二次包络少齿差行星齿轮传动啮合特性及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
少齿差行星齿轮传动特别是摆线针轮行星传动由于具有传动比大、结构紧凑、体积小、重量轻、传动效率高和承载能力大等优点,已经在冶金机械、起重运输机械、工程机械、化工机械和纺织机械等动力传动领域得到了广泛的应用。同时由于其多齿啮合的特点使误差均化效应明显有利于提高传动精度,近年来也越来越广泛地应用于精密传动领域。为了适应各工业领域的发展对齿轮传动高定位精度和低振动水平的要求,国内外研究学者也越来越多地关注齿轮动力学的研究。二次包络少齿差行星齿轮传动是根据齿轮传动中的二次接触现象,利用二次包络方法形成的一种新型行星齿轮传动。二次包络共轭啮合副的主要特点是双线接触且具有优良的啮合特性。系统深入地对二次包络少齿差行星齿轮传动的啮合特性和动力学性能进行研究,对于开发设计具有高效率、高精度和低振动等高性能的新型行星齿轮传动形式,具有重要的理论意义和工程实用价值。
     本文主要针对二次包络少齿差行星齿轮传动的共轭啮合副、啮合特性、动力学理论分析和动力学测试等方面进行了研究。主要内容如下:
     (1)根据微分几何和齿轮啮合原理,对二次包络摆线行星传动共轭啮合副的啮合特性进行了详细研究;针对第二条接触线具有优良啮合特性和双线接触对制造安装误差敏感的特点,提出了不完全摆线二次包络共轭啮合副,推导了其啮合方程和齿廓方程,对其啮合特性进行了分析;将不完全摆线二次包络啮合副、二次包络摆线啮合副和普通摆线啮合副的齿廓组成特点、接触线和诱导法曲率进行了对比分析,结果表明二次包络啮合副比普通啮合副具有更加优良的接触特性,其中不完全摆线二次包络啮合副略优于二次包络摆线啮合副;提出了抛物型二次包络共轭啮合副,给出了啮合方程和齿廓方程。
     (2)对二次包络少齿差行星齿轮传动进行结构创新设计,完成4台套物理样机的试制;选取一台两级封闭式二次包络摆线行星传动样机作为研究对象,分析了其结构特点、啮合副特点和各构件的运动关系,根据行星齿轮传动调制模型,计算了两级传动的啮合频率和边带频率。
     (3)对二次包络少齿差行星齿轮传动进行动力学理论分析:根据赫兹接触理论建立了二次包络摆线共轭啮合副的刚度计算模型,推导了法向刚度、力臂和扭转刚度的计算公式;计算了试验样机中二次包络摆线啮合副的轮齿扭转啮合刚度,并与普通摆线针轮行星传动进行了对比,结果表明二次包络啮合副的啮合刚度具有较大的波动值,但平均值也较大;利用集中参数法建立了试验样机五自由度扭转振动模型,推导了动力学方程,计算了自由振动下的固有频率和模态,以时变啮合刚度变化激励,用龙格-库塔法对动力学方程进行了求解,分析了样机中各构件的扭转振动,将求解出来的样机固有频率与各构件的扭转振动与采用普通摆线针轮行星传动的情况进行了对比,结果表明两种情况固有频率和模态基本相同,采用二次包络摆线啮合副的样机具有更小的振动。
     (4)针对二次包络少齿差行星齿轮传动研究样机,搭建了动力学测试试验台对样机进行了试验研究,主要包括模态测试、平移振动测试、输出端盘扭转振动测试;对试验中观察到的调制现象进行了分析,并与理论结果进行了对比,试验测试结果与理论分析结果取得了较好的一致性;对输出端盘扭转振动的试验数据进行了分析,结果表明第一级齿轮传动的啮合振动在整机振动中起主要作用。
Planetary gear drive with small tooth number difference has been used widely inmany industrial areas for power transmission, such as metallurgical machinery, hoistingand conveying machinery, construction machinery, chemical machinery and textilemachinery, etc., due to its superior characteristics: large transmission ratio, compactstructure, small size, light weight, high transmission efficiency and high load capacity,etc.. In recent years, it has been also used more and more widely in precisiontransmission because of its outstanding averaging effect of errors which can lead to highprecision caused by the multi-tooth meshing. In order to meet the requirement of thehigh precision and the low vibration for the gear transmission because of thedevelopment of the industrial areas, the researchers home and abroad have paid moreand more attention to the dynamic analysis of the gear transmission. Thedouble-enveloping cycloid drive with small tooth number difference is a new type ofplanetary gear drvie which is generated by the double-enveloping method based on thesecondary action phenomenon. The main characteristics of the double-envelopingconjugated tooth pair are the double contact lines simultaneously in a certain meshingarea and the good meshing characteristics. The deep and systematical research on themeshing characteristics and the dynamic behavior of the double-enveloping planetarygear drive with small tooth number difference has the theoretical significance andengineering practice value for the development and the design of the new type of hightransmission performance planetary gear drive with high effiency, high precision andlow vibration, etc..
