麻疯籽制备生物柴油及提取蛋白质的技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麻疯树是一种具有很高的经济价值的树种,其根、茎、叶、果实均可被利用。其种子含油量能高达60%,油酸和亚油酸含量在70%以上,不饱和脂肪酸含量高,碘值较低,属半干性油,流动性好,是制备生物柴油的理想原料,利用麻疯籽油制备的生物柴油能达到欧II排放标准。麻疯籽中蛋白质含量丰富,占种仁重量的27%~32%,氨基酸组成也比较均衡,但由于麻疯籽毒蛋白(Curcin)和佛波醇酯的存在,榨油后的麻疯籽饼不能直接饲用,主要用作肥料。采用适当的蛋白质提取工艺,探索去除麻疯籽蛋白中毒素的方法,将有利于麻疯籽饼粕的开发利用。
     本文就以下几个方面对麻疯籽油和麻疯籽蛋白进行了研究:
     1.本课题首先进行了冷榨—浸出法制取麻疯籽油的研究,通过试验分析,认为在压榨压力40MPa,压榨时间120min,温度65℃,原料含水量10%条件下进行冷榨试验,出油效果较好,出油率约为41%,冷榨饼残油量为28%。利用正己烷为溶剂在溶剂比1.2:1,温度55℃,时间30min,连续浸出冷榨饼5次的条件下,最终麻疯籽粕残油量低至0.8%。
     2.经过水化脱胶、真空脱水后的麻疯籽油酸值为15.49mgKOH/g油,而均相碱催化制备生物柴油,要求原料油酸值≤1.0mgKOH/g油,因此需要进行降酸处理。本文分别就溶剂法萃取脱酸和浓硫酸催化预酯化降酸两种方法进行了研究。通过单因素试验和响应面分析,得出麻疯籽油溶剂法脱酸的最优工艺:醇油比(V/V油)2.0:1,麻疯籽油含水量0.08%,萃取温度45℃,连续萃取5次,每次萃取10min。而浓硫酸催化预酯化降酸通过添加助溶剂四氢呋喃,经过单因素试验和正交试验分析,得出最优工艺为:甲醇添加量(V/V油)0.85:1,反应时间45min,反应温度65℃,催化剂添加量(V/V油)0.012:1,助溶剂添加量(V/V油)0.5:1。
     3.为选择合适的助溶剂来有效促进甲醇和麻疯籽油形成均相体系。本文通过对8种溶剂的性质对比,以及在不同的温度条件下,乙醚或四氢呋喃溶剂与麻疯籽油、甲醇形成的三元相图的比较,最终选择四氢呋喃作为本次研究的助溶剂。
     4.在浓硫酸催化预酯化有效降酸的条件下,本文采用以四氢呋喃为助溶剂,NaOH为催化剂,进行了麻疯籽油制备生物柴油的甲酯化研究,通过单因素分析和正交试验设计,认为在甲醇添加量(V/V油)0.56:1,反应时间18min,反应温度65℃,催化剂添加量(w/w油)1%,助溶剂添加量(V/V油)0.5:1的条件下,甲酯转化率较高。
     5.本文采用碱提酸沉法对麻疯籽粕中的麻疯籽蛋白进行了提取研究。通过单因素试验研究各因素对提取率的影响,应用正交试验优化工艺条件。得到的最优工艺条件为:碱提料液比1:11,pH 8.5,温度55℃,时间100min;酸沉pH 4.4,温度55℃,时间40min。在该工艺条件下,麻疯籽蛋白提取率达到76.63%,分离物蛋白纯度达到81.18%。
Jatropha curcas is a kind of tree that has very high economic value, its roots, stems, leaves and fruits all can be used.The oil content of its seed is as high as 60%, in which the ratio of oleic acid and linoleic acid is more than 70%,the content of unsaturated fatty acids are high whereas the iodine value is low. It is a semi-dry oil with good fluidity, which is the ideal raw material for biodiesel. The biodiesel prepared by Jatropha curcas oil can meet the II emission standards of European.The content of protein in Jatropha curcas seed is very rich, which accounts for 27% ~ 32% of seed weight, and the amino acid composition is balanced. However, the presence of Curcin and phorbol ester, the seed cake after oil extraction can not directly feed, it’s mainly used as fertilizer.Therefore, using appropriate protein extraction technology to explore the way of removing toxin in Jatropha curcas seeds’protein will help the development and utilization of Jatropha curcas seed cake.
