铝电解槽高温烟气焙烧技术的理论与实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的铝电解工业正处在空前的繁荣昌盛时期,然而,国内的铝电解槽的槽寿命较国外普遍偏低。焙烧技术对铝电解槽的寿命有至关重要的影响,因此,焙烧技术的开发与研究对铝电解生产尤为重要。
     本论文针对目前国际上火焰直接加热的燃料焙烧技术的不足,首次提出了一种新的燃料焙烧技术——铝电解槽的高温烟气焙烧技术,即用燃料燃烧产生的高温烟气来加热铝电解槽,并根据高温烟气焙烧技术的要求,开发了铝电解槽高温烟气焙烧装置,并对该技术所涉及的一些理论问题进行了深入、系统的研究。
     针对电解槽炭极及扎固糊表面是否会被严重氧化等问题,首次用实验方法研究了炭极以及扎固糊在烟气中的氧化特性。实验测得,温度低于700℃时,炭极在烟气中的氧化速率在0.5mg/min·cm~2以下,仅为在空气中的3-5%;在温度高于700℃以后,电极的氧化速率开始升高,但也仅为在空气中的9%左右。另外,还用热力学和动力学理论研究了炭极的氧化机理,研究认为炭极的氧化速率取决于界面化学反应,并且在焙烧温度范围内,炭极在烟气中的氧化反应属于一级反应,反应速率常数与温度的关系在不同的温度区间相差较大。在700℃以前为:lnk=-13617/T+7.1823;在700℃以后为:lnk=-4452.5/T-2.5997。
     对铝电解槽高温烟气焙烧的传热理论计算与模拟槽上进行的高温烟气焙烧的实验研究表明:高温烟气焙烧的升温速度可调的范围很大,因此,高温烟气焙烧技术能满足铝电解槽启动前的焙烧要求。由于调节灵活,升温速度和温度分布控制方便,可用此方法克服铝液焙烧和焦粒焙烧之缺点。与其它焙烧方法(焦粒焙烧、铝液焙烧、石墨焙烧)相比,该技术使电解槽升温和焙烧均匀,并且可以使阴极表面温度按优化的升温曲线自动升温,从而可以有效避免因热应力而导致的阴极裂缝现象,同时对扎缝和边部扎固糊的焙烧充分,能达到其它焙烧方法无法达到的效果。
     针对高温烟气焙烧的特点,对阴极碳块导热系数对阴极温度分布的影响进行了研究,研究表明:在阴极碳块导热系数为6~10w/m.K时,阴极下表面的温度达753-817℃,阴极碳块上下表面温度差在103-163℃之间。使用导热系数小于6w/m.K的阴极碳块时,导致更大的温差,不能较好的满足电解槽的焙烧要求。因此,在阴极碳块的导热系数小于6w/m.K时,不宜用高温烟气焙烧技术来加热电解槽。
     高温烟气焙烧技术装置的关键是燃烧器和分配室。针对该技术对燃烧器的特殊要求,用燃烧数学模型研究了燃烧器的性能。研究认为,燃烧器预燃室的存在
    
    重庆大学博士学位论文
    对提高燃烧器的燃烧效率有利,无预燃室,燃烧效率较低,最大为60%,加装预
    燃室后,燃烧效率能达到80%以上,但燃烧室的温度由1850K提高到了
    2O00K,这对燃烧室的使用寿命不利。因此,降低壁温是加装预燃室后的燃烧器
    设计中所要考虑的问题。由于三次风的存在,燃烧室壁温降低13OK,这对燃烧
    器的寿命有利。另外,通过建立分配室流动与传热的数学模型研究了分配室的流
    场与温度场。研究认为矩形断面分配室优于圆形断面分配室,分配室各喷口的流
    量与能量分配的均匀性主要受分配室入口位置、形状和入口方向、分配室断面尺
    寸以及喷射管结构的影响,与入口速度关系较小。并对分配室的结构参数进行了
    优化,得到了较合理的分配室结构尺寸。
     针对铝电解槽槽内腔形状复杂同时存在多块阳极的计算对象,首次应用整体
    建模及祸合求解的思想,建立了铝电解槽烟气焙烧过程的数学模型,避免了计算
    对象中复杂的几何边界条件的处理以及大量的导热与对流的祸合边界问题,使温
    度场的求解简单方便,较好地解决了高温烟气焙烧时电解槽内的温度场计算。应
    用所建立的数学模型,计算了160KA系列和75KA系列电解槽高温烟气焙烧时的
    温度分布,结果表明,采用高温烟气焙烧该技术不但能方便地按升温要求焙烧好
    槽底阴极,而且能使边部扎固糊取得很好的焙烧效果,弥补了其它焙烧方法不能
    很好地焙烧边部扎固糊的缺陷。在加热末期,阴极上表面最大温差被控制在100
    ℃左右,下表面温度可达到750℃左右,能较好地满足铝电解槽焙烧的工艺要
    求。同时,该方法也为复杂结构下的流动与传热的研究提供了新的途径,丰富和
    充实了冶金热能工程的理论研究。
     研究成果应用于中国铝业广西分公司的16OKA系列和山西关铝股份公司的
    75KA系列电解槽上,可以做到使阴极内衬表面温度缓慢均匀上升,阴极表面温
    度均匀;同时,避免了燃料焙烧时扎固糊及阴极碳块燃烧损坏的可能性。
     综上所述,本论文开发的高温烟气焙烧技术既具有燃料焙烧的优点,还弥补
    了目前国外燃料焙烧易使炭极及扎固糊表面燃烧氧化的不足,是一种较理想的铝
    电解槽焙烧技术,该技术的开发成功,不但填补了我国在燃料焙烧新技术的研究
    和开发中的空白,而且也充实和完善了铝电解槽燃料焙烧理论。
    关键词:铝电解槽,焙烧,高温烟气,数值计算,模型
Though the reduction aluminum industry of China is in an unprecedented booming age, the life of aluminum reduction cells is totally shorter than that abroad. The baking-out of aluminum reduction cell highly affects the life of reduction cells, therefore, the research and development of bake-out technology is of great importance for the production of aluminum.Aiming at the deficiency of direct