钙钛矿型铁电材料电子结构及物理性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿型铁电材料是一类应用十分广泛的功能材料。铁电性的有效利用和新功能的发现都有赖于理论上对铁电性内在本质的深入理解,铁电性的本质起源问题至今尚未完全解决。
     铁电现象是原子层次的效应,对晶体的对称性十分敏感,其物理机理是晶胞中原子的坐标发生了微小变化,导致对称破缺。低的晶体对称性使物理本构关系矩阵复杂化,因此其他理论(如密度泛函理论,分子动力学理论)描述起来更加困难。这正好是价键理论(经验电子理论)可以使用的切入点。
     本文采用价键电子理论——固体与分子经验电子理论(EET),较全面地跟踪研究了典型的钙钛矿型铁电材料,从晶体结构出发,计算了它们的价键电子结构,对价键电子结构随晶体结构、温度和组份的变化给予相应的理论描述。并以价键电子结构为基础,讨论了钙钛矿型铁电材料的铁电性、压电性等物理性质,从而沟通了材料微观价键电子结构与某些宏观性质之间的联系。
     按晶体结构从简单到复杂、研究历史由过去到现在的顺序,选取五种典型的、具有较大理论研究价值和实际应用价值或者较大的预期应用价值的钙钛矿铁电材料(简单钙钛矿型铁电材料、无铅铁电材料、固溶体钙钛矿型铁电材料、新型弛豫铁电单晶和单相多铁性材料)分别进行理论研究。
     计算结果不但从价键理论角度再现了钙钛矿型氧化物化学键离子性与共价性相混合的特点,而且说明了铁电性主要源于过渡金属离子与氧离子共价性化学键沿自发极化方向出现的非均匀分布。计算分析了无铅钙钛矿型铁电材料与钛酸铅价键电子结构之间的差异,从价键电子结构角度分析了无铅铁电材料性能差距的根源。针对钙钛矿型固溶体铁电材料晶体结构的复杂性和特殊性,构造了带权重的平均原子模型计算方法,计算分析了不同B位原子对铁电性的贡献。对新型弛豫铁电晶体准同型相界四方相一侧的价键电子结构进行计算,明确了MPB附近四方相一侧的价键电子结构随着组分和温度的变化情况。以多铁性材料铁酸铋为研究对象,从价键电子结构的计算结果讨论了铁电性和铁磁性共存的可能性。
The perovskite ferroelectrics are important functional materials. Theoretical researches are not only helpful to understand the phase transition mechanism of ferroelectrics, but also advantaged to the application of ferroelectric materials. However, the origin of ferroelectric behavior is not very clear nowadays.
     The ferroelectric distortions involve small displacements of the cations relative to the anions, leading to a net dipole moment per unit volume, i.e. a polarization. Lower lattice symmetry makes the description more difficult for conventional methods such as density functional theory and molecular dynamics simulations. But it is convenient for the valence bond theory to deal with low lattice symmetry problems.
     In this dissertation, the valence electronic structures of five kinds of typical perovskite ferroelectrics are investigated according to the valence bond theory, the empirical electron theory (EET) of solids and molecules.
     In simple perovskite ferroelectrics, the bond of atom B and atom O is the strongest bond, which is responsible for the tendency to the ferroelectricity. It is found that the valence electronic structure is different between cubic phase and tetragonal phase and the B-O bond changes into two kinds of different bonds along the tetragonal axis direction as the transition occurs.
     In lead-free ferroelectrics, the difference of the valence electronic structures between the lead titanant and lead-free materials is found. In tetragonal ferroelectric phase, the B-O bond is less weaker than that in PbTiO3. B-O bond is essential to the ferroelctricity of these materials. The spontaneous polarizations of KNbO3 and BaTiO3 are smaller than PbTiO3.
     In solid solution ferroelectrics, the B-site atoms make different contributions to the ferroelectricity. In PZT, atom Ti is more important than atom Zr. With the increase of Ti content, the B-O bond becomes stronger. In KTN, atom Ni is more important than atom Ta.
     In new single crystal relaxor ferroelectrics, valence electronic structures of the Morphotropic phase boundary (MPB) will change with the temperature and the composition of these materials.
