毒死蜱降解菌的分离、mpd基因克隆与定向进化及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毒死蜱是一类中等毒性的有机磷杀虫剂,现已被许多国家广泛使用,由此引发的环境污染问题日益突出。环境污染的微生物修复具有其它修复方法无可比拟的优势,因此利用获得的能够高效降解毒死蜱的微生物资源,充分发挥其降解能力,进行毒死蜱残留污染环境的修复,具有非常重要的理论研究意义和实际应用价值。本研究的目标是分离、筛选能够以毒死蜱作为唯一碳源生长的降解菌株,并对该菌株在各种环境条件下降解毒死蜱的特性进行研究,以期为毒死蜱环境污染的修复工作提供科学依据;同时对其降解酶基因进行克隆和定向进化,为进一步研究其基因功能、构建具有更强降解能力的基因工程茵奠定基础。
     采用以毒死蜱为唯一碳源的选择性培养基,从毒死蜱污染的环境样品中分离到七株毒死蜱降解菌,分别命名为Dsp-1-Dsp-7.经生理生化鉴定和系统发育分析,七株茵属于5个不同的属。菌株Dsp-2鉴定为Sphingomonas sp.,菌株Dsp-4为Stenotrophomonas sp.,菌株Dsp-7为Brevundimonas sp.,菌株Dsp-6为Bacillus sp,其他菌株为Pseudomonas sp.。其中从Sphingomonas sp.和Brevundimonas sp.分离到毒死蜱农药降解茵尚属首次报道。对分离的毒死蜱降解菌进行基于16S rDNA序列的系统发育分析,对染色体ERIC-PCR旨纹图谱扩增及对降解特性进行比较研究,结果表明七株降解菌在遗传、生理和降解能力等方面表现出丰富的多样性。不同菌株对毒死蜱的降解能力有很大差异,其降解谱也表现出一定的差异。降解菌株Dsp-1-Dsp-4对多种有机磷类农药具有降解能力,与其他菌相比,菌株Dsp-2在液体培养基中拥有最快的降解速率,12h几乎完全降解100mg.L-1的毒死蜱,并且能降解有机磷农药丙溴磷。菌株Dsp-1在自然环境中对毒死蜱的降解效果最好。而菌株Dsp-5和Dsp-7只能降解毒死蜱农药,而不能降解其他有机磷农药。七株菌降解毒死蜱的中间产物均为3,5,6-三氯-2-吡啶酚(TCP),且积累TCP。
     根据已报道的有机磷水解酶基因序列设计引物,通过PCR的方法从降解茵Dsp-1-Dsp-4中克隆到了有机磷水解酶mpd基因,mpd结构基因共有996个碱基,编码331个氨基酸序列。通过序列比较发现,在基因水平上,四株降解菌的有机磷水解酶基因可以分为3种亚型,相互之间的同源性为99%;在氨基酸水平上,四株降解茵的有机磷水解酶可以分为3种亚型,相互之间的同源性为92%。将四株降解茵的mpd结构基因分别连接到表达质粒载体pET29a上,在E. coli BL21实现了基因的高效表达。通过致突变PCR对野生型的mpd基因进行定向进化,获得了5个毒死蜱降解能力增强的突变体。其中突变子Mn7,突变了5个氨基酸位点(N271T,I275S,G277S, A280V,P304S),水解毒死蜱的动力学参数Kcat和Kcat/Km比原始MPH分别提高10和118倍,水解3种供试的有机磷底物的相对活力都有明显的增强。通过定点突变的方法,对这些突变位点的作用进行进一步的研究。酶动力学参数的测定结果表明,单位点突变体N271I的Kcat/Km比原始MPH提高了15倍,A280V的Kcat/Km比原始MPH提高了32倍,是导致毒死蜱催化能力增强的重要位点。而F196I则使Kcat/Km下降了1倍,这可能与该位点是MPH酶作用的关键位点有关。对突变体的Mn7三维结构进行模拟分析表明,这些位点的突变并未对酶的三维结构产生明显的影响,但其二级结构分析表明a-螺旋和B-折叠的含量有所增加,这可能使得蛋白的构象更加稳定,从而提高了酶的水解活力。
     研究了菌株Dsp-1的最适生长条件,菌株Dsp-1的最适温度为30℃;最适生长初始pH在7左右;装液量小于150mL/250mL时,生长旺盛;Dsp-1生长不需要NaCl,无特殊生长因子要求。在供试的几种碳源中,Dsp-1对葡萄糖利用最好;在以葡萄糖为碳源时,以有机氮为氮源生长较好,在供试的几种无机氮源中,Dsp-1对NH4NO3利用最好;该菌株对多种常用抗生素敏感。在发酵培养基中,经过16h达到稳定期,菌体生长良好(>1011CFU·mL-1),能较好的满足后续试验的要求。降解菌剂的应用试验表明,在消除土壤和蔬菜毒死蜱残留的试验中,菌株Dsp-1对毒死蜱表现了较强的降解能力。人工接种毒死蜱降解菌Dsp-1到毒死蜱污染的三种不同的土壤(红粘土、灰潮土、高沙土),Dsp-1在3种土壤中都能有效降解毒死蜱,Dsp-1在pH中性的灰潮土中降解毒死蜱的速率最快,酸性的红粘土中降解效果较差,而碱性的高沙土中毒死蜱的自然降解作用也较明显;说明土壤pH值对降解效率的影响十分显著。相对较高的有机氮的含量也有利于毒死蜱的降解。在1-100mg-kg-1的浓度范围内Dsp-1都能有效降解土壤中的毒死蜱,对低浓度的毒死蜱降解率更高,达到90%以上。该结果显示了菌株Dsp-1具有对毒死蜱污染的土壤进行实地修复的潜力。应用Dsp-1分别对冬季和春季栽培的温室小青菜的毒死蜱残留进行降解试验,在环境条件适宜,使用推荐农药用量时,施用含1010CFU-mL-1活菌的降解菌剂可以发挥良好的作用,7天的降解效率达到80%以上,加快了毒死蜱的降解进程,从而保证在安全间隔期内达到国家的残留标准(0.1mg-kg-1).
Chlorpyrifos [O,O-diethyl-O-(3,5,6-trichloro-2-pyridyl) phosphorothioate] is a mid-toxic organophosphorus insecticide which has been widely used by many countries. Its vast use ultimately caused more serious environment pollution. Microbial remediation has been deemed to be much more advantageous method than the others. So it has been an important research item for us to exploit and utilize chlorpyrifos-degrading microbial resource to remove the environment pollution. This research aimed at isolating the bacteria that can use chlorpyrifos as sole carbon source, study their degrading characterizes of chlorpyrifos in different environments, and provided the theory base for the bioremediation of environment pollution with chlorpyrifos. At the same time, the degrading gene of chlorpyrifos was cloned and evolved, which would be helpful to research the gene function and establish the foundation of construct the genetic engineered strain by enhanced degrading capacity.