     In this paper, the research is mainly on the conjugated surfaces, the meshingcharacteristics, the theoretical dynamic analysis and the experimental research about thedouble-enveloping planetary gear drive with small tooth number difference. The maincontents are as the following:
     (1) Based on the differential geometry and gear geometry theory, the meshcharacteristics of the double-enveloping cycloid drive are studied; the incompletedouble-enveloping cycloid drive is proposed according to the superior characteristics ofthe second contact line and the sensitivity to the errors of the double contact lines, theequations of the meshing and the tooth profiles for the incomplete cycloid drive arederived, the meshing characteristics are calculated; the characteristics of the tooth profiles, the contact lines and the induced normal curvature among the incompletedouble-enveloping cycloid drive, the double-enveloping ccycloid drive and theconventional cycloid drive are compared with each other, the results show that thedouble-enveloping conjugated tooth pair has superior characteristics than theconventional conjugated tooth pair, and the meshing characteristics of the incompletedouble-enveloping cycloid drive is a little better than that of the double-envelopingcycloid drive; the parabolic type double-enveloping conjugated tooth pair is proposedand the equations of its meshing and tooth profiles are presented.
     (2) The structure of the double-enveloping planetary gear drive with small toothnumber difference is creatively designed,4physical prototypes are designed andmanufactured; a physical prototype with two stages of which the second stage is thedouble-enveloping cycloid drive, is selected as the research object, the characteristics ofits structure, conjugated surfaces and the relationship among the components areanalyzed, based on the model of the sideband frequency calculation the meshingfrequencies for the two stages and the sideband frequencies are calculated.
     (3) The dynamic behavior of the double-enveloping planetary gear drive with smalltooth number difference is theoretically analyzed: based on the Hertz theory, the meshstiffness calculation model of the double-enveloping cycloid conjugated tooth pair isestablished, the calculation formulas of the normal stiffness, the arm length and thetorsional stiffness are derived; the meshing stiffness of the double-envelopingconjugated tooth pair for the prototype is calculated compared with that of theconventional cycloid drive, and the comparison results show that the meshing stiffnessof the double-enveloping cycloid tooth pair has both larger average value and largerfluctuation value than that of the conventional cycloid drive; based on the lumpedparameter method, the rotation vibration model with five freedoms for the physicalprototype is established and the motion equations are derived, the natural frequenciesand the modes of the free vibration are calculated, the motion equations are solved usingRunge-Kuta method under that he variation mesh stiffness is considered as the internalexcitation, the rotation vibrations of the different parts of the physical prototype areanalyzed, the natural frequencies and the vibrations are compared with that of theconventional cycloid drive, the comparision results show that the natural frequecnciesand the vibrations of the two types of cycloid drive are almost the same, and the rotationvibration of the double-enveloping cycloid drive are smaller than that of theconventional cycloid drive.
     (4) The experiment test rig is put up for the dynamic analysis of thedouble-enveloping planetary gear drive: firstly, based on the test principle, the generalscheme is designed; secondly, the types and the detail parameters of the motor, loaddevice and the test instrument are determined; then the equipments for the test aredesigned, such as cradle and the connection couplings; finally, the experiment test rig isinstalled and adjusted.
     (5) The experiment test rig is put up for the dynamic experimental research on thedouble-enveloping planetary gear drive with small tooth number difference, and thedynamic tests on the prototype are carried out including modal test, translationalvibration test and rotation vibration test of the output plate; the phenomenon of themodulation sidebands is analyzed and compared with the theoretical calculation results,the comparision results show that the experimental results and the theoretical resultshave good agreement;the experiment data of the output plate rotation vibration isanalyzed and the results show that the gear mesh vibration of the first stage of theprototype is the main source of the whole gear reducer vibration.
引文
[1]饶振纲.行星传动机构设计[M].第2版.上海:国防工业出版社,1994.
    [2]齿轮手册编委会编.齿轮手册[M].第2版.北京:机械工业出版社,2000.
    [3]现代机械传动手册编辑委员会编.现代机械传动手册[M].第2版.北京:机械工业出版社,2002.
    [4]朱孝录主编.齿轮传动设计手册[M].第2版.北京:化学工业出版社,2010.
    [5]张展主编.实用齿轮设计计算手册[M].第1版.北京:机械工业出版社,2010.
    [6] F.L.Litvin, P.H.Feng. Computerized design and generation of cycloidal gearings [J].Mechanism and Machine Theory,1996,31(7):891-911.
    [7] F.L.Litvin, A.M.Egelja, M.D.Donno. Computerized determination of singularities andenvelopes to families of contact lines on gear tooth surfaces [J]. Computer Methods inApplied Mechanics and Engineering,1998,158:23-24.