     In single phase multiferroelectric, the possibility of the co-existence of the magnetism and ferroelectricity is found after the calculation of valence electronic structure. The Fe-O bond is not the shortest bond in the crystal but is the strongest co-valence bond, which is the origin of the ferreoelectricity and atom Fe has intrinsic magnetic moment from d electron.
     It is showed by EET that the bond B-O is very important to the ferroelctricity in these perovskite ferroelectrics.
引文
[1]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社, 1998: 109.
    [2] R. Roy. Multiple Ion Substitution in the Perovskite Lattice[J]. J. Am. Ceram. Soc., 1954, 37 (12): 581-588.
    [3]任清褒,谢潮涌,叶远平.钙钛矿型铁电体的宏观效应及其应用[J].丽水师范专科学校学报, 2003, 25 (5): 36-40.
    [4]钟维烈.铁电体物理学[M].北京:科学出版社, 1998:7-9, 366-367.
    [5] G. A. Smolensky, V. A. Isupov, A. I. Agranovskaya, et al.. Ferroelectrics with Diffuse Phase Transitions[J]. Sov. Phys. Solid State, 1961, 2: 2584-2594.
    [6] Y. Yamashita. Large Electromechanical Coupling Factors in Perovskite Binary Material System[J]. Jpn. J. Appl. Phys., 1994, 33 (8A): 5328-5331.
    [7] R. E. Service. Shape-changing crystals get shifter[J]. Science, 1997, 275 (5308): 1878.
    [8] S. E. Park, T. R. Shrout. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals[J]. J. Appl. Phys., 1997, 82 (4): 1804-1811.
    [9]王评初.弛豫铁电体相变研究的最新进展[J].哈尔滨理工大学学报, 2002, 7 (6): 64-65.
    [10]钟海胜,李强,赵世玺等.弛豫铁电材料的准同型相界研究[J].硅酸盐通报, 2004, 3: 41-44.
    [11] T. Kimura, T. Goto, H. Shintani, et al.. Magnetic control of ferroelectric polarization [J]. Nature, 2003, 426 (6): 55-58.
    [12] N. Hur, S. Park, P. A. Sharma, et al.. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields[J]. Nature, 2004, 429: 392-395.
    [13]王克锋,刘俊明,王雨.单相多铁性材料-极化和磁性序参量的耦合与调控[J].科学通报, 2008, 53 (10): 1098-1135.
    [14]王渊旭.铁电体的第一性原理研究[D].山东大学博士学位论文, 2002.
    [15] H. Mueller. Properties of Rochelle Salt[J]. Phys. Rev., 1940, 57 (9): 829-839.
    [16] H. Mueller. Properties of Rochelle Salt III[J]. Phys. Rev., 1940, 58 (6): 565-573.
    [17] H. Mueller. Properties of Rochelle Salt IV[J]. Phys. Rev., 1940, 58 (9): 805-811.
    [18] A. F. Devonshire. Theory of Ferroelectrics[J]. Adv. Phys., 1954, 3 (10): 85-130.
    [19] Z. R. Liu, Y. Zhang, B. L. Gu, et al.. The proportion of frozen local polarization in relaxor ferroelectrics[J]. J.Phys. Condens. Matter., 2001, 13 (5): 1133-1139.
    [20] X. H. Du, J. H. Zheng, U. Belegundu, et al.. Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary[J]. Appl. Phys. Lett., 1998, 72 (19): 2421-2423.
    [21] T. Liu, C. S. Lynch. Ferroelectric properties of [110], [001] and [111] poled relaxor single crystals: measurements and modeling[J]. Acta. Mater., 2003, 51 (2): 407-416.
    [22] D. Liu, J. Y. Li. Domain-engineered Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals: enhanced piezoelectricity and optimal domain configurations[J]. Appl. Phys. Lett., 2004, 84 (19): 3930-3932.
    [23] M. Budimir, D. Damjanovic, N. Setter. Large enhancement of the piezoelectric response in perovskite crystals by electric bias field antiparallel to polarization[J]. Appl. Phys. Lett., 2004, 85 (14): 2890-2892.