     Seven chlorpyrifos-degrading bacteria, named Dsp-1to Dsp-7were isolated from chlorpyrifos-contaminated samples using selective culture medium with chlorpyrifos as sole carbon source. These isolated strains were identified based on morphological, physiological and biochemical tests with reference to Bergey's Manual of Determinative Bacteriology combined with16S rDNA sequence analysis. Based on these analyses, strains Dsp-2, Dsp-4, Dsp-6and Dsp-7were identified as Sphingomonas sp., Stenotrophomonas sp., Bacillus sp. and Brevundimonas sp., respectively, while all other strains were members of Pseudomonas sp. This is the first report of isolating chlorpyrifos-degrading bacteria from Sphingomonas sp.and Brevundimonas sp.
     Comparative studies were performed to study their phylogenetic relationship based on their16S rDNA sequence. ERIC-PCR fingerprints and the degrading capability were also compared. These results revealed high biodiversity of chlorpyrifos-degrading bacteria in many aspects. Degrading characteristics of seven degrading bacteria were investigated. However, significant differences in the ability of degrading chlorpyrifos and other organophosphate pesticides were observed among these strains. Strain Dsp-l-Dsp-4can degrade several organophosphate pesticides. Contrast to orther six strains, strain Dsp-2can degrade profenofos and had the fastest degrading rate in liquid medium,100mg-L" chlorpyrifos was degraded to an undetectable level within12h. Strain Dsp-1instead of Dsp-2had the highest degrading rate in soil. Strain Dsp-5and Dsp-7can not degrade any supplied pesticides except chlorpyrifos. All these isolates could utilize chlorpyrifos as sole carbon source with3,5,6-trichloro-2-pyridinol (TCP) as intermediate.
     The primers were constructed based on the published sequences of the organophosphorus hydrolase gene opd and mpd. The methylparathion hydrolase gene mpd was cloned by PCR from Dsp-l-Dsp-4. The analysis and alignment of the four organophosphate pesticides hydrolase genes revealed that this gene has996bases, which coding for the organophosphate pesticides hydrolase contained331amino acids. The four genes were dividing into three subgroups at the level of gene base sequences, the similarity values between them were99%. At the level of amino acid sequences, the four organophosphate pesticides hydrolase also were dividing into three subgroups, the similarity values between them were92%.Each mpd gene from the four strains was linked to the expression plasmid vector pET29a, the expression strains of the four genes were gained by transfer of the expression plasmid into strain BL21(DE3). SDS-PAGE analysis of the total proteins of the four the expression strains identified the hydrolase.
     Error Prone PCR was used to generate MPH variants improvement in hydrolysis of chlorpyrifos and five mutations were obtained. One variant, Mn7which had five site mutations (N271T, I275S, G277S, A280V, P304S), displayed a10-fold increase in Arcat and118-fold increase in kcat/Km values. It also exhibited increase special activity for methylparathion chlorpyrifos and triazophos compared to wild type-MPH. We obtained8site-mutation variants by site-directed mutagenesis. Study of their kinetic parameters for hydrolysis of chlorpyrifos was performed. Results showed that N271I exhibited a15-fold increase in kcat/Km values and A280V exhibited a15-fold increase in kcat/Km values. These results showed that these two sites are the key sites for improved hydrolysis of chlorpyrifos. F196I which showed one fold reduction in kcat/Km values may because that Phe196is the key acid amino that form an aromatic cluster at the entrance of the catalytic center. No noticeable difference between MPH from Mn7and that from M6was observed when analysis of enzymatic3D-structure. But secondary structure analysis showed that the content of a-helix and β-pleated sheet was increased, suggesting that is likely to contribute to stabilized the conformation, so that improved the efficiency of catalysis.
     The optimal growth conditions of strain Dsp-1were studied. The optimal growth temperature and initial pH of strain Dsp-1are30℃and7.0, respectively. The oxygen had little effect on the growth of strain Dsp-1. Strain Dsp-1could growth without NaCl and special growth factor. Glucose was the best carbon source and organic nitrogen was better nitrogen source. The optimal inorganic nitrogen was NH4NO3. Strain Dsp-1was sensitive to many antibodies. In the ferment medium, after16hours, Dsp-1cell could reach to1011mL-1. Addition of strain Dsp-1to three test soils (Red soil. Brown soiland Sandy soil) treated with chlorpyrifos resulted in a high degradation rate of chlorpyrifos. The highest degradation rate was showed in brown soil, which was netrual pH. The degradation effect was not satisfactory in red soil which was acidic pH and the physical degradation of chlorpyrifos was obvisely in sandy soil because of its alkaline pH. However, the soil pH had notability effect on degradation. The moderate pH, moisture and nutrients could promote the degradation. Strain Dsp-1worked well when the concentration of chlorpyrifos in soil ranged in1-100mg kg-1. The degradation rate reached to90%at low concentration. The fine characteristic of Dsp-1will help it to play well in different chlorpyrifos-contamination soil. The research showed that strain Dsp-1had the potential to cleanup chlorpyrifos contaminated environment. The degradation patterns of chlorpyrifos on pakchoi in the greenhouse were performed in spring and winter separately. When using1010CFU-mL-1zymolytic strain Dsp-1, the degradation rates of chlorpyrifos on pakchoi reached to80%after7days. The results suggested that the strain Dsp-1could efficiently remove or detoxify chlorpyrifos residues on pakchoi in the greenhouse, making sure that the residual values of chlorpyrifos on pakchoi were lower than the China MRL (0.1mg-kg-1).
引文
[1]Laudio C, Emanuela C, Wilma, et al. Immune parameters in biological monitoring of pesticide exposure:current knowledge and perspectives[J].Toxicology Lett,1999,108:285-295.
    [2]陈茹玉.有机磷农药化学[M].上海:上海科学技术出版社,1995.
    [3]Nluttley. The pressure facing the agrochemical industry and the effect of these on design of new delivery system[J]. A.N.P.P-B.C.P.C. Second International Symposium on Pesticide Application Techniques,1993:57-65.
    [4]岳林海,周永秋.光催化降解甲基对硫磷研究[J].环境污染与防治,1998,20(3):5-8.
    [5]Doong R A, Chang W H. Photoassistediron compound catalytic degradation of organophosphorous pesticides with hydrogen peroxide[J]. Chemosphere,1998,37(13):2563-2572.
    [6]陈卫国,朱锡海.光催化降解有机污染物的机理初探[J].中山大学学报,1997,36(6):83-86.
