截齿用耐磨材料及其制备方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬质合金具有特殊的耐腐蚀性、高硬度、优良的断裂韧性和抗压强度,目前全世界生产的硬质合金中以WC硬质合金牌号最多、产量最大,用途也最为广泛。在传统工艺中,截齿用硬质合金的生产方法是粉末冶金技术,经过WC粉和钴粉混合压制烧结而成。粉末冶金技术对原料WC粉末的纯度、粒度均匀性,以及颗粒形貌、结晶完整性、亚晶尺寸大小等都有很高的要求,生产工艺复杂。
     与传统工艺的先制取WC粉末,继而烧结成硬质合金不同,本论文提出利用等离子原位冶金技术在截齿盲孔内由WO3或w制备截齿WC块体耐磨材料的新方法。使用该法制备块体耐磨材料的优点在于:(1)成本低,原料粉末以W03或w和炭黑为主;(2)短流程,直接在截齿盲孔内生成块体耐磨材料,取代了粉末冶金的复杂工艺;(3)冶金结合,避免了钎焊硬质合金带来的各种问题。
     本论文利用热力学第二定律,通过曲线外延法证明了在超高温下由W03或w制备WC的可行性。反应温度大于1000K时,C与W03可能发生固—固反应、液—固反应、铁浴反应、液—液反应,以上反应均为吸热反应,随着温度的上升,利于反应的正向进行。C与W生成WC的反应是放热反应,但当AG=0时,Tc>22000K,高于等离子原位冶金反应温度,故而反应也可以进行。
     在试验中由W03制备的块体耐磨材料,裂痕较多,成形性差,未能达到预期结果;由w试制的块体耐磨材料成型及致密性较好,最高硬度可达1987HV。WC晶粒呈聚集状态随机分布,其生成方式为台阶式逐步生长,除WC晶粒外,块体耐磨材料中还有M6C(Fe3W3C-Fe4W2C),Cr7C3,(Fe,Cr,Ni)3C和γ-Fe等物相,其中M6C是块体耐磨材料中主要的硬质相;块体耐磨材料中含有大量的w元素,显著提高了合金的抗腐蚀磨损能力;由W、Cr、Fe形成的碳化物作为主要硬质相弥散分布在齿体当中,对WC相起到良好的支撑作用,因此实现了高的显微硬度。对耐磨材料的成分、组织、性能进行了检测和分析,结果表明:由W制备的块体耐磨材料的硬度、耐磨性初步达到预期目标,整体平均显微硬度1254HV(载荷200g,保持时间10s),相对耐磨性0.83(参比样YG13C)。本论文对该法的工业应用进行了可行性评估,认为该法在成本和工艺上的具有巨大优势,在截齿制造领域将有广阔的应用前景。
Currently, the wear-resistant materials of picks are coarse-grained WC carbide. Carbide has a special corrosion resistance, high hardness, excellent fracture toughness and compre-ssion strength, called modern industrial teeth. The most widely use of the cemented carbide is WC carbide. In the traditional process, the production of cemented carbide picks is sintered by the WC and cobalt, but that process is complicated.
     Different from the traditional process, this paper proposes using the plasma situ metallurgical technology preparation of the wear-resistant block materials in the blind hole of picks. This is a new method of preparation of making wear-resistant materials. There are three advantages of this new method. Firstly, low cost, raw materials are W or WO3 powder and carbon powder. Secondly, short process, replacing the complexity of powder metallurgy technology, wear-resistant materials directly generated in the picks block. Thirdly, achieve metallurgical bonding, avoiding the problems caused by brazing carbide.
     In this paper, it is proved that in the WC by the preparation of the feasibility of WO3 in ultra-high temperatures by using the second law of thermodynamics. When more than 1000K, C and WO3 may be solid-solid reaction, liquid-liquid reaction, iron bath reaction, liquid-liquid reactions, and all of those are endothermic reactions, as the temperature increased, the positive reactions were favorable, but WO3 trial in the experiment of the block by the wear-resistant materials, cracks are more poor shape, did not achieve the expected results.The density of wear-resistant materials bulk prepared by the W is better, WC grains are randomly distributed aggregation, the maximum hardness is more than 1987HV, WC crystal grain size is generated by the way of step-phase growth; addition to WC grain size, there are M6C (Fe3W3C-Fe4W2C),Cr7C3, (Fe,Cr,Ni)3C and y-Fe in the wear-resistant materials in the bulk phase. M6C in which wear-resistant materials is the main hard phase, the overall average micro hardness is 1254HV, the block contains a lot of wear-resistant just like the W elements, significantly increases the resistance of corrosion and wear ability; Formed by W, Cr, Fe which as the main hard phase dispersed points distributed in the picks body, the carbides play a good supporting role on the WC phase, to achieve a high hardness and wear resistance. Wear-resistant materials were tested and analyzed on the composition, microstruture, properties, the results showed that, wear-resistant materials prepared by the W hardness, wear resistance initially meet the target, and has good mechanical properties of strength and toughness. This method has the advantage of the process and cost, it will certainly have a great prospect in picks manufacturing.