    [24] M. Marvan, J. Erhart, J. Fousek. Role of soft dielectric energy in poling crystals or ceramics and in domain average engineering[J]. Appl. Phys. Lett., 2004, 84 (5): 768-770.
    [25] R. Ahluwalia, T. Lookman, A. Saxena, et al.. Piezoelectric response of engineered domains in ferroelectrics[J]. Appl. Phys. Lett., 2004, 84 (18): 3450-3452.
    [26] A. J. Bell. Phenomenologically derived electric field-temperature phase diagrams and piezoelectric coefficients for single crystal barium titanate under fields along different axes[J]. J. Appl. Phys., 2001, 89 (7): 3907-3914.
    [27] Y. Ishibashi, M. Iwata. Morphotropic phase boundary in solid solution systems of perovskite-type oxide ferroelectrics[J]. Jpn. J. Appl. Phys., 1998, 37 (3A): 985-987.
    [28] M. Iwata, Y. Ishibashi. Analysis of ferroelectricity and enhanced piezoelectricity near the morphotropic phase boundary[J]. Top. Appl. Phys., 2005, 98: 127-148.
    [29] D. Vanderbilt, M. H. Cohen. Monoclinic and triclinic phases in higher-order Devonshire theory[J]. Phys. Rev. B, 2001, 63 (9): 094108-094116.
    [30] J. C. Slater. Theory of the transition in KH2PO4[J]. J. Chem. Phys., 1941, 9 (1):16-33.
    [31] J.C. Slater. The Lorentz correction in Barium Titanate[J]. Phys. Rev., 1950, 78 (6): 748-761.
    [32] W. Cochran. Crystal stability and the theory of ferroelectricity[J]. Phys. Rev. Lett., 1959, 3 (9): 412-414.
    [33] W. Cochran. Crystal stability and the theory of ferroelectricity[J]. Adv. Phys., 1960, 9 (36): 387-423.
    [34] W. Duan, Z. R. Liu. Theoretical modeling and simulations of perovskite ferroelectrics: From phenomenological approaches to ab initio[J]. Curr. Opin. Solid State Mater. Sci., 2006, 10 (1): 40-51.
    [35] R. E. Cohen. Origin of ferroelectricity in oxide ferroelectrics[J]. Nature, 1992, 358: 136-138.
    [36] R. E. Cohen, H. Krakauer. Electronic structure studies of the differences in ferroelectric behavior of BaTiO3 and PbTiO3[J]. Ferroelectrics, 1992, 136 (1): 65-84.
    [37] R. D. King-Smith, D. Vanderbilt. First-principles investigation of ferroelectricity in perovskite compounds[J]. Phys. Rev. B, 1994, 49 (9): 5828-5844.
    [38] W. Zhong, R. D. King-Smith, D. Vanderbilt. Giant LO-TO splittings in perovskite ferroelectrics[J]. Phys. Rev. Lett., 1994, 72 (22): 3618-3621.
    [39] I. Grinberg, V. R. Cooper, A. M. Rappe. Oxide chemistry and local structure of PbZrxTi1-xO3 studied by density-functional theory supercell calculations[J]. Phys. Rev. B, 2004, 69 (14): 144118-144134.
    [40] I. Grinberg, A. M. Rappe. Local structure and macroscopic properties in PbMg1/3Nb2/3O3-PbTiO3 and PbZn1/3Nb2/3O3-PbTiO3 solid solutions[J]. Phys. Rev. B, 2004, 70 (22): 220101-220104.
    [41] L. Bellaiche. Piezoelectricity of ferroelectric perovskites from first principles[J]. Curr. Opin. Solid State Mater. Sci., 2002, 6 (1): 19-25.
    [42] R. E. Cohen. Theory of ferroelectrics: a vision for the next decade and beyond[J]. J. Phys. Chem. Solids, 2000, 61 (2): 139-146.
    [43] V. Srinivasan, R. Gebauer, R. Resta, et al.. PbTiO3 at finite temperature[M]. In: P.K. Davies, D.J. Singh, editors. Fundamental physics of ferroelectrics 2003, NY: AIP Melville, 2003: 168.