    [7]徐悦华,古国榜,伍志锋,等.纳米Ti02光催化降解有机磷农药的研究[J].土壤与环境,2001,10(3):173-175.
    [8]苏茜,张勇.二氧化钛光催化降解有机磷农药的机理和影响因素[J].广州化学,2005,30(1):52-57.
    [9]陈士夫,赵梦月,陶跃式,等.光催化降解有机磷农药的研究[J].环境科学,1995,16(5):61-64.
    [10]Herrmann J M, Guillard C, Arguello M, et al. Photocatalytic degradation of pesticide pirimiphos-methyl:Determination of the reaction pathway and identification of intermediate products by various analytical methods[J]. Catalysis Today,1999,54(2):245-253.
    [11]Dureja P. Photodecomposition of monocrotophos in soil, on plant foliage, and in water[J]. Bull. Environ. Contam. Toxicol.,1989,43:239-245.
    [12]Lee P W, Fukuto J.M, Hernandez H, et al. Fate of monocrotophos in the environment[J]. J. Agric. Food Chem.,1990,38:567-573.
    [13]高明华,梁载琪,周湘梅.甲胺磷生产废水处理实验研究[J].化工环保,1999,19(2):69-74.
    [14]方剑锋,曾鑫年,熊忠华,等.过氧化氢降解有机磷农药的研究[J].华南农业大学学报,2004,25(1):44-47.
    [15]吴勇勇,吴运军,黄勤安,等.过碳酸钠对有机磷农药的降解效果[J].安庆师范学院学报,2001,7(1):34-36.
    [16]汪东风,罗轶,杜德红,等.铈配合物对有机磷农药的降解作用[J].中国海洋大学学报,2004,34(4):577-581.
    [17]杜德红,汪东风,孙继鹏,等.茶叶多糖及其铈配合物对质粒DNA及有机磷农药的降解作用 [J].中国稀土学报,2005,23(1):118-121.
    [18]郑天凌,鄢庆枇,林良牧,等.海洋微生物对农药的降解作用[J].台湾海峡,1999,8(1):95-99.
    [19]张瑞福,吴旭平,樊奔,等.污染土壤中有机磷降解菌的分离及其多样性[J].生态学报,2005,25(6):1502-1508.
    [20]张瑞福,戴青华,何健,等.七株有机磷农药降解菌的降解特性比较[J].中国环境科学,2004,4(5):584-587.
    [21]王伟东,崔宗均,牛俊玲.农药的微生物降解研究进展[J].环境污染与治,2004,3:1-10.
    [22]王永杰,李顺鹏,沈标,等.有机磷农药广谱活性降解菌的分离及其生理性研究[J].南京农业大学学报,1999,22(2):42~45.
    [23]Yonezawa Y, Urushigawa Y. Chemico-biological interactions in biological purification system[J]. Chemospere,1979,8:139-142.
    [24]刘斌斌,赵永芳,钞亚鹏,等.鲁氏酵母WY-3降解甲胺磷的性能[J].环境科学,2001,22(4):40-44.
    [25]王永杰.污染物生物降解(译文)[J].微生物学杂志,1999,19(4):58-62.
    [26]郑重.农药的微生物降解[J].环境科学,1990,11(2):68-72.
    [27]Barik S. Metabolism of insecticides by microorganisms[J]. R L al, ed. In:Insecticide microbiology. Springer Berling,1984,87-130.
    [28]Bollag J M. Microbial metabolism of pesticides[J].In:Rasazza J P, ed. Microbial trans-formation of bioactive compounds. CRC Raca Raton,1982,2:125-168.
    [29]Zheng Z. Microbial flocculant and its application in environmental protection[J]. Appl Environ Microbial,1989,55(1):66.
    [30]张素琴.微生物分子生态学[M].北京:科学出版社,2006.
    [31]郑永良,陈舒丽,刘德立.土壤中降解农药微生物的类别及降解特性[J].黄冈师范学院学报,2005,25(3):24-38.
    [32]孔繁翔,尹大强,严国安.环境生物学[M].北京:高等教育出版社,2000:211-230.
    [33]莫测辉,蔡全英,吴启堂,等.城市污泥与玉米秸秆堆肥中多环芳烃(PAHs)的研究[J].农业工程学报,2001,17(5):73-77.
    [34]Mulbry W W, Karns J S. Parathion hydrolase specified by L he flavobacterium opd gene: relationship between the gene and protein[J]. Bacteriol,1989,171(12):6740-6746.
    [35]Home I, Sutherland T O, Harcourt R L, et al. Identification of an opd (Organophosphate degradation) gene in an A grobacterium isolate[J]. Appl Environ Microbiol,2002,68 (7): 3371-3376.
    [36]Cui Z L, Li S P, Fu G P. Isolation of methyl-parathion degrading strain M6 and cloning of the methyl parathion hydrolase gene[J]. Appl Environ Microbiol,2001,67 (10):4922-4925.
    [37]Mulbry W W, Karns J S. Purification and characterization of three parathion hydrolases from Gram-negative bacterial strains[J]. Appl Environ Microbiol,1989,55:289.
    [38]Ohshiro K, Ono T, HoshinoT, et al. Characterization of isofenphos hydrolases from Arthrobacter sp. strain B-5[J]. Ferment Bioeng,1997,83:238-245.
    [39]Home I, Harcourt R I, Sutherland T D, et al. Isolation of a Pseudomona monteilli strain with an ovel phosphotresterase[J]. FEMS Microbiol Lett,2002,206(1):51-55.
    [40]柏文琴,何凤琴,邱星辉.有机磷农药生物降解研究进展[J].应用与环境生物学报,2004,10(5):675-680.
    [41]Elashvili I, Defrankr J J, Culotta V C. PhnE and g1pT gene chance utilization of organophoshates in Escherichia coli K12[J]. Appl Environ Microbiol,1998,67(7):2601-2608.
    [42]Chen G M, Sogorb M A, Wu F, et al. Structural determinants of the substrate and stereochemical specificity of hosphotriesterase[J]. Biochemistry,2001,40:1325-1331.
    [43]Munnecke D M. Hydrolysis of organophosphate inseticide by an immobilized system[J]. Biotechnol.Bioeng,1979,22:2247-2261.
    [44]Munnecke D M. Enzymatic detoxification of waste organophosphate pesticides[J]. Agric. Food. Chem,1980,28:105-111.
    [45]Lejenue K E, Mesiano A J, Bower S B, et al. Dramatically stabilized phosphotriesterase polymers for nerve agent degradation[J].Biotechnol.Bioeng,1997,54:105-114.