flame heating bake-out technology used internationally, this paper innovatively put forward a kind of novel fuel bake-outtechnique-high temperature fume bake-out for aluminum reduction cells. In thistechnique, the high temperature fume created from fuel burning is used to heat the aluminum cell. Also in the paper research work, the high temperature fume bake-out device has been developed according with the requirements of high temperature fume baking parameters. Furthermore, some of the theoretical problems relating to this technique were studied profoundly and systematically in this paper.Against the heavily oxidizing problem on surface of the carbon electrode and ramming paste in the fume, the oxidizing properties were firstly experimented. The results showed that when temperature is below 700, the oxidation rate of carbon in the fume is below 0.5 mg/min.cm2, which is only 3-5% of that in air. When temperature is above 700, the oxidation rate is increased very fast, but it is still 9% of that in air. In addition, the oxidation mechanism of carbon is also studied by thermodynamic and kinetic theory. From that, the oxidation rate of carbon depends on the interface chemical reaction. Within the temperature range of bake-out, the oxidation reaction of carbon in the fume belongs to the first-order reaction. The relationship between the reaction rate constant and temperature differs greatly in various temperature zones: Ink=-13617/T +7.1823 (below 700 ), Ink= -4452.5/T- 2.5997 (above 700).The theoretical calculation of heat transfer and the experimenting, on the simulating cell baked in high temperature fume, revealed that the high temperature fume bake-out technique possesses a wide range of heating speed adjusting. So that, this technique can perfectly meet the preheating requirements for the start-up of aluminum reduction cells. Owing to its flexible adjustment and convenient control on heating-up speed and temperature distribution, this technique can overcome the shortcomings of
    
    the bake-out by liquid aluminum and coke granule. Comparing with other bake-out methods such as coke granule bake-out, liquid aluminum bake-out and graphite bake-out, this technique makes the cell heating-up and bake-out become uniformly, and also makes temperature of the surface of cathode heat-up automatically according to a given optimized heating-up curve. As a result, the cathode crack caused by thermal stress can be avoided and the joint and ramming paste of the edge can be baked thoroughly, which can not be realized by other bake-out methods.Against the characteristics of high