    [44] D. Vanderbilt. First-principles based modelling of ferroelectrics[J]. Curr.Opin. Solid State Mater. Sci., 1997, 2 (6): 701-705.
    [45]忻隽,郑燕青,施而畏.材料压电性能的第一性原理计算回顾与展望[J].无机材料学报, 2007, 22 (2): 193-200.
    [46]余瑞璜.固体与分子经验电子理论[J].科学通报, 1978, 23: 217-224.
    [47]张瑞林.固体与分子经验电子理论[M].长春:吉林科学出版社, 1993: 233-421.
    [48]李世春.晶体价键理论和电子密度理论的沟通[J].自然科学进展, 1999, 9 (3): 229-235.
    [49]李世春,张磊. TFDC模型和元素晶体结合能[J].自然科学进展, 2004, 14 (6): 705-708.
    [50] L. Pauli.化学键的本质[M].卢嘉锡,黄耀曾,曾广植等.上海:上海科学技术出版社, 1966.
    [51]刘志林,李志林,刘伟东.界面电子结构与界面性能[M].北京:科学出版社, 2002: 1-240.
    [52] R. H. Fan, L. Qi, K. N. Sun, et al.. The bonding character and magnetic properties of Fe3Al:comparison between disordered and ordered alloy[J]. Phys. Lett. A, 2006, 360 (2): 371-375.
    [53] Y. J. Cao, X. H. Hou, Q. F. Mo, et al.. Atomic bonding of precipitate and phase transformation of Al-Cu-Mg alloy[J]. J. Alloys. Compd., 2007, 441 (1-2): 241-245.
    [54] X. G. Min, Y. S. Sun, F. Xue, et al.. Analysis of valence electron structures (VES) of intermetallic compounds containing calcium in Mg-Al-based alloys[J]. Mater. Chem. Phys., 2002, 78 (1): 88-93.
    [55] Y. Zheng, M. You,W. H. Xiong, et al.. Valence-electron structure and properties of main phase in Ti(C, N)-based cermets[J]. Mater. Chem. Phys., 2003, 82 (3): 877-881.
    [56] Y. S. Yin, X. W. Wang, Z. L. Shi. Analysis of valence electron structures(VES) of intermetallic Fe3Al compounds[J]. Mater. Chem. Phys., 1995, 39 (3): 243-247.
    [57] Y. S. Yin, R. H. Fan, Y. S. Xie. The effect of chromium on the valence electron structure of Fe3Al intermetallic compounds (ternary)[J]. Mater. Chem. Phys., 1996, 44 (2): 190-193.
    [58] S. Dall'Olio, R. Dovesi, R. Resta. Spontaneous polarization as a Berry phase of theHartree-Fock wave function: The case of KNbO3 [J]. Phys. Rev. B, 1997, 56 (16): 10105-10114.
    [59] L. Fu, E. Yaschenko, L. Resca, et al.. Hartree-Fock approach to macroscopic polarization: Dielectric constant and dynamical charges of KNbO3[J]. Phys. Rev. B, 1998, 57 (12): 6967-6971.
    [60] L. Fu, E. Yaschenko, L. Resca, et al.. Hartree-Fock studies of surface properties of BaTiO3[J]. Phys. Rev. B, 1999, 60 (4): 2697-2703.
    [61] H. Bilz, G. Benedek, A. Bussmann-Holder. Theory of ferroelectricity: The polarizability model[J]. Phys. Rev. B, 1987, 35 (10): 4840-4849.
    [62] K. H. Weyrich, R. Siems. Deformation charge distribution and total energy for perovskites[J]. Z. Phys. B, 1985, 61 (1): 63-68.
    [63] R. E. Cohen, H. Krakauer. Lattice dynamics and origin of ferroelectricity in BaTiO3: Linearized-augmented-plane-wave total-energy calculations[J]. Phys. Rev. B, 1990, 42 (10): 6416-6423.
    [64] R. E. Cohen. Origin of ferroelectricity in perovskite oxides[J]. Nature, 1992, 358: 136-138.