    [46]Richard D R, Ashok M,Wilfred C. Expression, immobilization and enzymatic characterization of cellulose binding domain organophosphorus hydrolase fusion enzymes[J]. Biotechnol.Bioeng, 2000,69,6:591-596.
    [47]Wu C F, Cha H J, Valdes J J, et al. GFP-visalized immobilized enzymes:Degradation of paraoxon viaorganophosphorus hydrolase in a packed column[J].Biotechnol.Bioeng,2002,77 (2):212-218.
    [48]Ashani Y, Rothschild N, Segall Y. Prophylaxis against organophosphates poisoning by an enzyme hydrolyzing organophosphorus compounds in mice[J]. Life Sci,1991,49:367-374.
    [49]Lewis V E, Donarski W J, Wild J R, et al. Mechanism and stereochemical course at phosphorus of the reaction catalyzed by a bacterial phosphotriesterase[J]. Biochemistry,1998,27:1591-1597.
    [50]Sedar C M, Gibson D T, Munnecke D M, et al. Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta [J]. Appl. Environ. Microbiol,1982,44:246-249.
    [51]Omburo G A, Kuo J M, Mullins L S, et al. Characterization of the zinc binding site of bacterial phosphotriesterase[J]. J.Biol.Chem,1992,267:13278-13283.
    [52]Rowland S S, Speedie M K, Pogell B M. Purification and characterization of a secreted recombinant phosphotriesterase (parathion hydrolase) from Streptomyces lividans [J]. Appl. Environ. Microbiol,1991,57:440-444.
    [53]Dumas D P, Wild J R, Raushel F M. Expression of pseudomonas diminuta phosphotriesterase activity in the fall armyworm confers resistance to insecticides[J]. Experientia,1990,46:729-731.
    [54]Donarski W J, Dumas D P, Heitmeyer D P, et al. Structure-activity relationships in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta [J]. Biochemistry,1989,28: 4650-4655.
    [55]Vanhoke J L, Benning M M, Raushel F M, et al. Three dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-Methylbenzyl phosphonate[J]. Biochemistry,1996,35:6020-6025.
    [56]Kuo J M, Raushel F M. Identification of the histidine ligands to the binuclear metal venter of phosphotriesterase by site-directed mutagenesis[J]. Biochemistry,1994,33:4265-4272.
    [57]Dumas D P, Caldwell S R, Wild J R, et al. Purification and properties of the phosphotriesterase from Pseudomonas diminuta [J]. J.Biol.Chem.,1989.264:19659-19665.
    [58]Donarski W J, Dumas D P, Heitmeyer, D P. Structure-activity relationship in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta [J]. Biochemistry,1989,28: 4650-4655.
    [59]Dumas D P, Raushel F M. Chemical and kinetic evidence for an essential histidine in the phosphotriesterase from Pseudomonas diminuta [J]. J.Biol.Chem.,1990,265:21498-21503.
    [60]Benning M M, Kuo J M, Raushel F M. Three-Dimensional structure of phosphotriesterase:an enzyme capable of detoxifying organophosphate nerve agents[J]. Biochemistry.,1994,33: 15001-15007.
    [61]Benning M M, Shim H, Raushel F M. High resolution X-ray structure of different metal-substituted forms of phophostriesterase from Pseudomonas diminuta [J]. Biochemistry.,2001,40:2712-2722.
    [62]楚晓娜,张先恩,陈亚丽,等.假单胞菌WBC-3甲基对硫磷水解酶性质的初步研究[J].微生物学报,2003,43(40):453-459.
    [63]邓敏捷,伍宁丰,梁果义,等.一种新的有机磷降解酶基因ophc2的克隆与表达[J].科学通报,2004,49(11):1069-1072.
    [64]. Fu G P, Cui Z L, Huang T T, et al. Expression, purification, and characterization of a novel methyl parathion hydrolase[J]. Protein Expres. Purif.,2004,36,170-176.
    [65]吴旭平,刘卫东,曹慧.甲基对硫磷水解酶参与催化相关结构的研究[J].生物工程学报,2005,21(6):998-1002.
    [66]Dong Y J, Bartlam M, Sun L. Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3[J]. Mol. Biol.,2005,353,655-663.
    [67]Leung D W, Chen E, Goeddel D V. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction[J]. Technique.,1989,1:11-15.
    [68]Stemmer W P C. DNA shuffling by random fragmentation and reassembly:in vitro recombination for molecular evolution[J]. Proc. Natl. Acac. Sci.,1994,91:10747-10751.
    [69]Nixon A E, Ostermeier M, Benkovic S J. Hybrid enzyme:manipulating enzyme design[J]. Trends Biotech.,1998,16:258-264.
    [70]Shao Z, Zhao H, Giver L. Random-priming in vitro recombination:an effective tool for directed evolution[J]. Nucleic. Acids. Res.,1998,26:681-685.
    [71]. Zhao H, Giver L, Shao Z.. Molecular evolution by staggered extension process (StEP) in vitro recombination[J]. Nat. Biotech.,1998,16:258-261.
    [72]Eckert K A, Kunkel T A. DNA polymerase fidelity and the polymerase chain reaction[J]. PCR Methods Appl.,1991,1:17-24.
    [73]Beckman R.A, Mildvan A S, Loeb L A. On the fidelity of DNA replication:manganese mutagenesis invitro[J]. Biochemistry,1985,24,5810-5817.
    [74]Gelefand D H, White T J. Thermos table DNA polymerases[J]. In PCR Protocols-A Guide to Methods and Applications,1990,129-141.
    [75]Crameri A, Dawes G, Rodrigues E J, et al. Molecular evolution of an arsenate detoxification pathway by DNA shuffling[J]. Nat. Biotechnol.,1997,15:436-438.
    [76]Richaud C, Mengin L D, Pochet S, et al. Directed evolution of biosynthetic pathways[J]. J. Biol. Chem.,1993,268:26827-26835.
    [77]Matcham G W, Bowen A R S. Biocatalysis for chiral intermediates:meeting commercial and technical challenges[J]. Chem Today.,1996,4:20-24.
    [78]He Y Y, Stockley P G, Gold L. Invitro evolution of the DNA binding site of Escherichia coli methionine repressor Met[J]. J. Mol. Biol.,1996,255:55-66.
    [79]Disioudi B, Grimsley J, Lai K, et al. Modification of near active sitr residues organophosphorus hydrolase reduces metal stoichometry and alters substrate specificity[J]. Biochemistry,1999, 38(10):2866-2872.
    [80]Li W S, Lum K T, Chen G M, et al. Stereoselective detoxification of chiral sarin and soman analogues by phosphotriesterase[J]. Bioorg. Med. Chem.,2001,9:2083-2091.