temperature fume bake-out, a study was also given in the coefficient of heat conductivity of cathode block effecting on the cathode temperature distribution. When the coefficient of heat conductivity of cathode block is 6~10w/m.K, temperature of the cathode lower surface is 753-817, the temperature difference of the upper and lower surface is 103-163. When using the cathode block whose coefficient of heat conductivity below 6w/m.K, more temperature differences appear so that it could not satisfy the needs of the cell bake-out. Accordingly, when the coefficient of heat conductivity is below 6w/m.K, it does not recommend to use high temperature fume bake-out to heat the cell.The key equipments in high temperature fume bake-out are the burner and dispensing house. According to the special requirements for it, the burner was mathematically modeled. The results showed that the existence of prechamber in the burner is beneficial to improve the combustion efficiency. The maximum combustion efficiency is 60% without perchamber, which is very low. When a prechamber added, the combust
引文
[1] R. P. Pawlek. 75 Years Development of Aluminum Electrolysis Cells [J]. Aluminum. 1999. 75(9): 734-742.
    [2] A. Tabereaux. Prebake Cell Technology: A Global Review [J]. JOM. 2000. 52 (2): 22-26.
    [3] C. Vanvoren, P. Homsi, and J. L. Basquin et al.. Ap50: The Pechiney 500 kA Cell [J]. Light Metals. 2001. 221-226.
    [4] 李兵等.维修早期破损电解槽的可行性研究[J].昆明理工大学学报.1999.24(4):101.
    [5] Harald A. Oye and Barry J.Welch. Cathode Preformance: The Influence of Design, Operations and Operating Conditions [J]. JOM. 1989.(2): 18-22.
    [6] 何永平等.铝电解槽寿命的研究[M].北京.冶金工业出版社.1998:53-61.
    [7] Morten S odie, Harald A, φye. Cathodes in Aluminium Electrolysis [M]. 2nd edition. Dusseldoyf. aluminum-Verlag 1993: 74-114.
    [8] G.R. Peltier, G.E. Stockman. Cathode preheat and startup temperatures and bottom block displacements [J]. Light Metals. 1989.41(11): 185-190.
    [9] W.R.Hale. Improving the useful life of aluminum industry cathode. JOM. 1989. 41(11): 20-23.
    [10] W.B.Richards. Thermal Bake-Out of Reduction Cell Cathodes-advantages and problem areas [A]. Proceedings of Sessions, AIME Annual Meeting 1983[C]. Warrendale, Pennsylvania: US Metallurgical Soc ofAIME. 1983: 857-866.
    [11] 任必军.我国大型预焙槽焙烧启动方法的选择[J].铝镁通讯.2001.(2):40-43.
    [12] 赵无畏.现代大型铝电解槽焙烧启动方法研究[J].轻金属.1996.(11):26-29.
    [13] 朱强等.190 k A大型预焙槽焦粒焙烧启动新技术[J].轻金属.2001.(5):38-40.
    [14] 王喜春,李东根.预焙槽焦粒焙烧启动中的关键技术[J].轻金属.2003.(6):29-30.
    [15] 任永杰.155 k A预焙电解槽焦粒焙烧电解质湿法启动新技术的应用与发展[J].轻金属.2000.(7):38-41.
    [16] 何晓东.铝电解槽的石墨焙烧启动法[J].轻金属.1999.(6):40-42.