    [8] T.S.Lai. Design and machining of the epicycloid planet gear of cycloid drives[J]. InternationalJournal of Advanced Manufacturing Technology,2006,28:665-670.
    [9] T.S.Lai. Geometric design of roller drives with cylindrical meshing elements[J]. Mechanismand Machine Theory,2005,40:55-67.
    [10] T.S.Lai. Geometric design of a pinion with two circularly arrayed conical teeth for rollerdrives [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal ofMechanical Engineering Science,2006,220(9):1405-1402.
    [11] C.Gorla, P.Davoli, F.Rosa, et al.. Theoretical and Experimental analysis of a Cycloid SpeedReducer[J]. Journal of Mechanical Design,2008,130(11):1126041-1126048.
    [12]李力行,洪淳赫.摆线针轮行星传动中摆线轮齿形通用方程式的研究[J].大连铁道学院学报,1992,13(1):167-173.
    [13]万朝燕,兆文忠,李力行.二齿差摆线针轮减速器针齿壳内曲线参数优化[J].机械工程学报,2003,39(6):124-127+134.
    [14]何卫东,李力行,李欣.机器人用高精度RV减速器中摆线轮的优化新齿形[J].机械工程学报,2000,36(3):51-55.
    [15]何卫东,李欣,李力行.双曲柄环板式针摆行星传动的研究[J].机械工程学报,2000,36(5):84-88.
    [16] S.Li. Contact problem and numeric method of a planetary drive with small teeth numberdifference[J]. Mechanism and Machine Theory,2008,43:1065-1086.
    [17] S.Li. Gear contact model and loaded tooth contact analysis of a three-dimensional,thin-rimmed gear[J]. Journal of Mechanical Design,2002,124(3):511-517.
    [18] S.Li. Finite element analyses for contact strength and bending strength of a pair of spur gearswith machining errors, assembly errors and tooth modifications[J]. Mechanism and MachineTheory,2007,42(1):88-114.
    [19] E.Chen, D.Walton. The optimum design of K-H-V planetary gears with small toothdifferences[J]. Int. J. Mach. Tools Manufact,1990,30(1):99-109.
    [20] S.K.Malhotra, M.A.Parameswaran. Analysis of a cycloid speed reducer[J]. Mechanism andMachine Theory,1983,18(6):491-499.
    [21] Y.K.Taldenko. Mathematical model of planetary roller-tooth reduction gears[J]. Chemical andPetroleum Engineering,1994,30(3-4):145-153.
    [22] K.B.Sheu, C.W.Chien, S.T.Chiou, et al.. Kinetostatic analysis of a roller drive[J]. Mechanismand Machine Theory,2004,39:819-837.
    [23] Y.W.Hwang, C.F.Hsieh. Geometric design using hypotrochoid and nonundercuttingconditions for an internal cycloidal gear[J]. Journal of Mechanical Design,2007,129(4):413-420.
    [24] Y.W. Hwang, C.F. Hsieh. Determination of surface singularities of a cycloidal gear drive withinner meshing[J]. Mathematical and Computer Modelling,2007,45:340-354.
    [25] B.K.Chen, T.T.Fang, C.Y.Li, et al.. Gear geometry of cycloid drives[J]. Science inChina-Series E: Technological Science,2008,51(5):598-610.
    [26]房婷婷.摆线包络行星传动啮合理论研究[D].重庆:重庆大学,2007.
    [27] M.Neagoe, D.Diaconesu, C.Jaliu, et al.. On a New Cycloidal Planetary Gear used to FitMechatronic System of RES[C].11th International Conference on Optimization of Electricaland Electronic Equipment. Brasov Romania.2008. Piscataway United States: Inst. of Elec.and Elec. Eng. Computer Society,2008,439-448.
    [28] F.T.Jorgensen, T.O.Andersen, P.O.Rasmussen. The cycloid permanent magnetic gear[J]. IEEETransactions on Industry Application,2008,44(6):1659-1665.
    [29] C.Zhu, M.Liu, X.Du, et al.. Analysis on Transmission Characteristics of New Axis-fixedCycloid Gear[J]. Advanced Materials Research,2010,97-101:60-63.
    [30]林菁,张钰.摆线针轮传动输出转角滞后分析[J].东北大学学报,1996,17(1):110-113.
    [31]林菁,王启义.活齿双摆线行星传动齿廓参数方程及几何特性[J].东北大学学报,1998,19(6):588-590.
    [32] M.Blagojevic, N.Marjanovic, Z.Djordjevic, et al.. A new design of a two-stage cycloidalspeed reducer [J]. Journal of Mechanical Design,2011,133:085001.1-085001.7.
    [33] I.Gu. Design of antibacklash pin-gearing[J]. KSME International Journal,1977,11(6):611-619.
    [34] H.Terada. The development of gearless reducers with rolling balls[J]. Journal of MechanicalScience and Technology,2010,24:189-195.