    [81]. Cho C M H, Mulchandani A, Chen W. Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifosn[J]. Appl. Environ. Microbiol.,2004,70: 4681-4685.
    [82]张瑞福,蒋建东,崔中利,等.菌株DLL-1降解土壤和韭菜中甲基对硫磷的研究应用[J].生态学报,2004,15(2):295-298
    [83]王华,艾涛,温晓芳.土壤中乐果降解菌的筛选及其特性研究[J].农业环境科学学报,2006,25(5):1255-1259.
    [84]石利利,林玉锁,徐亦钢.DLL-1菌在土壤中对甲基对硫磷农药的降解性能与影响因素研究[J].环境科学学报,2001,21(5):597-600.
    [85]程国锋,李顺鹏,沈标,等.微生物降解蔬菜残留农药研究[J].应用与环境生物学报,1998,4(1):81-84.
    [86]戴青华,张瑞福,蒋建东,等.一株三唑磷降解菌mp-4的分离鉴定及降解特性的研究[J].土壤学报,2005,42(1):111-115.
    [87]刘智,洪青,徐剑宏,等.耐盐及苯乙酸、甲基对硫磷降解基因工程菌的构建[J].微生物学报,43(5):554-559.
    [88]顾立锋,何健,黄星,等.多功能降解菌Pseudomonas putida KT2440-DOP的构建与降解特性研究[J].微生物学报,46(5):763-766.
    [89]蒋建东,顾立锋,孙纪全,等.同源重组法构建多功能农药降解基因工程菌研究[J].生物工程学报,21(6):884-891.
    [90]王焕民,张子明.新农药手册[M].北京:中国农业出版社,1989,3.
    [91]Lee S R, Mourer C R, Shibamoto T. Analysis and after cooking processes of a t race chlorpyrifos spiked in polished rice[J]. Agric.Food Chem.,1991,39(5):906-908
    [92]Maghraby E S. Bioavailability and toxicologyical to rats of bound 14 C chlorpyrifos residues in soybeans[J]. Bulletin of the National Research Centre Cairo,2000,25(3):259-268
    [93]Gonzalez R H. Management of kiwifruit pests in Chile:1、Degradation of residues of t he insecticides chlorpyrifos and phosmet[J]. Revista Fruticola,1989,10(2):35-43.
    [94]陈振德,陈雪辉,冯明祥,等.毒死蜱在菠菜中的残留动态研究[J].农业环境科学学报,2005,24(2):728-731.
    [95]李莹,高成仁,吴剑英,等.40%毒死蜱乳油在稻田土壤中的消解动态[J].农药,2000,39(6):25-27.
    [96]石利利,林玉锁,徐亦钢,等.毒死蜱农药环境行为研究[J].土壤与环境,2000,9(1):73-74.
    [97]Yen J H, Law F H, Wang Y S, et al. Dissipation of organophosphorus insecticide chlorpyrifos in soil[J]. Journal of the Chinese Agricultural Chemical Society,1997,35 (3):310-318.
    [98]Sundaram B, Koolana R S, Rawendra N, et al. Degradation of bifent hrin, chlorpyrifos and imidacloprid in soil and bedding materials at termiticidal application rates[J]. Pestic Sci.,1999, 55(12):1222-1228.
    [99]Santerre C R, Ingram R, Lewis G W, et al.Organochlorines,organophosphates and pyret hroids in Channel Catfish, rainbomt rout and red swamp crayfish f rom aquaculture facilities[J]. Food Sic., 1999,64(2):303-308.
    [100]Sun F, Lin F Y, Wong S S, et al. Accumulation of chlorpyrifos by t he Cyprinus carpio in different aquaria[J]. Plant Protection Bulletin Taipei,1999,41(3):155-164.
    [101]Varo I, Serrano R, Navarro J C, et al. Acute lethal toxicity of the organophosphorus pesticide chlorpyrifos to different species and strains of Artemia[J].Bull. Environ.Contam. Toxicol.,1998, 61a:778-785.
    [102]闫实,赵辉,张静,等.气质联用检测蔬菜中7种有机磷类农药残留量检出研究[J].农业环境科学学报,2008,27(1):390-394.
    [103]陈守忠.有机磷农药多残留气相色谱分析研究[J].福建分析测试,2008,17(1):36-39.
    [104]刘冰,魏松红,尹晓东,等.农药残留酶联免疫吸附分析技术研究进展[J].安徽农业科学,2007,35(21):6484-6515.
    [105]Delorenzo M E, Scott G I, Ross P E. Effects of the agricultural pesticides atrazine, deethylat raine,endosulfan, and chlorpyrifos on an estuarine microbial food web[J]. Environ. Toxicol. Chem.,1999,18(12):2824-2835.
    [106]Patnaik K K, Tripathy N K. Farm-grade chlorpyrifos (Durmet) is genotoxie in somatic and germ-line cells of Drosophila[J]. Mutat.Res.,1992,279(1):15-20.
    [107]Zurich M G, Honegger P, Schilter B, et al. Involvement of glial cells in the neurotoxicity of parathion and chlorpyrifos[J]. Toxicology and Applied Pharmacology,2004,201(2):97-104.
    [108]Sandahl J F, Baldwin D H, Jenkins J J. Comparative t hresholds for acetylcholinesterase inhibition and behavioral impairment in coho salmon exposed to chlorpyrifos[J]. Environmental Toxicology and Chemistry,2005,2 (1):136-145.
    [109]Brenda E, Bradman A, Castorina R. Exposures of children to organophosphate pesticides and t heir potential adverse healt heffects[J]. Environ. Health Perspective,1999,107(3):409-419.
    [110]秦钰慧,王以燕.美国关于毒死蜱的最新决定[J].农药,2000,39(8):45.
    [111]Getzin L W. Degradation of chlorpyrifos in soil:influence of autoclaving, soil moisture, and temperature[J]. Econ. Entomol.,1981,74:158-162.
    [112]Racke K D. The environmental fate of chlorpyrifos[J]. Rev. Environ. Contam. Toxicol.,1993,131: 1-154.
    [113]Racke K D, Laskowski D A, Schultz M R, et al. Resistance of chlorpyrifos to enhanced biodegradation in soil[J]. Agric. Food Chem.,1990,38:1430-1436.
    [114]Omar S A. Availability of phosphorus and sulfur of insecticide origin by fungi[J].Biodegradation, 1998,9(5):327-336.
    [115]Sikora L J, Kaufman D, Hornog L C. Enzyme activity in soil showing degradation of organophosphosphate insecticides[J]. Biology and Fertility of Soils,1990,9(1):14-18
    [116]Racke K D, Robbins S T. Factors affecting the degradation of 3,5,6-trichloro-2-pyridinol in soil[J]. ACS Symposium.Series.,1991,459:93-107.