    [17] Harald Bentzen, Jan Hvistendahl, Marianne Jensen. Gas preheating and start of Soderberg cells [A]. Proceedings of the 120th TMS Annual Meeting Feb 17-21 1991[C]. Warrendale. Pennsylvania: Pub| by Minerals. Metals & Materials Soc (TMS). 1990: 741-747.
    [18] Rolofs.B, Eisma.D, Dickinson. G. Thermal bake-out of aluminium reduction cells, a technology for the future [A]. Light Metals 2002 (USA). Seattle, WA, USA. 2002. Seattle, WA, USA: Light Metals, 2002: 343-346.
    [19] McFadden. EJ.S, Welch, B.J. Control of temperature in aluminium reduction cells--challenges in measurements and variability[A]. Light Metals: Proceedings of Sessions, TMS Annual Meeting. Warrendale, Pennsylvania. 2001. Warrendale, Pennsylvania: Light Metals. 2001: 1171-1178.
    [2
    
    [20] El-Raghy.S, Ahmed.FM, Ibarhiem.MO. Porosity modifications in the carbon cathode of aluminum reduction cell-Ⅱ[A]. Light Metals: Proceedings of Sessions, TMS Annual Meeting. Warrendale, Pennsylvania. 2002. Warrendale, Pennsylvania: Light Metals. 2002: 405-411.
    [21] C.H. Clell and J.T. Keniry. A study of some Aspects of the Influence of Cell Operation on Cathodes Life[J]. Light Metals. 1982.34: 299.
    [22] Wayne R. Hale. Improving the Useful Life of Aluminum Industry Cathodes [J]. JOM. 1989. 11: 20-25.
    [23] 路盅胜.提高铝用阴极炭块石墨含量或石墨化度延长电解槽寿命[J].轻金属.2002.(9):25-29.
    [24] 董贞俭,铁梅,邱竹贤.碳阳极的氧化性能研究[J].炭素.1998.(2):45-48.
    [25] 邵泽钦,刘重德,苏丽.炭-石墨抗磨材料的抗氧化研究[J].炭素.2000.(1):33-34.
    [26] 赵晓旭等.抗氧化炭石墨材料的研究及高温氧化行为[J].炭素.1999.(1):21-24.
    [27] 刘凤琴.添加剂对炭阳极氧化性能影响的研究[D].辽宁.东北大学.2001:38-42.
    [28] 肖劲.铝电解槽预焙阳极改性实验研究及工业实验[D].湖南.中南大学.2001:25-30.
    [29] Berclaz. Georges, de Nora. Vittorio. Anode impregnation system for aluminum reduction cells[A]. Light Metals: Proceedings of Sessions. TMS Annual Meeting. Warrendale, Pennsylvania. 1997. Warrendale, Pennsylvania: Light Metals. 1997: 605-611.
    [30] Sorlie M, Kuang Z, Thonstad J. Gas reactivity and electrolytic consumption of aluminum cell anodes with aluminum fluoride additions[J]. Carbon. 1993. 31(5): 677.
    [31] Mufuoglu T, Oye H A. reactivity and electrolytic consumption of anode carbon with with various additives [A]. Zabreznik R D. Light Metals[C]. Warrendale PA: TMS. 1987:471.
    [32] L.D.Smoot, D.T.Pratt著.傅维标,卫景彬译.粉煤燃烧与气化[M].北京.清华大学出版社.1983:203-212.
    [33] J.Zelkowski著,袁钧卢,张佩芳译.煤的燃烧理论与技术[M].上海.华东化工学院出版社.1990:51-73.
    [34] L.D.Smoot, P.J.Smith著.傅维标,卫景彬,张燕屏译.煤的燃烧与气化[M].北京.科学出版社.1992:88-99.
    [35] D. Gray, J. G. Cogoli, and R. H. Essenhigh. Problemsin pulverized coal and char combustion [J]. Adran Chem. 1974.Ser. 131: 72-79.