    [35] V.M.Ryazantsev. Gear pump containing elements with cycloidal profile[J]. Chemical andPetroleum Engineering,1994,30(2):65-68.
    [36]徐学忠.摆线齿轮泵啮合特性分析.液压与气动,2004,10:46-48.
    [37]徐义华,陈为国,韩守磊.摆线泵内转子理论型线参数方程及内外转子的建模.机床与液压,2008,36(1):106-107,187.
    [38]宋如钢,张宝欢,杨延相.新型摆线转子泵啮合特性的研究[J].粉末冶金技术,2007,25(2):100-103.
    [39]关天民,雷蕾,孙英时等. FA新型摆线针轮行星传动装置的反求设计.中国机械工程,2003,13(1):68-71.
    [40]关天民,张东生,雷蕾. FA新型摆线针轮行星传动受力分析方法与齿面接触状态有限元分析.机械设计,2005,22(3):31-34.
    [41]喻洪流.摆线减速器轮齿啮合的数学模型及求解.机械设计,2004,21(3):14-16.
    [42] P.Nagabhusan, M.Mass. Adjustable cycloidal speed reducer[P]. United States,637784,1991.1.7.
    [43] K.S.Jeong, D.G.Lee. Development of the composite flexspline for a cycloid-type harmonicdrive using net shape manufacturing method[J]. Composite Structure,1995,32:557-565.
    [44]董向阳,邓建一,陈建平. RV传动机构的受力分析[J].上海交通大学学报,1996,30(5):65-70,84.
    [45]魏延刚.新结构高轮齿接触率RV传动装置的理论研究[J].大连交通大学学报,2007,28(1):22-27.
    [46] J.D.Smith. Gear Noise and Vibration[M]. Second Edition. New York: Marcel Dekker Inc,2004.
    [47] P.D.McFadden, J.D.Smith. An explanation for the asymmetry of the modulation sidebandsabout the tooth meshing frequency in epicyclic gear vibration[J]. Proc Instn Mech Engrs,1985,199(C1):65-70.
    [48] T.Eritenel, R.G.Parker. Vibration modes of helical planetary gears[C]. Proceedings of theASME International Design Engineering Technical Conferences and Computers andInformation in Engineering Conference. San Diego CA United states.2009. New York UnitedStates: American Society of Mechanical Engineers,2010,167-176.
    [49] C.G.Cooley, R.G.Parker, S.M.Vijayakar. A frequency domain finite element approach forthree-dimensional gear dynamics[C]. Proceedings of the ASME International DesignEngineering Technical Conferences and Computers and Information in EngineeringConference. San Diego CA United states.2009. New York United States: American Society ofMechanical Engineers,2010,205-215.
    [50] Y.Guo, R.G.Parker. Dynamic modeling and analysis of a planetary gear involving toothwedging and bearing clearance nonlinearity[C]. Proceedings of the ASME InternationalDesign Engineering Technical Conferences and Computers and Information in EngineeringConference. San Diego CA United states.2009. New York United States: American Society ofMechanical Engineers,2010,217-231.
    [51] Y.Guo, R.G.Parker. Purely rotational model and vibration modes of compound planetarygears[J]. Mechanism and Machine Theory,2010,45:365-367.
    [52] M.Inalpolat, A.Kahraman. A theoretical and experimental investigation of modulationsidebands of planetary gear sets[J]. Journal of Sound and Vibration,2010,323:677-696.
    [53] M.Inalpolat, A.Kahraman. A dynamic model to predict modulation sidebands of a planetarygear set having manufacturing errors[J]. Journal of Sound and Vibration,2010,329:371-393.
    [54] T.Eritenel. Three-dimensional nonlinear dynamics and vibration reduction of gear pairs andplanetary gears[D]. Ohio: The Ohio State University,2011.
    [55] J.Wang, T.C.Lim. Dynamics of a hypoid gear pair considering the effects of time-varyingmesh parameters and backlash nonlinearity[J]. Journal of Sound and Vibration,2007,308(1-2):302-329.
    [56] J.Wang, T.C.Lim. Effect of tooth mesh stiffness asymmetric nonlinearity for drive and coastsides on hypoid gear dynamics[J]. Journal of Sound and Vibration,2009,319(3-5):885-903.
    [57] J.Wang, D.Qin, T.C.Lim. Influence of combined assembly error and bearing elasticity on spurgear tooth contact load distribution[J]. Proceedings of the Institution of Mechanical Engineers,Part C: Journal of Mechanical Engineering Science,2011,225(6):1507-1521.
    [58] K.Umezawa, T.Suzuki, H.Houjoh, et al.. Vibration of Power Transmission Helical Gears (Theeffect of contact ratio on the vibration)[J]. Bulletin of JSME,1985,28(238):694-700.
