadavers. Bone.2005;37:274-82.
    [78] Ulrich D, van Rietbergen B, Laib A, Ruegsegger P. Load transfer analysis of the distalradius from in-vivo high-resolution CT-imaging. J Biomech.1999;32:821-8.
    [79] Troy KL, Grabiner MD. Off-axis loads cause failure of the distal radius at lowermagnitudes than axial loads: a finite element analysis. J Biomech.2007;40:1670-5.
    [80] Khosla S, Melton LJ,3rd, Achenbach SJ, Oberg AL, Riggs BL. Hormonal andbiochemical determinants of trabecular microstructure at the ultradistal radius inwomen and men. J Clin Endocrinol Metab.2006;91:885-91.
    [81] Ito M, Nishida A, Nakamura T, Uetani M, Hayashi K. Differences of three-dimensionaltrabecular microstructure in osteopenic rat models caused by ovariectomy andneurectomy. Bone.2002;30:594-8.
    [82] Zhang QH, Tan SH, Chou SM. Investigation of fixation screw pull-out strength onhuman spine. J Biomech.2004;37:479-85.
    [83] Zhang QH, Tan SH, Chou SM. Effects of bone materials on the screw pull-out strengthin human spine. Med Eng Phys.2006;28:795-801.
    [84] Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D. Factorsaffecting the pullout strength of cancellous bone screws. J Biomech Eng.1996;118:391-8.
    [85] Chatzistergos PE, Magnissalis EA, Kourkoulis SK. A parametric study of cylindricalpedicle screw design implications on the pullout performance using an experimentallyvalidated finite-element model. Med Eng Phys.2010;32:145-54.
    [86] Grewal AS, Sabbaghian M. Load distribution between threads in threaded connections.J Press Vess-T Asme.1997;119:91-5.
    [87] Macdonald KA, Deans WF. Stress-Analysis of Drillstring Threaded Connections Usingthe Finite-Element Method. Eng Fail Anal.1995;2:1-30.
    [88] Hayes WC, Carter DR. Postyield behavior of subchondral trabecular bone. J BiomedMater Res.1976;10:537-44.
    [89] Mercer C, He MY, Wang R, Evans AG. Mechanisms governing the inelasticdeformation of cortical bone and application to trabecular bone. Acta Biomater.2006;2:59-68.
    [90] Liu CL, Chen HH, Cheng CK, Kao HC, Lo WH. Biomechanical evaluation of a newanterior spinal implant. Clin Biomech (Bristol, Avon).1998;13:S40-S5.
    [91] Polikeit A, Nolte LP, Ferguson SJ. The effect of cement augmentation on the loadtransfer in an osteoporotic functional spinal unit: finite-element analysis. Spine (PhilaPa1976).2003;28:991-6.
    [92] Hashemi A, Bednar D, Ziada S. Pullout strength of pedicle screws augmented withparticulate calcium phosphate: an experimental study. Spine J.2009;9:404-10.
    [93] Silva MJ, Gibson LJ. Modeling the mechanical behavior of vertebral trabecular bone:effects of age-related changes in microstructure. Bone.1997;21:191-9.
    [94] Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus-densityrelationships depend on anatomic site. J Biomech.2003;36:897-904.
    [95] Hou FJ, Lang SM, Hoshaw SJ, Reimann DA, Fyhrie DP. Human vertebral bodyapparent and hard tissue stiffness. J Biomech.1998;31:1009-15.
    [96] Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone. J Biomech.1998;31:601-8.
    [97] Chang MC, Liu CL, Chen TH. Polymethylmethacrylate augmentation of pedicle screwfor osteoporotic spinal surgery: a novel technique. Spine (Phila Pa1976).2008;33:E317-24.
    [98] Wu ZX, Gao MX, Sang HX, Ma ZS, Cui G, Zhang Y, et al. Surgical Treatment ofOsteoporotic Thoracolumbar Compressive Fractures with Open Vertebral CementAugmentation of Expandable Pedicle Screw Fixation: A Biomechanical Study and a2-Year Follow-up of20Patients. J Surg Res.2010.
    [99] Kim KH, Lee SH, Lee DY, Shim CS, Maeng DH. Anterior bone cement augmentationin anterior lumbar interbody fusion and percutaneous pedicle screw fixation inpatients with osteoporosis. J Neurosurg Spine.2010;12:525-32.
    [100] Jung MY, Shin DA, Hahn IB, Kim TG, Huh R, Chung SS. Serious complication ofcement augmentation for damaged pilot hole. Yonsei Med J.2010;51:466-8.
    [101] Golz T, Graham CR, Busch LC, Wulf J, Winder RJ. Temperature elevation duringsimulated polymethylmethacrylate (PMMA) cranioplasty in a cadaver model. J ClinNeurosci.2010;17:617-22.
    [102] Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM.Comparison of the elastic and yield properties of human femoral trabecular andcortical bone tissue. J Biomech.2004;37:27-35.
    [103] Gao M, Lei W, Wu Z, Liu D, Shi L. Biomechanical evaluation of fixation strength ofconventional and expansive pedicle screws with or without calcium based cementaugmentation. Clin Biomech (Bristol, Avon).2010.
    [104] Janssen D, Mann KA, Verdonschot N. Micro-mechanical modeling of thecement-bone interface: the effect of friction, morphology and material properties onthe micromechanical response. J Biomech.2008;41:3158-63.
    [105] Burval DJ, McLain RF, Milks R, Inceoglu S. Primary pedicle screw augmentation inosteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength.Spine (Phila Pa1976).2007;32:1077-83.
    [106] Linhardt O, Luring C, Matussek J, Hamberger C, Plitz W, Grifka J. Stability ofpedicle screws after kyphoplasty augmentation: an experimental study to comparetranspedicular screw fixation in soft and cured kyphoplasty cement. J Spinal DisordTech.2006;19:87-91.
    [107] Yilmaz C, Atalay B, Caner H, Altinors N. Augmentation of a loosened sacral pediclescrew with percutaneous polymethylmethacrylate injection. J Spinal Disord Tech.2006;19:373-5.
    [108] Liu D, Wu ZX, Gao MX, Wan SY, Shi L, Fu SC, et al. A New Method of PartialScrew Augmentation in Sheep Vertebrae In Vitro: Biomechanical and InterfacialEvaluation. J Spinal Disord Tech.2010.
    [109] Yamana K, Tanaka M, Sugimoto Y, Takigawa T, Ozaki T, Konishi H. Clinicalapplication of a pedicle nail system with polymethylmethacrylate for osteoporoticvertebral fracture. Eur Spine J.2010;19:1643-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700