    [36] Li, Chao'en, Broun, Trevorc. Carbon oxidation kinetics from evolved carbon oxide analysis during temperature-programmed oxidation [J]. Carbon. 2001.39(5): 725-732.
    
    [37] Goetz, G. J., Nsakala, N. Y., Patel, K. L., Lao, T. C.. Combustion and gasification kinetics of chars from Four commercially significant coals of varying rank [A]. Second Annual Conference on Coal Gasification, EPRI, Palo Alto, Ca (October 1982).
    [38] W. J. Thomas. Effect of oxidation on the pore structure of some graphitized carbon blacks [J]. Carbon. 1977.3: 435-443.
    [39] H. J. Grabke. Oxygen transfer and carbon gasification in the reaction of different carbons with CO~2 [J]. Carbon. 1972.10: 587-599.
    [40] E. S. Golovina and G. P. Khaustovieh. Interaction of carbon with carbon dioxide at high temperatures [J]. Teplofize. Vys. Temp.. 1974.2: 267-273.
    [41] R. L. Coates. Kinetic data from a high temperature entrained flow gasifier [J]. ACS Div. Fuel Chem. Preprints. 1977.22(1): 84-92.
    [42] R. W. Taylor and D. W. Bowman. Rate of Reaction of Steam and Lawrence Livermore Laboratory [A]. 1976. Report No. UCRL-52002. 159-163.
    [43] A. T. Tabereaux, R. B. Hester. Metal pad velocity measurements in prebake and soderberg reduction cells [J]. Light metals. 1984: 519-527.
    [44] E. D. Tarapore. The effect of the operating variables on flow in aluminum reduction cell [J]. Light metals. 1981: 341-355.
    [45] E. D. Tarapore. Magnetic fields in aluminum reduction cells and their influence on metal pad circulation [J]. Light metals. 1979(1): 541-550.
    [46] M. M. Bilek, W. D. Zhang, F. J. Stevens. Modeling of electrolyte flow and its related transport processes in aluminum reduction cell[J]. Light metals. 1994(1): 323-331.
    [47] 黄兆林,扬志锋,吴江航.铝电解槽内湍流流动与界面波动的数值模拟[J].计算物理.1994.11(2):179-184.
    [48] 孙阳,冯乃祥,陈建利等.186KA大型预焙阳极铝电解槽流场的数值计算[J].稀有金属.2001.25(5):382-385.
    [49] 岳林,梅枳.现代铝电解槽的电磁流动[J].中南矿冶学院学报.1991.22(6):636-643.
    [50] 李劼,程迎军,周乃君等.预焙阳极铝电解槽阳极电、热场的数值仿真与优化[J].中国有色金属学报.2003.13(2):485-489.
    [51] 李洪,梅炽,王前普等.铝电解槽壳散热模型[J].中国有色金属学报.1996.6(4):56-61.
    [52] 冯乃祥,梁芳惠.160KA大型预焙阳极铝电解槽温度场及槽帮与熔体间换热系数的计算[J].
    [53] 罗永浩,杨世铭,王孟浩.T型进口三通对分配集箱流量分配的影响[J].动力工程.1998.18(3):29-36.
    [54] F.Z. Sierra-Espinosa, C.J. Bates, T. O'Doherty. Turbulent flow in a 90~0 pipe junction Part 2: Reverse flow at the branch exit[J]. Computers & Fluids. 2000. (29): 215-233.
    
    [55] Corrado Gisormi, Willi H. Hager, Supercritical flow in the 90~0 junction manhole [J], Urban Water. 2002. (4): 363-372.
    [56] Kreid D K, Chung C J, and Crowe C T. Measurements of the Flow of Waterina T-Junction by the LDV Technique [J]. Journal of Applied Mechanics. 1995. (6): 498-499.
    [57] Pollard A, Spalding D B. The Prediction of the Three-Dimensional Turbulent Flow Field in a Flow-Splitting Tee-Junction [J]. Computer Methods in Applied Mechanics and Engineering. 1998. (13): 293-306.