    [59] K.Umezawa, T.Suzuki, T.Sato. Vibration of Power Transmission Helical Gears (ApproximateEquation of Tooth Stiffness)[J]. Bulletin of JSME,1986,29(251):1605-1611.
    [60] K.Umezawa, T.Suzuki, H.Houjoh. Estimation of vibration of power transmission helical gearsby means of performance diagrams on vibration[J]. JSME International Journal,1988,31(3):598-605.
    [61] T.Suzuki, K.Umezawa, H.Houjoh, et al.. Influence of misalignment on vibration of helicalgear[J].日本机械学会论文集(C编),1994,52(477):1595-1600.
    [62] Y.Ogawa, S.Matsumura, H.Houjoh, et al.. Rotation Vibration of a Spur Gear pair ConsideringTooth Helix Deviation[J]. JSME International Journal Series C,2000,43(2):423-431.
    [63] C.Ratanasumawong, S.Matsumura, H.Houjoh. Inspection of Toooth Surface Geometry byMeans of Vibration Measurement[J]. JSME International Journal Series C,2005,48(4):704-714.
    [64] C.Ratanasumawong. A study for estimating gear tooth surface geometry by means ofvibration measurement[D]. Tokyo: Tokyo Institute of Technology,2005.
    [65] H.Houjoh, C.Ratanasumawong, S.Matsumura. Utilization of synchronous averaging forinspection of tooth surface undulations on gears (localization of nonmesh harmoniccomponents to individual gear)[J]. Journal of Applied Mechanics Transcation,2007,74(2):269-278.
    [66] C.Ratanasumawong, S.Matsumura, T. etsuo, et al.. Estimating gear tooth surface geometry bymeans of the vibration measurement: Distinction of the vibration characteristics of gears withtooth surface form errorInspection of Toooth Surface Geometry by Means of VibrationMeasurement[J]. Journal of Mechanical Design,2009,131(10):1010031-1010039.
    [67] T.Nagumo, S.Matsumura, C.Ratanasumawong, et al.. Dynamic characterization ofasymmetrical sidebands of mesh frequency[C]. Proceedings of MPT2009-Sendai JSMEInternational Conference on Motion and Power Transmissions. Matsyshima Isles Resort Japan.2009. Tokyo Japan: The Japan Society of Mechanical Engineers,2009,227-232.
    [68] S.Matsumura, H.Houjoh, C.Ratanasumawong, et al.. Characterization of mesh excitationforce waveform with vibration measurement on power transmission case[C]. Proceedings ofMPT2009-Sendai JSME International Conference on Motion and Power Transmissions.Matsyshima Isles Resort Japan.2009. Tokyo Japan: The Japan Society of MechanicalEngineers,2009,233-236.
    [69] K.Morikawa, A.Mori, R.Nishihara. Dynamic vibration analysis of helical gear system[C].Proceedings of MPT2001-Fukuoka JSME International Conference on Motion and PowerTransmissions. Fukuoka Japan.2001. Tokyo Japan: The Japan Society of MechanicalEngineers,2001,115-120.
    [70] Y.Nakura, K.Morikawa, K.Kumagai, et al.. Estimated method of the planetary-gear noise forthe automatic transmission[C]. Proceedings of MPT2009-Sendai JSME InternationalConference on Motion and Power Transmissions. Matsyshima Isles Resort Japan.2009.Tokyo Japan: The Japan Society of Mechanical Engineers,2009,288-293.
    [71] K.Kumagai, Y.Nakura, K.Morikawa, et al.. Transmission error prediction method of planetarygears taking account of alignment error[C]. Proceedings of MPT2009-Sendai JSMEInternational Conference on Motion and Power Transmissions. Matsyshima Isles Resort Japan.2009. Tokyo Japan: The Japan Society of Mechanical Engineers,2009,294-299.
    [72]秦大同,邢子坤,王建宏.基于动力学和可靠性的风力发电齿轮传动系统参数优化设计[J].机械工程学报,2008,44(7):24-31.
    [73]秦大同,肖正明,王建宏.基于啮合相位分析的盾构机减速器多级行星齿轮传动动力学特性[J].机械工程学报,2011,47(23):20-29.
    [74] Z.Zhou, D.Qin, J.Yang, et al.. Study on dynamic characteristics of wind turbine planetary gearsystem coupled with bearing at varying wind speed[C]. International Conference on PowerTransmission. Xi’an China.2011. Clausthal-Zellerfeld Germany: Trans Tech Publications,2011,653-657.
    [75] M.Mosher. Understanding vibration spectra of planetary gear systems for fault detection[C].Proceedings of DETC2003(ASME Design Engineering Technical Conferences). ChicagoIllinois USA.2003. New York United States: American Society of Mechanical Engineers,2003,645-652.
    [76] R.J.White. Exploration of a strategy for reduction gear noise in planetary transmissions andevaluation of laser vibrometry as a means for measuring transmission error[D]. Ohio: CaseWestern Reserve University,2006.