    [65] A. I. Liechtenstein, I. I. Mazin, C. O. Rodriguez, et al.. Structural phase diagram and electron-phonon interaction in Ba1-xKxBiO3[J]. Phys. Rev. B, 1991, 44 (10): 5388-5391.
    [66] K. Parlinski, R. Currat, C. Vettier, et al.. Effect of hydrostatic pressure on modulated phases in Rb2ZnBr4[J]. Phys. Rev. B, 1992, 46 (1): 106-114.
    [67] A. V. Postnikov, T. Neumann, G. Borstel, et al.. Ferroelectric structure of KNbO3 and KTaO3 from first-principles calculations[J]. Phys. Rev. B, 1993, 48 (9): 5910-5918.
    [68] R. D. King-Smith, D. Vanderbilt. First-principles investigation of ferroelectricity in perovskite compounds[J]. Phys. Rev. B, 1994, 49 (9): 5828-5844.
    [69] Ph. Ghosez, J. P. Michenaud, X. Gonze. Dynamical atomic charges: The case of ABO3 compounds[J]. Phys. Rev. B, 1998, 58 (10): 6224-6240.
    [70] J. D. Axe. Apparent ionic charges and vibrational eigenmodes of BaTiO3 and other perovskites[J]. Phys. Rev., 1967, 157 (2): 429-435
    [71] W. Zhong, R. D. King-Smith, D. Vanderbilt. Giant LO-TO splittings in perovskite ferroelectrics[J]. Phys. Rev. Lett., 1994, 72 (22): 3618-3621.
    [72] A. W. Hewat. Soft modes and the structure, spontaneous polarization and Curie constants of perovskite ferroelectrics: tetragonal potassium niobate[J]. J. Phys. C: Solid State Phys., 1973, 6 (6): 1074-1084.
    [73] H. H. Wieder. Electrical behavior of barium titanate single crystals at low temperatures[J]. Phys. Rev., 1955, 99 (4): 1161-1165.
    [74] A. Garcia, D. Vanderbilt. First-principles study of stability and vibrational properties of tetragonal PbTiO3[J]. Phys Rev B, 1996, 54 (6): 3817-3824.
    [75] Y. Kuroiwa, S. Aoyagi, A. Sawada et al.. Evidence for Pb-O Covalency in Tetragonal PbTiO3[J]. Phys. Rev. Lett., 2001, 87 (21): 217601-217604.
    [76] G. Sághi-Szabó, R. E. Cohen, H. Krakauer. First-Principles Study of Piezoelectricity in PbTiO3[J]. Phys. Rev. Lett., 1998, 80 (19): 4321-4324.
    [77] Y. Saito, H. Takao, T. Tani, et al.. Lead-free piezoceramics[J]. Nature, 2004, 432 (4): 84-87.
    [78] J. Yoo, D. Oh, Y. Jeong, et al.. Dielectric and piezoelectric characteristics of lead-free Bi0.5(Na0.84K0.16)0.5TiO3 ceramics substituted with Sr[J]. Mater. Lett., 2004, 58 (29): 3831-3835.
    [79] M. D. Maeder, D. Damjanovic, N. Setter. Lead free piezoelectric materials[J]. J. Electro. ceram., 2004, 13 (1): 385-392.
    [80] S. K. Kurtz, T. T. Perry. A Powder Technique for the Evaluation of Nonlinear Optical Materials[J]. J. Appl. Phys., 1968, 39 (8): 3798-3813.
    [81] P. Günter. Electro-optical properties of KNbO3[J]. Opt. Commun., 1974, 11 (3): 285-290.
    [82] P. Günter. Electro-optical and photorefractive effects in KNbO3 crystals[D]. University Zurich, 1976.
    [83] Z. Yu, C. Ang, R. Guo, et al.. Piezoelectric and strain properties of Ba(Ti1–xZrx)O3 ceramics[J]. J. Appl. Phys., 2002, 92 (3): 1489-1493.
    [84] L. T. Hudson, R. L. Kurtz, S. W. Robey, et al.. Photoelectron spectroscopic study of the valence and core-level electronic structure of BaTiO3[J]. Phys. Rev. B, 1993, 47(3): 1174-1180.