    [58] 戴干策,任德呈,范自晖.化学工程基础—流体流动、传热及传质[M].北京.中国石化出版社.1991.
    [59] 高殿荣,赵永凯,王益群.矩形流道内流体流动的有限元研究[J].机床与加工.1997.(5):38-41.
    [60] 权晓波,李维,曾卓雄等.幂律流体突扩管道湍流流动的研究[J].西安交通大学学报.2001.35(11):1118-1121.
    [61] 吴时强,张瑞凯,丁道扬.台阶突扩三维粘性流动数值模拟[J].水利水运工程学报.2002.(1):1-7.
    [62] 王小华,鞠硕华,朱文芳.突扩流的数值模拟[J].低温建筑技术.2003.(1):59-60.
    [63] 赵宝峰,金英子,张忠学.对管路(突扩)局部损失系数的探讨[J].黑龙江水专报.1996.(4):30-32.
    [64] 伍钦,蔡梅琳,梁玉兰.流量分配管的设计理论[J].始水排水.1998.24(7):31.
    [65] Berman A.S. Laminal flow in channels with porous wall [J]. Journal of Applied Physics. 1953. 24(9): 1232.
    [66] Acrivos A., Babcock B.D.. Flow distributions in manifolds [J]. Chemical Engineering Science. 1959.10(2): 112.
    [67] Bassiovny M.K, Martin H.. Flow distribution and pressure drop in plate heat exchangers-Ⅰ[J]. Chemical Engineering Science. 1984.39(4): 693.
    [68] 戴干策,陈敏恒.化工流体力学[M].北京.化学工业出版社.1988.195
    [69] 黄凤良,任立义.流量分配管浅析[J].东北大学学报.1999.(6):56-60.
    [70] 金涌,俞芷青,孙竹范等.流化床多管式气流分布器的研究—分布器设计参数的确定[J].化工学报.1984.34(3):203-213.
    [71] 宋续祺,汪占文,金涌等.移动床径向流体反应器中流体力学行为的研究[J].化工学报.1993.44(3):268-274.
    [72] 张成芳,朱之彬,徐懋生等.径向反应器流体均布设计的研究[J].化工学报.1979.28(1):67-90.
    [73] M. K. Bassiouny and H. Martin. Flow Distribution and Pressure Drop in Plate Heat Exchangers I-U Type Arrangement [J]. Chernical Engineering Science. 1984. 39(4): 693-700.
    [74] P. I. Shen. The Effect of Frictionon Flow Distribution in Dividing and Combining Flow Manifolds [J]. ASMEJ. of Fluids Engineering. 1992. 114(5): 121-123.
    [7
    
    [75] 王峻晔,章明川,吴东棣.流体在多孔管分支系统中的流动机理研究[J].水动力学研究与进展.1999.Ser.A.14(1):156-162.
    [76] M. R. Davis and B. Fungtamasan. Two-Phase Flow through Pipe Branch Junctions [J]. Int. J. of Multiphase Flow. 1990. 16(5): 799-817.
    [77] 董谊仁,过建.填料塔排管式液体分布器的研究和设计[J].化学工程.1990.18(3):28-34.
    [78] Volker Weitbrecht, David Lehmann and Andreas Richter. Flow Distribution in Solar Collectors with Laminar Flow Conditions [J]. Solar Energy. 2002.73(6): 433-441.
    [79] Masahiro Osakabe, Tomoyuki Hamada, Sachiyo Horiki. Water Flow Distribution in Horizontal Header Contaminated with Bubbles [J]. International Journal of Multiphase Flow. 1999. 25: 827-840.
    [80] Helmut Brod. Residence time optimised choice of tube diameters and slit heights in distribution systems for non-Newtonian liquids [J]. J. Non-Newtonian Fluid Mech. 2003.111: 107-125.