    [117]Mallick K, Bharati K, Banerji A, et al. Bacterial degradation of chlorpyrifos in pure cultures and in soil[J]. Bull.Environ.Contam.Toxicol.,1999,62 (1):48-54.
    [118]Feng Y C, Racke K D, Bollag J M, et al. Isolation and characterization of a chlorinated-pyridinol-degrading bacterium[J]. Appl. Environ.Microbiol.,1997,63(10): 4096-4098.
    [119]Lakshmi C V, Kumar M, Khanna S. Biotransformation of chlorpyrifos and bioremediation of contaminated soil International[J]. Int. Biodeter.Biodegr.,2008, doi:10.1016/j.ibiod.2007.12.005
    [120]刘新,尤民生,魏英智,等.降解毒死蜱曲霉Y的分离和降解效能测定[J].应用与环境生物学报,2003,9(1):78-80.
    [121]王金花,朱鲁生,王军,等.3株真菌对毒死蜱的降解特性[J].应用与环境生物报,2005,11(2):211-214.
    [122]Fang H, Xiang Y Q, Hao Y J, et al. Fungal degradation of chlorpyrifos by Verticillium sp. DSP in pure cultures and its use in bioremediation of contaminated soil and pakchoi[J]. Int. Biodeter.Biodegr., (2007), doi:10.1016/j.ibiod.2007.10.001
    [123]Yang L, Zhao Y H, Zhang B X, et al. Isolation and characterization of a chlorpyifos and 3,5,6-trichloro-2-pyridinol degrading bacterium[J]. FEMS Microbiol. Lett.,2005,251:67-73.
    [124]吴祥为,花日茂,操海群,等.毒死蜱降解菌的分离鉴定与降解效能测定[J].环境科学学报,2006,26(9):1433-1439
    [125]Yang C, Liu N, Guo X M, et al. Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil[J].FEMS Microbiol.Lett.,2006,265: 118-125.
    [126]Xu G M, Zheng W, Li Y Y. Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP[J]. Int. Biodeter.Biodegr.,2008, doi: 10.1016/j.ibiod.2007.12.001
    [127]Li X H, He J, Li S P, et al. Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene[J]. Res.microbial,2007,158:143-149..
    [1]Racke K D, Steele K P,Yoder R N, et al Factors affecting the hydrolytic degradation of chlorpyrifos in soil[J]. Agric.and Food Chem.,1996,44(6):1582-1592.
    [2]Yucel U, Ylim M, Gozek K, et al Chlorpyrifos degradation in Turkish soil[J]. Environ. Sci. and Health,1999,34(1):75-95.
    [3]Getzin L W, Degradation of chlorpyrifos in soil:Influence of autoclaving, soil moisture, and temperature[J]. Econ. Entomol.,1981,74:158-162.
    [4]Cho C M H, Mulchandani A, Chen W. Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos[J]. Appl. Environ. Microbiol.,2004,70: 4681-4685.
    [5]Brajesh K, Allan W J, Alun W M, et al. Biodegradation of Chlorpyrifos by Enterobacter Strain B-14 and its use in bioremediation of contaminated soils[J]. Appl. Environ. Microbiol.,2004,70(8): 4855-4863.
    [6]Feng Y C, Racke K D, Bollag J M, et al. Isolation and characterization of a chlorinated pyridinol-degrading bacterium[J]. Appl. Environ.Microbiol.,1997,63(10):4096-4098.
    [7]Lakshmi C V, Kumar M, Khanna S.Biotransformation of chlorpyrifos and bioremediation of contaminated soil[J]. Int. Biodeter.Biodegr.,2008, doi:10.1016/j.ibiod.2007.12.005.
    [8]Yang L, Zhao Y H, Zhang B X, et al. Isolation and characterization of a chlorpyifos and 3,5,6-trichloro-2-pyridinol degrading bacterium[J]. FEMS Microbiol. Lett.,2005,251:67-73.
    [9]Fang H, Xiang Y Q, Hao Y J, et al. Fungal degradation of chlorpyrifos by Verticillium sp. DSP in pure cultures and its use in bioremediation of contaminated soil and pakchoi[J]. Int. Biodeter. Biodegr.,2007, doi:10.1016/j.ibiod.2007.10.001
    [10]Yang C, Liu N, Guo X M, et al. Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil[J]. FEMS Microbiol.Lett.,2006,265: 118-125.
    [11]Xu G M, Zheng W, Li Y Y. Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP[J]. Int. Biodeter.Biodegr.,2008, doi: 10.1016/j.ibiod.2007.12.001
    [12]刘新,尤民生,魏英智,等.降解毒死蜱曲霉Y的分离和降解效能测定[J].应用与环境生物报,2003,9(1):78-80.
    [13]谢慧,朱鲁生,王军,等.真菌WZ-I对有机磷杀虫剂毒死蜱的酶促降解[J].环境科学,2005, 26(6):164-168.
    [14]王晓,楚小强,虞云龙,等.毒死蜱降解菌株Bacillus latersprorus DSP的降解特性及其功能定位[J].土壤学报,2006,43(4):648-654.
    [15]王金花,朱鲁生,王军,等.3株真菌对毒死蜱的降解特性[J].应用与环境生物学报,2005,11(2):211-214.
    [16]吴祥为,花日茂,操海群,等.毒死蜱降解菌的分离鉴定与降解效能测定[J].环境科学学报,2006,26(9):1433-1439.
    [17]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.176-182.
    [18]Buchanan R E, Gibbons N E. Bergey's manual of determinative bacteriology.8th edition[M]. USA: The Williams & wilkins Company,1986.
    [19]Miller S A, Dykes D D, Polesky H F. A simple salting out procedure for extracting DNA from human nucleated cells[J]. Nucleic Acids Res,1988,16:1215.
    [20]F.奥斯伯,R.布伦特,R.E.金斯顿,等.精编分子生物学指南[M].北京:科学技术出版社,1999,36-40.
    [21]Ulton C.S.J., Higgins C.F., Sharp P.M. ERIC sequences:a novel family of repeatitive elements in the genomes of Escherichia coli, Salmonella typhi murium and other enterobacteria[J]. Mol. Microbiol,1991,5(4):825-834.
    [22]范秀容,李广武,沈萍.微生物学实验[M].北京:高等教育出版社,1988,75-78.
    [23]Versalovic J, T Koeuth and J.R. Lupski. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes[J]. Nucleic. Acids. Res.,1991,19:6823-6831.
    [24]Racke K D, Robbins S T. Factors affecting t he degradation of 3,5,6-trichloro-2-pyridinol in soil[J]. ACS Symposium Series,1991,459:93-107.