    [85] W. Zhong, D.Vanderbilt, K. M. Rabe. Phase transitions in BaTiO3 from first principles[J]. Phys. Rev. Lett., 1994, 73 (13): 1861-1864.
    [86] Ph. Ghosez, X. Gonze, J. P. Michenaud. Coulomb interaction and ferroelectric instability of BaTiO3[J]. Europhys. Lett., 1996, 33 (9): 713-718.
    [87] J. D. Freire, R. S. Katiyar. Lattice dynamics of crystals with tetragonal BaTiO3 structure[J]. Phys. Rev. B, 1998, 37 (4): 2074-2085.
    [88] H. Salehi, S. M. Hosseini, N. Shahtahmasebi. The effects of Ni on structural and electronic properties of BaTiO3 ceramic[J]. Ceram. International, 2004, 30 (1): 81-85.
    [89] Ph. Ghosez, X. Gonze, Ph. Lambin. Born effective charges of barium titanate:Band-by-band decomposition and sensitivity to structural features[J]. Phys. Rev. B, 1995, 51 (10): 6765-6768.
    [90]薛卫东,陈召勇,杨春等.四方相BaTiO3铁电性的第一性原理研究[J].物理学报, 2005, 54 (2): 857-861.
    [91]蔡玉平,宁如云,韩代朝.钛酸钡低温时的自发极化[J].无机材料学报, 2007, 22 (1): 89-92.
    [92] G. Shirane, K. Suzuki. Crystal structure of Pb(Zr-Ti)O3[J]. J. Phys. Soc. Jpn., 1952, 7: 333.
    [93] B. Jaffe, R. S. Roth, S. Marzullo. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics[J]. J. Appl. Phys., 1954, 25 (6): 809-810.
    [94] B. Noheda, D. E. Cox, G. Shirane, et al.. A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution[J]. Appl. Phys. Lett., 1999, 74 (14): 2059-2061.
    [95] Ragini, Rajeev Ranjan, S. K. Mishra, et al.. Room temperature structure of Pb(ZrxTi1–xO3) around the morphotropic phase boundary region:A Rietveld study[J]. J. Appl. Phys., 2002, 92 (6): 3266-3274.
    [96] J. Rouquette, J. Haines, V. Bornand, et al.. P–T phase diagram of PbZr0.52Ti0.48O3 (PZT)[J]. Solid State Sci., 2003, 5 (3): 451-457.
    [97] A. Bouzid, E. M. Bourim, M. Gabbay, et al.. PZT phase diagram determination by measurement of elastic moduli[J]. J. Eur. Ceram. Soc., 2005, 25 (13): 3213-3221.
    [98] G. Sághi-Szabó, R. E. Cohen. Long-range order effects in Pb(Zr1/2Ti1/2)O3[J].Ferroelect rics, 1997, 194(1):278-292.
    [99] G. Sághi-Szabó, R. E. Cohen, H. Krakauer. First-principles study of piezoelectricity in tetragonal PbTiO3 and PbZr1/2Ti1/2O3[J]. Phys. Rev. B, 1999, 59 (20): 12771-12776.
    [100]王渊旭,王春雷,钟维烈. Pb(Zr0.5Ti0.5)O3电子结构的理论研究[J].压电与声光, 2005, 27 (5): 544-246.
    [101] B. Noheda, J. A. Gonzalo, L. E. Cross, et al.. Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite:The structure of PbZr0.52Ti0.48O3[J]. Phys. Rev. B, 2000, 61 (13): 8687-8695.
    [102] B. E. Vugmeister, M. D. Glinchuk. Dipole glass and ferroelectricity in random-site electric dipole systems[J]. Rev. Mod. Phys., 1990, 62 (4): 993-1026.
    [103] R. I. Eglitis, E. A. Kotomin, G. Borstel. Quantum chemical calculations of KNT solid solutions[J]. Solid State Commun., 1998, 108 (6): 333-336.
    [104]彭毅萍,王渊旭,张磊等. K(Ta0.56Nb0.44)O3四方铁电相电结构的第一性原理研究[J].物理学报, 2000, 49 (6): 1140-1142.