    [81] 陈水涕,张祥中,史华.变孔径配水多孔管的设计[J].给水排水.2003.28(10):23.
    [82] 陈水涕.多孔管配水均匀性的理论探讨[J].给水排水.1995.20(7):25-29.
    [83] 王存文,孙炜.直管内变质量流动规律和均布技术的研究[J].云南化工.2001.28(3):36-40.
    [84] 白丹.多孔管的优化设计[J].农业机械学报.1994.25(2):31-34.
    [85] 王昂,王黎,张士博等.变孔径直管液体分布器的研究与设计[J].化学工程.1993.21(3):25-30.
    [86] 徐志刚,俞丰,李瑞江等.垂直多孔通道中的变质量流动[J].过程工程学报.2000.3(1):28-32.
    [87] 许晋源,徐通模.燃烧学[M].第一版.北京.机械工业出版社.1982.134-140.
    [88] D. A. Aderibigbe and J. Szekely. Ironmaking and steelmaking. 1981. 8(1): 11-19.
    [89] 徐旭常等.燃烧理论与燃烧设备[M].北京.机械工业出版社.1988.225-233.
    [90] 张玉柱,艾立群.钢铁冶金过程的数学解析与模拟[M].北京.冶金工业出版社.1997.56-58.
    [91] 姜绍娴,王平甫.铝用炭素材料(续8)[J].炭素技术.2001.(1):45-46.
    [92] 卢剑.铝电解槽早期破损与焙烧启动[J].湖南有色金属.2003.(10):16-18.
    [93] 张力,伍成波等.铝电解预焙槽高温气体焙烧启动的加热制度[J].重庆大学学报(自科版).2001.24(2):100-102.
    [94] 张力,伍成波,潘良明等.大型铝电解预焙槽气体焙烧启动传热特性[J].大连理工大学学报.2001.41(S1):80-83.
    [95] [J]. 2000. (2): 56-59.
    [96] 冯乃祥等.铝电解槽热场、磁场和流场及其数值计算[M].沈阳.东北大学出版 社.2001.32-35.
    [9
    
    [97] 王应时等.燃烧过程数值计算[M].北京.科学出版社.1986.135.
    [98] 马科夫斯基,B.A.,拉夫连契克,N.N.著,高家锐译.加热炉控制算法[M].北京.冶金工业出版社.1985.35-40.
    [99] K.格罗泰姆,B.威尔奇著.邱竹贤,王家庆,刘海石等译.铝电解厂技术.沈阳:《轻金属》编辑部.1997.
    [100] φrlie M. S, φye H. Cathode in Aluminium Electrolysis[A]. Lecture on the 5th International Course on Process Metallurgy of Aluminium. Norway. 1986. 13-19.
    [101] 于军等.铝电解槽阴极碳块的分类、评价与质量保证[J].世界有色金属.1996.(5):19-23.
    [102] 冯乃祥.热模压碳块的电阻和导热性能[J].炭素技术.1996.(6):18-23.
    [103] 华人民共和国有色金属行业标准.铝电解用普通阴极炭块.YS/T286-1999.国家有色金属工业局.
    [104] 中华人民共和国有色金属行业标准.铝电解用半石墨质阴极炭块.YS/T287-1999.国家有色金属工业局.
    [105] [J]. 1998. (1): 73.
    [106] 朱旺喜,王湘南.使用半石墨化阴极炭块时铝电解槽内衬温度分布计算[J].矿冶.1994.3(3):67-70.
    [107] 王秉铨主编。工业炉设计手册[M].北京.机械工业出版社.1996.87-88.
    [108] 宁晃,高歌.燃烧室气动力学[M].北京.科学出版社.1987.304-307.
    [109] 陶文铨著.数值传热学(第二版).西安.西安交通大学出版社.2001.
    [110] Jaw S Y, Chen C J. Present Status of k-ε Models and Their Applications[A]. In: Chen C J, Shih C, Lienau J, Kung R J. eds. Flow Modeling and Turbulence Measurement. Rotterdam: A A Bolkema, 1996.295-304.