引文
1.徐庆荣,黎先财,杨沂凤,王燕.WC的制备及其性能研究[J],稀有金属,2009,33(1)
    2.王国栋.硬质合金生产原理[J],北京:冶金工业出版社,1988:4
    3.钱鸣高.中国能源与煤炭工业[J],煤,2000,1:1-5.
    3.唐丹.关于硬质合金的最新动向[J],硬质合金,2001,18(1):60-64
    4.晏春晖.等离子体改性后硬质合金表面组织状态的研究[D],广东广州:广东工业大学,2001
    5.尹晓星.碳化钨硬质合金文献调研[J],中国钨业,2008,23(5):7-10
    6.东京钨公司.碳化钨粉末生产[J],日本专利:325306A,1991-11-11
    7.张玉华,张纪生.超细硬质合金综述[J],粉末冶金技术,1995,3(13):216-222
    8.国际卡比泰克工业公司,生产碳化钨的方法[P],Cn,1137415,2,2003-2-12
    9. Li Q Z, Zhang H F, Wang Y Q etal. Nanostruetured materials,1998,10:179-183
    10.钟海云,李荐等.纳米碳化钨粉的研究及应用及开发动态[J],稀有金属与硬质合金:2001,145:44-48
    11.《国外硬质合金》编写组.国外硬质合金[J],冶金工业出版社,1976,(8):9-14
    12.李有观.国外硬质合金技术发展的主要特点[J],世界有色金属,2002,10(2):12-17
    13.柳林,李兵,丁星兆等.硬质合金的制备[J],科学通报,1994,13(3):32-36
    14. B. H. Kear and L. E. Mccandlish. Nanostructure dwbase materials Synthesis, proeessing and Properties[J], Journal of advanced Materials,1993,25(1):205-221
    15. KhaidarorV, etal. In:Billdstein Hand Eck Reds[J],13th International Plansee Siminar'93, Proceedings. Vol.4, Wattens:RWF, Werbegessellschaft m. b. H,1993:306
    16. Kameyame T.etal. Study of the Japan Soeiety of Powder 1[J], Power Metallurg (Japan), 1991,38(2):109-113
    17. Y. T. Zhou and A. Manthiram, J. Am. Ceram[J], Soc,1994:77
    18. Zhou Zhiqang. In:Billdstein Hand Eek Reds[J],13th International Plansee Siminar'93, Proeeedings. Vol.4, Innsbuck:Vertangsanstalt Tyrolia,1989,79
    19. L. E. Me Candlish, B. H. Kear, B. K. Kim. Mater[J], Sci. Eng.1990,6
    20.北京科技大学,自蔓延高温合成纳米WC粉末的方法:中国1837040[P].2006-09-27
    21. Kim H C. One step synthesis and densification of ultra-fine WC by high frequency induction combustion[J]. International Journal of Refractory Metals & Hard Materials, 2006,24 (3):202-209.
    22. Chen Hao, Li Huiqi. Microstructure and wear resistance of Fe-based coatings formed by plasma jet surface metallurgy[J], Materials Letters,2006,60 (11):1311-1314.
    23.北京科技大学.一种微波合成纳WC粉末的方法:中国,1834010[P].2006-09-20.
    24.张丽民,孙冬柏,李惠琪,刘邦武,樊自栓.等离子束表面冶金技术研究及其进展[J],金属热处理,2006,31(2):12-16.
    25. L.X. Cai, C.M. Wang, H.M. Wang. Laser cladding for wear-resistant Cr-alloyed Ni2Si-NiSi intermetallic composite coatings [J], Materials Letters,2003, (57):2914-2918.
    26.李敏,李惠东,李惠琪,孙玉宗.等离子体表面改性技术的发展[J],金属热处理,200429(7):5-9.
    27. Li Min, Li Hui-dong, Sun Yu-zong, Jia Qiang, Li Hui-qi Study on Surface Technology by DC-plasma-Jet[J],14 th Congress Metallurgical of International Federation for Heat Treatment and Surface Engineering Proceedings-Ⅲ, Shanghai, China,2004:23-26.