    [77] M.Henriksson, Y.Pang. Transmission error as gear noise excitation[C]. Proceedings of theASME International Design Engineering Technical Conferences and Computers andInformation in Engineering Conference. San Diego CA United states.2009. New York UnitedStates: American Society of Mechanical Engineers,2010,197-203.
    [78]李润方,王建军.齿轮系统动力学-振动冲击噪声[M].第1版.北京:科学出版社,1996.
    [79]李润方.齿轮传动的刚度分析和修形方法[M].第1版.重庆:重庆大学出版社,1998.
    [80]孙涛.行星齿轮系统非线性动力学研究[D].西安:西北工业大学,2000.
    [81] J.G.Blanche, D.C.H.Yang. Cycloid drives with machining tolerances: Part I-Kinematicanalysis[C]. Advances in Design Automation. Boston MA USA.1987. New York UnitedStates: American Society of Mechanical Engineers,1987,169-176.
    [82] D.C.H.Yang, J.G.Blanche. Cycloid drives with machining tolerances: Part II-Computer-aideddesign[C]. Advances in Design Automation. Boston MA USA.1987. New York United States:American Society of Mechanical Engineers,1987,177-186.
    [83] J.G.Blanche, D.C.H.Yang. Cycloid drives with machining tolerances[J]. Journal ofMechanism, Transmissions, and Automation in Design,1989,111(3):337-344.
    [84] D.C.H.Yang, J.G.Blanche. Design and application guidelines for cycloid drives withmachining tolerances[J]. Mechanism and Machine Theory,1990,25(5):487-501.
    [85] T.Hidaka, H.Wang, T.Ishida, et al.. Rotational transmission error of K-H-V planetary gearswith cycloid gear (1stReport, Analytical method of the rotational transmission error)[J].日本机械学会论文集(C编),1994,60(57):645-653.
    [86] T.Ishida, H.Wang, T.Hidaka, et al.. Rotational transmission error of K-H-V planetary gearswith cycloid gear (2ndReport, Effects of manufacturing and assembly errors on rotationaltransmission errors)[J].日本机械学会论文集(C编),1994,60(578):3510-3517.
    [87] H.Wang, T.Ishida, T.Hidaka, et al.. Rotational transmission error of K-H-V planetary gearswith cycloid gear (3rdReport, Mutual effects of errors of the elements on the rotationaltransmission error)[J].日本机械学会论文集(C编),1994,60(578):3518-3525.
    [88] T.Ishida, T.Yoshida, S.Li. Relationships among face width, amount of gear error, geardimension, applied torque and tooth load in cycloidal gears[J].日本机械学会论文集(C编),1998,64(623):2711-2717.
    [89] T.Ishida, M.Masahiro, S.Li. Approximate expression of equivalent thickness of thin rimcycloidal gear[R].日本山口大学工学部研究报告,1997.
    [90] H.Hashimoto, A.Kyusojen, Y.Yamada, et al.. Stress analysis of the pin wheel in K-H-Vplanetary gears[J]. Bulletin of JSME,1986,29(253):2298-2301.
    [91] S.Kobayashi, M.Ikeya, K.Matsumoto. Characteristics of lubricant flow in the planetary gearunit[J].日本机械学会论文集(C编),1988,54(508):3080-3085.
    [92] K.H.Kim, C.S.Lee, H.J.Ahn. Torsional rigidity of a two-stage cycloid drive[J]. Transactionsof the Korean Society of Mechanical Engineers,2009,33(11):1217-1224.
    [93] V.Cochran, T.Bobak. A methodolody for identifying defective cycloidal reduction componentsusing vibration analysis and techniques[C]. American Gear Manufactures Association FallTechnical Meeting. Virginia United States.2008. Virginia United States: AGMA AmericanGear Manufacturers Association,2008,8-32.
    [94] M.Blagojevic, V.Nikolic-Stanojevic, N.Marjanovic, et al.. Analysis of cycloid drive dynamicbehavior[J]. Scientific Technical Review,2009,59(1):52-56.
    [95]刘文,林腾蛟,李润方等.新型少齿差减速器动态特性分析及实验研究.振动与冲击,2009,28(7):22-27.
    [96]姚文席.摆线针轮行星减速机的传动误差分析.机械传动,1998,22(4):14-18.
    [97]韩林山,沈允文,董海军等.2K-V型传动装置制造误差对传动精度的影响[J].机械科学与技术,2007,26(9):1135-1140.
    [98]竹振旭,董海军,韩林山等.基于灵敏度分析方法的摆线针轮系统传动精度研究[J].机械科学与技术,2008,27(5):644-648.
    [99]郭海军.2K-V型摆线针轮传动的精度分析与仿真研究[D].西安:西北工业大学,2005.
    [100]徐永贤,何卫东. RV传动输出机构的刚性误差分析[J].大连铁道学院学报,1996,17(4):41-47.