    [1]Mulbry W W, Karns J S. Parathion hydrolase specified by L he flavobacterium opd gene: relationship between the gene and protein[J]. Bacteriol,1989,171(12):6740-6746.
    [2]Home I, Sutherland T O, Harcourt R L, et al. Identification of an opd (Organophosphate degradation) gene in an A grobacterium isolate[J]. Appl.Environ. Microbiol.,2002,68 (7):3371-3376.
    [3]Cui Z L, Li S P, Fu G P. Isolation of methyl-parathion degrading strain M6 and cloning of the methyl parathion hydrolase gene[J]. Appl. Environ. Microbiol.,2001,67 (10):4922-4925.
    [4]Mulbry W W, Karns J S. Purification and characterization of three parathion hydrolases from Gram-negative bacterial strains[J]. Appl. Environ.Microbiol.,1989,55:289.
    [5]Ohshiro K, Ono T, HoshinoT, et al. Characterization of isofenphos hydrolases from Arthrobacter sp. strain B-5[J]. Ferment Bioeng.,1997,83:238-245.
    [6]Home I, Harcourt R I, Sutherland T D, et al. Isolation of a Pseudomona monteilli strain with an ovel phosphotresterase[J]. FEMS Microbiol. Lett.,2002,206(1):51-55.
    [7]柏文琴,何凤琴,邱星辉.有机磷农药生物降解研究进展[J].应用与环境生物学报,2004,10(5):675-680.
    [8]Elashvili I, Defrankr J J, Culotta V C. PhnE and g1pT gene chance utilization of organophoshates in Escherichia coli K12[J]. Appl. Environ. Microbiol.,1998,67 (7):2601-2608.
    [9]Sethunathan N and Yoshida T. A Flavobacterium sp. that degrades diazinon and parathion[J]. Can. J. Microbiol.,1973,19:873-875.
    [10]Serdar C M and Gibson D T, Munnecke D M. Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta[J]. Appl. Environ. Microbiol.,1982,44:246-249.
    [11]Home I, Sutherland T D, Harcourt R L. Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate[J]. Appl. Environ. Microbiol.,2002,68:3371-3376.
    [12]Somara S, Manavathi B, Tebbe C. Localisation of identical organophosphorus pesticide degrading (opd) genes on genetically dissimilar indigenous plasmids of soil bacteria:PCR amplification, cloning and sequencing of the god gene from Flavobacterium balustinum [J]. Indian J. Exp. Biol., 2002,40:774-779.
    [13]Dayananda S and Syed K. Transposon-Like organization of the plasmid-Borne organophosphate degradation (opd) gene cluster found in Flavobacterium sp.[J]. Appl. Environ. Microbial.,2003, 69(5):2533-2539.
    [14]Cui Z L, Li S P, Fu G P. Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene[J]. Appl. Environ. Microbiol.,2001,67:4922-4925.
    [15]刘智,洪青,徐剑宏,等.甲基对硫磷水解酶基因的克隆与融合表达[J].遗传学报,2003,30:1020-1026.
    [16]Zhang R F, Cui Z L, Jiang J D. Diversity of organophosphorus pesticide-degrading bacteria in a polluted soil and conservation of their organophosphorus hydrolase genes[J]. Can. J. Microbiol., 2005,51(4):337-343.
    [17]Zhang Z H, Hong Q, Xu J H. Isolation of fenitrothion-degrading strain Burkholderia sp. FDS-1 and cloningof mpd gene[J]. Biodegradation,2006,17:275-283.
    [18]楚晓娜,张先恩,陈亚丽,等.假单胞菌甲基对硫磷水解酶性质的初步研究[J].微生物学报,2003,43(4):453-459.
    [19]Joseph S and David W R. Molecular cloning:a laboratory manual[M],3nd. New York:Cold Spring Harbor Laboratory Press,2002.93-96.
    [20]F奥斯伯,R布伦特,RE金斯顿,等.精编分子生物学实验指南[M].北京:科学出版社,1998,39:333-364.
    [21]Inoue H, et al. High efficiency transformation of Escherichia coli with plasmids[J]. Gene,1990, 96(1):23-28.
    [22]Thompson J D, Gibson T J, Plewniak F. The ClustalX windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic. Acids. Research.,1997,24: 4876-4882.
    [23]Top E M and Springael D. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds[J]. Current Opinion in Biotecnology,2003,14:262-269.
    [24]Zhang R F, Cui Z L, Zhang X Z. Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer[J]. Biodegradation,2006,17(5):465-472.
    [1]Dong Y J, Bartlam M, Sun L. Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3[J]. Mol. Biol.,2005,353:655-663.
    [2]Cui Z L, Li S P, Fu G P. Isolation of methyl-parathion degrading strain M6 and cloning of the methyl parathion hydrolase gene[J]. Appl. Environ. Microbiol.,2001,67(10):4922-4925.
    [3]Leung D W, Chen E, Goeddel D V. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction[J]. Technique.,1989,1:11-15.
    [4]汪家政,范明.蛋白质技术手册[M].第一版.北京:科学出版社,2000,23-25.
    [5]Cho C M H, Mulchandani A, Chen W. Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifosn[J]. Appl. Environ. Microbiol.,2004,70: 4681-4685.
    [6](美)J.沙姆布鲁,E.F.弗里奇.分子克隆实验指南[M].北京:科学出版社,1995.
    [7]吴旭平.邻单胞菌M6甲基对硫磷水解酶催化特性的研究[D].南京农业大学硕士学位论文,2005.
    [8]夏炳乐,彭敦耕,唐亮,等.氰根与烟草过氧化物酶作用的傅里叶变换红外光谱研究[J].分析化学,2005,33(1):93-96.
    [9]张宏康.超高压对生物大分子的影响研究[D].中国农业大学博士学位论文,2001.
    [10]洪法水,王玲,吴康,等.pb2+对胰蛋白酶活性影响的作用机理研究[J].无机化学学报,2003,2(19):129-132.
    [11]Kumio Y, Yoko O, Kenji S, et al. Improvement in thermostability and psychrophilicity of psychrophilic alanine racemase by site-directed mutagenesis[J]. Journal of Molecular Catalysis B: Enzymatic,2003,23:389-395.
    [12]Yutaka Y&Keiko K. Identification of a glutamine residue essential for catalytic activity of aspergilloglutamic peptidase by site-directed mutagenesis[J]. FEBS Letters,2004,569:161-164.
    [13]由德林,曲红,陈强,等.次黄嘌呤-鸟嘌呤磷酸核糖转移酶突变体的基因构建、表达和性质[J].生物化学与生物物理学报,2003,9:853-858.