    [111] Singhal A K, Spalding D B. Prediction of two-dimensional boundary layers with the aid of the k-ε model of turbulence[J]. Comput Methods Appl Mech Eng. 1981. 25: 365-383
    [112] Yang G, Edadian M A. Effect of Reynolds and Prandtl number on turbulent convective heat transfer in a three-dimensional square duct [J]. Numer Heat Transfer, Part A. 1991. 20: 111-122
    [113] Shyy W, Sun C S, Chert M H, Chang K M. Multigrid computation for turbulent recirculating flows in complex gepmetries [J]. Numer Heat Transfer, Part A. 1993. 23: 79-98
    [114] Bo T, Iacovides H, Launder B E. convective discretization schemes for the turbulence transport equation in flow predictions through sharp u-bends [J]. Int J Heat Fluid Flow, 1995. 5: 33-48
    
    [115] Rokni M, Sunden B. Numerical investigation of turbulent forced convection in ducts with rectangular and trapezoidal cross-section area by using different turbulence models [J]. Numer Heat Transfer, Part A. 1996. 30: 321-346
    [116] Ramadhyani S. Two-equation and second-moment turbulence models for convective heat transfer [A]. In: Minkowycz W J, Sparrow E M. eds. Advances in numerical heat transfer. Washington D C: Taylor & Francis. 1997. 1: 171-199
    [117] M. G. Carvalho, T. Farias, and P. Fontes. Predicting Radiative Heat Transfer in Absorbing, Emitting, and Scattering Media Using the Discrete Transfer Method [A]. In W.A. Fiveland et al., editor, Fundamentals of Radiation Heat Transfer. ASME HTD. 1991. 160. 17-26.
    [118] R. Siegel and J.R. Howell. Thermal Radiation Heat Transfer [M]. Washington D.C. Hemisphere Publishing Corporation. 1992.
    [119] E. H. Chui and G. D. Raithby. Computation of Radiant Heat Transfer on a Non-Orthogonal Mesh Using the Finite-Volume Method [J]. Numerical Heat Transfer, Part B, 1993. 23: 269-288.
    [120] G. D. Raithby and E. H. Chui. A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures with Participating Media [J]. J. Heat Transfer, 1990. 112: 415-423.
    [121] J.Y. Murthy and S. R. Mathur. A Finite Volume Method For Radiative Heat Transfer Using Unstructured Meshes [A]. AIAA-98-0860, January 1998.
    [122] A. Coppalle and P. Vervisch. The Total Emissivities of High-Temperature Flames [J]. Combust. Flame. 1983. 49: 101-108.
    [123] T. F. Smith, Z. F. Shen, and J. N. Friedman Evaluation of Coefficients for the Weighted Sum of Gray Gases Model [J]. J. Heat Transfer. 1982. 104: 602-608.
    [124] B. F. Magnussen and B. H. Hjertager. On mathematical models of turbulent combustion with special emphasis on soot formation and combustion[A]. In 16th Symp. (Int'l.) on Combustion. The Combustion Institute, 1976
    [125] Yakhot V, Orzag S. A. Renormalization Group Analysis of Turbulence. Basic Theory[J]. Journal of Scientific Computing. 1998. 1 (1): 16-23.
    [126] Lam S H. On the RNG Theory of Turbulence[J]. Phys. Fluids A. 1992. 4(5): 78-82.
    [127] Yakhot V, Orzag S A. Development of Turbulence models for Shear Flows by a Double Expansion Technique [J]. Phys. Fluids A. 1992.4(2): 1510-1520.
    [128] 范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥.中国科学技术大学出版社.1992:233-238.
    [129] 梅枳主编.有色冶金炉设计手册[M].北京.冶金工业出版社.2000.1038.
    [130] 梅炽.有色冶金炉窑仿真与优化[M].北京.冶金工业出版社.2001:156-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700