    [101]李力行,何卫东,王秀琦.机器人用高精度RV传动的研究[J].大连铁道学院学报,1999,20(2):1-10.
    [102]李瑰贤,吴俊飞,李华敏.变厚齿轮RV减速器系统扭振动力学分析.机械传动,1999,23(4):20-22.
    [103]李瑰贤,吴俊飞. RV30-AII型变厚齿轮减速器试验研究.机械传动,2005,29(4):4-5,8.
    [104]严细海,张策,李充宁等. RV减速机的扭转振动的固有频率及其主要影响因素[J].机械科学与技术,2004,23(8):991-994.
    [105]王刚,张大卫,黄田等. RV减速机动力学建模方法研究[J].机械设计,1999,3:19-22.
    [106]张大卫,王刚,黄田. RV减速机动力学建模与结构参数分析[J].机械工程学报,2001,37(1):69-74.
    [107]王刚,赵黎明,王迈. RV减速机动力学建模方法研究与分析[J].中国机械工程,2002,13(19):1652-1655.
    [108]刘继岩,崔正昀,孙涛. RV减速器传动精度的研究综述[J].天津职业技术师范学院学报,1998,2:1-3,19.
    [109]刘继岩,孙涛,戚厚军. RV减速器的动力学模型与固有频率研究[J].中国机械工程,1999,10(4):381-383,386.
    [110]戚厚军,孙涛,刘继岩.2K-V型摆线针轮减速器传动系统的动态特性分析[J].中国机械工程,2004,28(2):13-15.
    [111] Y.Zhang, J.Xiao, W.He. Dynamical formulation and analysis of RV reducer[C]. InternationalConference on Engineering computation. Hongkong China.2009. Piscataway United States:IEEE Computer Society,2009,201-204.
    [112] Y.Zhang, W.He, J.Xiao. Dynamical model of RV reducer and key influence of stiffness to thenature character[C]. ICIC2010-3rdInternational Conference on Information and Computing.Wuxi China.2010. Piscataway United States: IEEE Computer Society,2010,192-195.
    [113] Y.Zhang, W.He, X.Yang. Dynamical formulation and analysis of double crank ring-plate-typepin-cycloidal gear planetary drive[J]. Advanced Materials Research,2010,97-101:60-63.
    [114] L.J.Shan, W.D.He, T.M.Guan. Analysis of nonlinear characteristics of double-crankring-plate-typed pin-cycloid gear planetary drive[C]. Advanced Materials Research. ChengduChina.2008. Clausthal-Zellerfeld German: Trans Tech Publications,2008,711-716.
    [115] B.Yang, Y.Liu, X.Zhang. Noise source identification and noise reduction of a double crankfour ring-plate-type cycloid reducer[C]. Proceedings of the9th International Conference ofChinese Transportation Professionals. Harbin China.2009. Reston United States: AmericanSociety of Civil Engineers,2009,501-506.
    [116] W.J.Xu, Y.Fu, R.Du. A power flow analysis and control methodology for cycloid gear train inprecision transmission[C]. Proceedings of the International Conference on Integration andCommercialization of Micro and Nanosystems. Sanya China.2007. New York United States:American Society of Mechanical Engineers,2007,41-46.
    [117]安子军,胡瑞雪.摆线钢球行星传动齿廓误差的参数分析[J].机械传动,2007,31(2):63-65.
    [118]安子军,张鹏,杨作梅.摆线钢球行星传动系统参数振动特性研究[J].工程力学,2012,29(3):244-251.
    [119] J.An, Y.Yi. Force analysis ans stress calculation of non-clearance cycloid balltransmissions[C]. Proceedings of2008IEEE International Conference on Mechatronics andAutomation. Takamatsu Japan.2008. Piscataway United States: Inst. Of Elec. And Elec. Eng.Computer Society,2008,1089-1093.
    [120]宋敬稳,安子军,胡瑞雪.精密钢球环槽等速传动机构运动精度及可靠性分析[J].燕山大学学报,2009,33(2):95-98.
    [121]杨天博.甚短齿行星减速机[P].中国,88213433.7,1988.09.14.
    [122]王文藻.行星减速机[P].中国,200820070557.2,2006.5.9.
    [123]王淑妍.锥形摆线行星传动基础理论及实验研究[D].重庆:重庆大学,2008.
    [124] P.O.Rasmussen, T.O.Andersen, F.T.Jrgensen, et al.. Development of a high-performancemagnetic gear[J]. IEEE Transactions on Industry Applications,2005,41(3):764-770.
    [125] F.T.Jrgensen, T.O.Andersen, P.O.Rasmussen. The cycloid permanent magnetic gear[J]. IEEETransactions on Industry Applications,2008,44(6):1659-1665.
    [126] M.Suzuki, D.Wang. Development of in-wheel type integrated motor axle unit[J]. NTNTechnical Review,2005,73:56-59.