    [14]Kunishige K & Katsuyuki T. Alteration of substrate specificity of leucine dehydrogenase by site-directed mutagenesis[J]. Journal of Molecular Catalysis B:Enzymatic,2003,23:299-309.
    [15]Akashi O, Akihiro I, Masahiro M, et al. Mutual conversion of substrate specificities of Thermoactinomyces vulgaris R-47 a-amylases TVAⅠ and TVAⅡ by site-directed mutagenesis[J]. Carbohydrate Research,2003,338:1553-1558.
    [16]周杨晟,黄鹤,李士云,等.定点突变提高青梅素G酰化酶的稳定性[J].生物化学与生物物理学报,2000,32(6):581-585.
    [17]Jeremiah B, Frueauf, Miguel A, et al. Alteration of inhibitor selectivity by site-directed mutagenesis of Arg294 in the ADP-glucose pyrophosphorylase from Anabaena PCC 7120[J]. Archives of Biochemistry and Biophysics,2002,400:208-214.
    [18]Hiroyuki A, Andrey G, Ljudmila K, et al. Conversion of cofactor specificities of alanine dehydrogenases by sitedirected mutagenesis[J]. Journal of Molecular Catalysis B:Enzymatic, 2004,30:173-176.
    [19]陆健,曹钰,陈坚,等.运用定点突变提高重组木聚糖酶在毕赤氏酵母中的表达[J].微生物学报,2002,4:425-430.
    [20]Yue S, Huimin Y, Xudong S, et al. Cloning of the nitrile hydratase gene from Nocardia sp. in Escherichia coli and Pichia pastoris and its Functional Expression using Site-directed Mutagenesis[J]. Enzyme and Microbial Technology,2004,35:557-562.
    [21]Shinkyo R, Sakaki T, Takita T, et al. Generation of 2,3,7,8-TCDD-metabolizing enzyme by modifying rat CYP1A1 through site-directed mutagenesis[J]. Biochemical and Biophysical Research Communications,2003,308:511-517.
    [22]Perona J J & Craik C S. Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold[J]. J Biol Chem,1997,272:29987-29990
    [1]Whitney K D, Seidler F L, Slotkin T A. Developmental neurotoxicity of chlorpyrifos:cellular mechanism[J]. Toxicology and Applied Pharmacology,1995,134(1):53-62.
    [2]Papmond D G M, Alexander M. Microbial metabolism and cometabolism of nitrophenol[J]. Pestic Biochem Physiol,1971,1:123-130.
    [3]Rubin H E, Alexander M. Effect of nutrients on the rates of mineralization of trace concentration of phenol and P-nitrophenol[J]. Environ Sci Techol,1983,17:104-107.
    [4]Tseou L, Sharma A. Degradation of methyl parathion by a mixed bacterial culture and a bacillus sp. isolation from different soils[J]. J Agric Food Chem,1989,37:1514-1518.
    [5]Miles J R W, Tu C M, Harris C R. Persistence of eight organo-phosphorus insecticides in sterile and non-sterile mineral and organic soils [J]. Bull Environm Contam Toxicol,1979,22:312-318.
    [6]黄素芳,朱育菁,林抗美,等.毒死蜱在蕹菜及土壤中的残留和消解动态研究[J].农业环境科学学报,2006,25(增刊):269-271.
    [7]汪立刚,蒋新,颜冬云,等.土壤中残留毒死蜱的作物效应[J].环境科学,2006,27(2):366-270.
    [8]郑世英.农药对农田土壤生态及农产品质量的影响[J].石河子大学学报:自然科学版,2002,6(3):255-258.
    [9]袁玉伟,王静,叶志华.菠菜对土壤中毒死蜱残留的吸收研究[J].生态环境,2007,16(4):1098-1102.
    [10]吴慧明,朱国念.毒死蜱在灭菌和未灭菌土壤中的降解研究[J].农药学学报,2003,5(4):65-69.
    [11]Racke K D. Environmental fate of chlorpyrifos [J]. Rev. Eniron. Contam. Toicol.,1993,131:1-154.
    [12]曹启民,王华,郑良永,等.污染土壤的微生物修复机理及研究进展[J].华南热带农业大学学报,2006,12(1):29-32.
    [13]Gundi V A, Reddy B R. Degradation of monocrotophos in soils[J]. Chemosphere,2006,62: 396-403.
    [14]Middeldorp P J M, Briglia M, Salkinoja-Salonen M S. Biodegradation of pentachloropenol in natural polluted soil by inoculated Rhodococcus chlorophenolicus[J]. Microbiol Ecol,1990,20: 123-139.
    [15]Park H S, Lim S J, Chang Y K. Degradation of chloroni-trobenzenes by a coculture of Pseudomonas putida and a Rhodococcus sp.[J]. Appl Environ Microbiol,1999,65(3):1083-1091.
    [16]Funk S B, Roberts D J, Crawford D L. Initial phase optimization for bioremediation of munition compound contaminated soil[J]. Appl Environ Microbiol,1993,59(7):2171-2177.
    [17]郑和辉,叶常明.甲草胺和丁草胺等除草剂在多介质环境中环境行为综述[J].环境科学进展,1999,7:1-10.
    [18]朱九生,乔雄梧,王静,等.乙草胺在土壤环境中的降解及其影响因子的研究[J].农业环境科学学报,2004,23(5):1025-1029.
    [19]朱九生,乔雄梧,王静,等.微生物及环境因子对土壤中乙草胺持效性的影响[J].农药学学报,2004,6(4):67-72.
    [20]王海珍,徐建民,谢正苗,等.土壤环境中除草剂甲磺隆降解的研究I.土壤性质的影响[J].应用生态学报,2003,14(1):79-84.
    [21]施海萍,陈謇,叶建人.毒死蜱农药在蔬菜中的残留研究与控制对策[J].检测分析,2005,3:47-48.
    [22]林维宣.各国食品中农药兽药残留限量规定[M].大连:大连海事大学出版社,2002.
    [23]GB 2763-2005食品中农药最大残留限量[s].北京:中国标准出版社,2005.
    [24]陈振德,陈雪辉,冯明祥,等.毒死蜱在菠菜中的残留动态研究[J].农业环境科学学报,2005,24(4):728-731.
    [25]周世萍,段昌群,余泽芬,等.毒死蜱在大棚西芹中的残留降解动态[J].中国蔬菜,2007,7:23-25.
    [26]Fang H, Xiang Y Q, Hao Y J, et al. Fungal degradation of chlorpyrifos by Verticillium sp. DSP in pure cultures and its use in bioremediation of contaminated soil and pakchoi[J]. Int. Biodeter. Biodegr.,2007, doi:10.1016/j.ibiod.2007.10.001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700