    [105]王渊旭,钟维烈. KTa0.5Nb0.5O3电子结构的第一性原理研究[J].哈尔滨理工大学学报, 2002, 7 (6): 544-246.
    [106] Y. X. Wang, W. L. Zhong, C. L. Wang, et al.. Electronic structure of KTa0.5Nb0.5O3 in the ferroelectric phase and paraelectric phase[J]. Phys. Lett. A, 2001, 285 (5-6): 390-394.
    [107] A. Villesuzanne, C. Elissalde, M. Pouchard, et al.. New considerations on the role of covalency in ferroelectric niobates and tantalates[J]. Eur. Phys. J. B, 1998, 6: 307-302.
    [108] R. Hoffmann. An Extended Hückel Theory. I. Hydrocarbons[J]. J. Chem. Phys., 1963, 39 (6): 1397-1412.
    [109] J. H. Ammeter, H. B. Buergi, J. C. Thibeault, et al.. Counterintuitive orbital mixing in semiempirical and ab initio molecular orbital calculations[J]. J. Am. Chem. Soc., 1978, 100 (12): 3686-3692.
    [110] M. H. Whangbo, R. Hoffmann. The band structure of the tetracyanoplatinate chain[J]. J. Am. Chem. Soc., 1978, 100 (19): 6093-6098.
    [111]徐家跃,金敏.新型弛豫铁电晶体-生长、性能及应用[M].北京:化学工业出版社, 2007: 5-10.
    [112] G. A. Smolensky, V.A. Isupov, A. I. Agranovskaya, et al.. Ferroelectrics with Diffuse Phase Transitions[J]. Sov. Phys.Solid State, 1961, 2: 2584-2594.
    [113] S. Nomura, T. Takahashi, Y. Yokomizo. Ferroelectric Properties in the System Pb(Zn1/3Nb2/3)O3-PbTiO3[J]. J. Phys. Soc. Jpn., 1969, 27: 262-262.
    [114] J. Kuwata, K. Uchino, S. Nomura. Dielectric and piezoelectric properties of 0.91Pb(Zn1/3Nb2/3)O3–0.09PbTiO3 single-crystals[J]. Jpn. J. Appl. Phys., 1982, 21 (9): 1298-1302.
    [115] J. Kuwata, K. Uchino, S. Nomura. Phase transition in the Pb(Zn1/3Nb2/3)O3–xPbTiO3 system[J]. Ferroelectrics, 1981, 37: 579-582.
    [116] T. R. Shrout, Z. P. Chang, N. C. Kim, et al.. Dielectric behavior of phase with lower symmetry lies in between the two single crystals near the (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 morphotropic phase boundary[J]. Ferroelec. Lett., 1990, 12: 63-69.
    [117] Z. G. Ye, M. Dong. Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 single crystals[J]. J. Appl. Phys., 2000, 87 (5): 2312-2319.
    [118] K. Fujishiro, H. Tazawa, Y. Uesu, et al.. Nonlinear Optical Study of Phase Transition in Lead Magnesium Niobate[J]. Jpn. J. Appl. Phys., 1996, 35 (9B):5062-5064.
    [119] Y. Yamashita. Large Electromechanical Coupling Factors in Perovskite Binary Material System[J]. Jpn. J.Appl. Phys., 1994, 33 (9B): 5328-5331.
    [120] M. L. Mulvihill, S. E. Park, G. Risch, et al.. The Role of Processing Variables in the Flux Growth of Lead Zinc Niobate-Lead Titanate Relaxor Ferroelectric Single Crystals[J]. Jpn. J. Appl. Phys., 1996, 35 (7): 3984-3990.
    [121] S. E. Park, T. R. Shrout. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals[J]. J. Appl. Phys., 1997, 82 (4): 1804-1811.
    [122] D. E. Cox, B. Noheda, G. Shirane, et al.. Universal phase diagram for high-piezoelectric perovskite systems[J]. Appl. Phys. Lett., 2001, 79 (3): 400-402.
    [123] H. Fu, R. E. Cohen. Polarization rotation mechanism for ultrahigh electromechanicalresponse in single-crystal piezoelectrics[J]. Nature, 2000, 403: 281-283.