     In this paper, the following aspects of Jatropha oil and its seed protein were studied:
     (1) This study began with research on Jatropha curcas seed oil extraction by cold-pressed–solvent extraction, after experiment and analysis, the better conditions were as follows: the pressure 40MPa, time 120min, temperature 65℃, 10% water content. Under the Conditions, the oil extraction was around 41%, while the residual oil in cold pressed cake was about 28%.Using hexane as solvent, under the conditions: the solvent ratio 1.2, temperature 55℃, time 30min, continuous extracting the cold pressed cake 5 times, the final residual oil in Jatropha curcas seeds was as low as 0.8%.
     (2) After hydration degumming and vacuum dehydration, the acid value of Jatropha curcas seed oil was 15.49 mg KOH/g oil, while the acid value of raw materials for biodiesel preparation using homogeneous base catalyst is required lower than 1.0 mg KOH/g oil, thus there is a need to reduce acid value. This paper studied on the solvent extraction deacidifieing as well as acid-dropping by pre-esterification catalyzed by sulfuric acid. Through single factor experiments and response surface analysis, the optimal solvent deacidifieing process was obtained: alcohol to oil ratio (V/V oil) 2.0:1, water content in Jatropha curcas seed oil 0.08%, extraction temperature 45℃, extracted 5 times for each of 10min.While, as for the method of sulfuric acid pre-esterification deacidifieing, by adding THF as a cosolvent, through single factor experiments and orthogonal analysis, the optimum conditions were obtained as follows: amount of methanol added (V/V oil) 0.85:1, reaction time 45min, reaction temperature 65℃, catalyst loadings (V/V oil) 0.012:1, addition of cosolvent (V/V oil) 0.5:1.
     (3) In order to select the appropriate solvent that can effectively promote the formation of methanol and Jatropha curcas oil homogeneous, the comparisons of the nature contrast of 8 solvent and the ternary phase diagram that formed by the ether or tetrahydrofuran solvent and Jatropha curcas seed oil, methanol in different temperatures were studied, we finally chosed THF as a cosolvent.
     (4) In the conditions when the acid value was effectively reduced by sulfuric acid pre- esterification, we used THF as a cosolvent and NaOH as catalyst, studied the biodiesel process of Jatropha curcas seed oil through methyl esterification. By single factor analysis and orthogonal experimental design, when the amount of methanol added (V/V oil)was 0.56:1, reaction time 18min, reaction temperature 65℃, catalyst loadings (w/w oil) 1% addition of cosolvent (V/V oil) 0.5:1 conditions, a higher conversion rate of methyl esterification was obtained.
     (5) In this paper, alkaline extraction and acid precipitation were employed to extract protein from Jatropha curcas seed meal.After respectively studied the influence of different factors on extraction yield by single factor experiments, and then optimized conditions by orthogonal test, the optimized conditions were obtained as follows: alkaline extraction solid-liquid ratio 1:11, pH 8.5, temperature 55℃, time 100min;acid pH 4.4, temperature 55℃, time 40min.Under the process conditions, the separation yield of Jatropha curcas seed protein was 76.63%, purity of protein isolated reached 81.18%.
引文
[1]邓志军,程红焱,宋松泉.麻疯树种子的研究进展[J].云南植物研究,2005,27(6):605-612.
    [2]刘杰,李黔柱,尹航,等.麻疯树植物资源的研究与开发利用进展[J].西北林学院学报,2007,24(1):105-110.
    [3]郑科,郎南军,彭明俊,等.麻疯树化学成分及利用研究进展[J].西北林学院学报,2007,22(5):140-144.
    [4]何慧书.麻疯树及其开发利用前景[J].中国热带农业,2008,(1):36-37.
    [5]余帅勇,丁贵杰.能源植物麻疯树研究进展[J],贵州林业科技,2009,37(1):49-54.
    [6]唐平,罗建勋,王雪婧.麻疯树综合开发利用研究进展[J].攀枝花科技与信息,2007,32(3):22-28.
    [7]李化,陈丽,等.西南部分地区麻疯树种子油的理化性质及脂肪酸组成分析[J].应用与环境生物学报,2006,12(5):643-646.
    [8]吴开金,万泉,林冠烽,等.不同地区麻疯树籽油的理化性质及脂肪酸组成[J].福建林学院学报,2008,28(4):361-364.