    28. Chen Hao, Li Huiqi. Microstructure and wear resistance of Fe-based coatings formed by plasma jet surface metallurgy [J], Materials Letters,2006,60(11):1311-1314.
    29.刘邦武,李惠琪,张丽民等.等离子束表面冶金技术冶金过程研究[J],材料导报,2004,18(10)专辑Ⅲ:192-197.
    30.闻立时,黄荣芳.先进表面工程技术发展前沿[J],真空,2004,41(5):1-6.
    31.刘邦武.等离子束表面冶金技术生产耐磨镐型截齿工艺研究[D].山东青岛:山东科技大学,2005
    32. YANG Jian-hua, GONG Yun-guo, et al. Surface Modification of PVD-TiN Films Using MEVVA Ion Implantation[J],14th Congress of International Federation for Heat Treatment and Surface Engineering Proceedings-Ⅱ, Shanghai, China,2004:913-915
    33.谢海根.纳米氧化钨粉的制备及其性能研究[D].湖南长沙:中南大学,2007
    34.邵刚勤,吴伯麟,魏明坤等.超细晶粒WC硬质合金的研制动态[J].武汉工业大学学报,1999,21(6):18-20
    35.刘加强.张芹华等.提高采煤机截齿质量新途径[J],矿山机械,1994,(10):44-46
    36. Li Min, Li Hui-dong, Sun Yu-zong, Ji Qiang, Li Hui-qi. Study on Surface Metallurgical Technology by DC-plasma-Jet[J],14th Congress of International Federation for Heat Treatment and Surface Engineering Proceedings-Ⅲ, Shanghai, China,2004:23-26
    37. I.A. Bozhko, S.V. Fortuna, et al. Formation of Nanoscale Intermetallic Phase in Ni Surface Layer at High Intensity Implantation of Al Ions [J], J. Mater. Sci. Technol.,2004,20(5): 583-586.
    38.郭培民,赵沛,李正邦.矿物炼钢[M].北京:化学工业出版社,2007,41-49
    39.张丽民.等离子束表面冶Fe基涂层的研究.[D].山东青岛:山东科技大学,2005
    40.宋武林.激光熔覆层热膨胀系数对其开裂敏感性的影响[J].激光技术,1998,22(1):34-36
    41.赵品,谢辅洲,孙文山.材料科学基础[M].哈尔滨:哈尔滨工业大学出版社,1999,8.
    42.常国威,王建中.金属凝固过程中的晶体生长与控制[M].北京:冶金工业出版社,2002.
    43.刘邦武,李惠琪,张丽民.等离子表面冶金层中气孔形成机理[J].金属热处理,2005,30(2):17-19.
    44. LI Min, LI Hui-dong, LI Hui-qi, et al. The mechanism of plasma surface metallurgical technology and microstructure of the Metallurgical coating [J].14th IFHTSE Congress, 2004 (Qct):23-25.
    45.祝柏林,胡木林,陈俐,等.激光熔覆层开裂问题的研究现状[J].金属热处理,2000,7:1-4.
    46.王淑峰,李惠琪,迟静,李敏.等离子原位冶金快速制备钨基硬质合金的研究[J].山东科技大学学报,2010,29(1):85-89
    47.李敏,李惠东,李惠琪,孙玉宗.等离子体表面改性技术的发展[J],金属热处理,2004,29(7):5-9.
    48.钱鸣高.中国能源与煤炭工业[J],煤,2000,1:1-5.
    49.黄云庆,章勃,熊柏仁.几种采煤机截齿用钢的性能[J],金属热处理,1995(2):6-9.
    50.练子富,唐东萍.优质镐型截齿生产工艺[J],煤矿机电,1998,(1):41-42.
    51. Hailin Sun, Susan Field, Jian Chen, et al. The Study of Deposition Parameters, Properties for PVD TixN and CrxN Coatings Using a Closed Field Unbalanced Magnetron Sputter Ion Plating System[J],14th Congress of International Federation for Heat Treatment and Surface Engineering Proceedings-Ⅱ, Shanghai, China,2004:841-846.
    52.张丽民,李惠琪,刘邦武等.等离子表面冶金采煤机截齿的工艺研究[J],煤炭学报,2004,29(增刊):145-148.
    53. WANG Yao-wen, CHEN Qiang, SUN Zhen-guo, et al. Relationship between sound sigal and weld status in plasma arc welding [J], Trans. Nonferrous Met. Soc. China,2001, 11(1):54-57.
    54.仲跻秋,仲崇旭,魏延强.矿用采煤机截齿现场使用状况分析[J],煤矿开采,2008,13(3):75-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700