    [124] D. La-Orauttapong, B. Noheda, Z. G. Ye, et al.. Phase diagram of the relaxor ferroelectric (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3[J]. Phys. Rev. B, 2002, 65 (14): 144101-144107.
    [125]金敏,徐家跃. PZNT晶体压电性能及其与成分的依赖关系[J].四川大学学报(自然科学版)(增刊), 2005, 42 (2): 177-182.
    [126] G. Xu, H. Luo, H. Xu, et al.. Third ferroelectric phase in PMNT single crystals near the morphotropicphase boundary composition[J]. Phys. Rev. B, 2001, 64 (2): 020102-020103.
    [127] Z. G. Ye, B. Noheda, M. Dong, et al.. Monoclinic phase in the relaxor-based piezoelectric/ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 system[J]. Phys. Rev. B, 2001, 64 (18): 184114-184115.
    [128] B. Noheda, D. E. Cox, G. Shirane, et al.. Phase diagram of the ferroelectric relaxor .1-xPbMg1/3Nb2/3O3-xPbTiO3[J]. Phys. Rev. B, 2002, 66 (5): 054104-054110.
    [129]赵祥永.弛豫型铁电单晶PMN-PT的介电、压电和热释电性能研究[D].中科院上海硅酸盐研究所博士学位论文, 2004.
    [130]万新明.铁电单晶电光性能和结构本质的研究[D].中科院上海硅酸盐研究所博士学位论文, 2005.
    [131] Q. M. Zhang, D. Y. Jeong.“Electro and Acousto-Optical Properties of Relaxor Single Crystals,”in“Piezoelectric Single Crystals and Their Application”Eds., S. Trolier-McKinstry, L. E. Cross, Y. Yamashita, The Pennsylvania State University, 2004.
    [132] H. Schmid. Multi-ferroic magnetoelectrics[J]. Ferroelectrics, 1994, 162 (1): 317-338.
    [133] H. Schmid. Magnetic ferroelectric materials[J]. Bull.Mater.Sci., 2007, 17 (7): 1411-1414.
    [134] A. J. Freeman, H. Schmid. Magnetoelectric Interaction Phenomena in Crystals[M]. London: Gordon and Breach, 1995.
    [135] N. A. Spaldin, M. Fiebig. The renaissance of magnetoelectric multiferroics[J]. Science, 2005, 309 (5733): 391-392.
    [136] G. T. Rado, V. J. Folen. Observation of the magnetically induced magnetoelectriceffect and evidence for antiferromagnetic domains[J]. Phys. Rev. Lett., 1961, 7 (8): 310-311.
    [137] M. Fiebig. Revival of the magnetoelectric effect[J]. J.Phys. D: Appl. Phys., 2005, 38 (8): R123-R152.
    [138] D. I. Khomskii. Multiferroics: Different ways to combine magnetism and ferroelectricity [J]. J. Magn. Magn. Mater., 2006, 306 (1): 1-8.
    [139] Y. Guo, R. Yu, R. Zhang, et al.. Calculation of Magnetic Properties and Analysis of Valence Electronic Structures of LaT13-xAlx (T = Fe, Co) Compounds[J]. J. Phys. Chem. B, 1998, 102 (1): 9-16.
    [140] T. Zhao, A. Scholl, F. Zavaliche. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature[J]. Nature Materials, 2006, 5 (10): 823-829.
    [141] M. Bibes, A. Barthélémy. Multiferroics:Towards a magnetoelectric memory[J]. Nature Materials, 2008, 7 (6): 425-426.
    [142] M. Gajek, M. Bibes, S. Fusil, et al.. Tunnel junctions with multiferroic barriers[J]. Nature Materials, 2007, 6 (4): 296-302.
    [143] D. Lebeugle, D. Colson, A. Forget,et al.. Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals[J]. Phys. Rev. B, 2007, 76 (2): 024116-024124.
    [144] D. Lebeugle, D. Colson, A. Forget, et al..Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields[J]. Appl. Phys. Lett., 2007, 91 (2): 022907-022908.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700