    [127] M.Suzuki, K.Sakai, K.Okada, et al.. Development of in-wheel motor type axle unit[J]. NTNTechnical Review,2005,73:56-59.
    [128] T.Sakai, M.Maki. An Investigation on Secondary Action on Skew Gears[J]. ASME Journal ofEngineering for Industry,1974,96(1):25-32.
    [129] T.Sakai. Globoid worm gear generating method[P]. United States,808521,1980.1.22.
    [130] S.Umezono, M. Maki. Method of modified gear cutting of a globoid worm gear[P]. UnitedStates,423647,1989.10.19.
    [131]万方美,张光辉,杨洪成等.提高平面包络环面蜗杆磨削效率的近似加工方法[J].工具技术,1999,33(12):14-17.
    [132]万方美,张光辉,杨洪成等.大锥面二次包络环面蜗杆副传动的啮合特征及其应用[J].重型机械,2000,(2):8-12.
    [133]张彦钦,张光辉.平面二次包络环面蜗杆传动强度计算[J].西南交通大学学报,2011,46(1):138-142.
    [134]罗天洪,张光辉,陈小安等.平面二次包络环面蜗杆减速器智能CAD系统的研究[J].机械传动,2002,26(4):7-9+37.
    [135]张光辉,张太萍,罗文军.准平面二次包络环面蜗杆传动参数选择及优化[J].机械传动,2002,31(2):5-8+4.
    [136] L.V.Mohan, M.S.Shunmugam. Geometrical aspects of double enveloping worm gear drive[J].Mechanism and Machine Theory,2009,44:2053-2065.
    [137] W.Shi, D.Qin, W.Xu. Meshing control of the double-enveloping hourglass worm gearingunder the conditions of existing the errors and the load[J]. Mechanism and Machine Theory,2004,39:61-74.
    [138]陈志新.共轭曲面原理及其应用[M].第1版.北京:中国科学技术出版社,2008.
    [139]吴序堂.齿轮啮合原理[M].第2版.西安:西安交通大学出版社,2009.
    [140]朱恒生.摆线点(圆)齿啮合原理及其应用[J].大连铁道学院学报,1980,1:1-11.
    [141]朱恒生.平面啮合计算的新方法-点齿代换法[J].大连铁道学院学报,1980,1:12-22.
    [142] H.S.Zhu. Study for Double-Enveloping of Trochoidal Gears[J]. Journal of Dalian RailwayInstitute,1986,3:49-56.
    [143]乔明,乔丹文.内啮合齿轮油泵廓线的二次包络设计方法[J].机械科学与技术,2000,19(3):407-408.
    [144] D.Vecchiato, A.Demenego, J.Argyris, et al.. Geometry of a cycloid pump[J]. ComputerMethods in Applied Mechanics and Engineering,2001,190:2309-2330.
    [145] A.Demenego, D.Vecchiato, F.L.Litvin. Design and simulation of meshing of a cycloidalpump[J]. Mechanism and Machine Theory,2002,37:311-332.
    [146]陈兵奎.二次包络摆线行星传动装置[P].中国,200610054263.6,2006.10.11.
    [147] F.L.Litvin, A.Fuentes. Gear Geometry and Applied Theory[M]. Second Edition. Cambridge:Cambridge University Press,2004.
    [148]吴大任,骆家舜.齿轮啮合理论[M].第1版.北京,科学出版社,1985.
    [149]李瑰贤.空间几何建模及工程应用[M].第1版.北京:高等教育出版社,2007.
    [150]梅向明,黄敬之.微分几何[M].第2版.北京,高等教育出版社,1988.
    [151]苏步青,华宣积,忻元龙.实用微分几何引论[M].第1版.北京:科学出版社,2010.
    [152]张光辉,王朝晋.活动标架的应用及对Baxter诱导法曲率公式的改进.重庆大学学报,1983,2:1-12.
    [153]张晓蓉,陆波,冯代辉等.平行轴斜齿轮诱导法曲率计算.现代制造工程,2008,4:107-110.
    [154]骆家舜.共轭齿面的界限点[J].应用数学学报,1981,4(2):117-125.
    [155]崔建昆.平行曲柄输入式少齿差行星齿轮传动[J].机械,1996,23(1):37-38+48.
    [156]徐业宜主编.机械系统动力学[M].第1版.北京:机械工业出版社,1990.
    [157]许本文,焦群英.机械振动分析与模态分析基础[M].第1版.北京:机械工业出版社,1998:177-233.
    [158]黄文梅,熊桂林,杨勇.信号分析与处理-MATLAB语言及应用[M].第1版.长沙:国防科技大学出版社,2000:1-95.
    [159] V.Wowk. Machinery Vibration Measurement and Analysis[M]. First Edition. New York:McGraw-Hill,1991.
    [160]秦树人.齿轮传动系统检测与诊断技术[M].第1版.重庆:重庆大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700