    [9]佘珠花,刘大川,刘金波,等.麻疯树籽油理化特性和脂肪酸组成分析[J].中国油脂,2005,30(5):30-31.
    [10]李维莉,杨辉,林南英,等.可再生能源麻疯树种子油化学成分研究[J].云南大学学报,2000,22(5):324.
    [11] Akintayo E.T.Charcteristics and composition of Parkia biglobbossa and Jatropha curcas oils and cakes[J].Bioresour Technol,2004,92:307-310.
    [12] Foidl N,Foidl G,Sanchez M,et al.Jatropha cuicas L.as a source for the production of biofuel in Nicaragua[J].Bioresour Techn,1996,58:77-87.
    [13] Kumar M S,Ramesh A,Nagalingam B.An experimental comparison of metbods to use methanol and Jatropha oil in a compression ignition engine[J].Biomass and Bioenergy,2003,25:309-318.
    [14] Pramanik K..Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine[J].Renewable Energy,2003,28:239-248.
    [15] Kandpal J B,Madan M.Jatropha curcas:a renew able source of energy for meeting future energy needs[J].Renewable Energy,1995,6:159-160.
    [16] Shah S,Sharma A,Gupta M N.Extraction of oil from Jatropha curcas L.seed kemels by enzyme assisted three phase partitioning[J].Industrial Crops and Products,2004,20:275-279.
    [17]夏九成,刁毅,韩洪波,等.麻疯树资源的综合开发利用[J].攀枝花科技与信息,2007,32(3):29-34.
    [18]萧正春,张卫明,顾龚平,等.生物柴油植物黑皂树开发利用研究[J].中国野生植物资源,2007,26(4):15-18,22.
    [19]张春强,刁其玉,屠焰,等.麻疯树籽实的毒性原理及其脱毒处理方法[J].饲料博览,2009,(5):29-31.
    [20]张春强,刁其玉,屠焰.新型植物蛋白饲料资源-麻疯树粕[J].饲料与畜牧,2009,(1):20-23.
    [21]陈钰,魏琴,唐琳,等.麻疯树营养器官和种子的蛋白质组成及对水分和温度胁迫的反应[J].中国油料作物学报,2003,25(4):98-104.
    [22]李昌珠,蒋丽娟,程树棋.生物柴油—绿色能源[M].北京:北京化工出版社,2004:22-24.
    [23]张良波,李昌珠,欧日明,等.生物柴油产业现状与展望[J].湖南林业科技,2008,35(2):70-73.
    [24]忻耀年.生物柴油在德国和欧洲的发展现状[J].中国油脂,2008,33(4):1-6.
    [25]忻耀年.生物柴油的发展现状和应用前景[J].中国油脂,2005,30(3):49-53.
    [26] Sladmin.生物柴油市场将继续增长[OL].www.oil8.com.cn,2010-2-25.
    [27]陈伟立.油价飘升.生物柴油发展的加速剂[OL].www.china5e.com,2005-07-20.
    [28]吴天.巴西生物柴油和生物汽油等可替代能源已占能源消耗总量的43.8%[N].中国矿业报,2005-11-07.
    [29]王湘南,陈永忠.油料冷榨及在油茶加工中的应用前景[J].湖南林业科技,2006,33(3):93-94.
    [30]刘军海,任慧兰.食用油脱酸新方法研究进展[J].粮食与油脂,2008,(2):1-6.
    [31]刘书成,谢燕,章超桦,等.油脂脱酸新方法研究进展[J].粮油加工,2007,(6):81-84.
    [32] M.Di Serio,R.Teaser,M.Dimiccoli,F Gammarota,M.Nastasi,E.Santacesaria Synthesis of biodiesel via homogeneous Lewis acid catalyst[J],Journal of Molecular Catalysis A:Chemical.2005,239:111-115.
    [33]李秀红,苏印泉,杨芳霞,等.苦楝籽油溶剂萃取降酸工艺对生物柴油质量的影响[J].西北林学院学报,2009,(2):112-114.
    [34] Boocock D G B,Konar S K,Mao V.Fast one phase oil-rich processes for preparation of vegetable oil methyl esters[J].Bicmass and Bioenergy,1996,11(1):43-50.
    [35] Boocock D G B,Konar S K.Phase diagrams for oil/methanol/ether mixtures[J].J.Am.Oil Chem.Soc.,1996,73(10):1247-1251.
    [36]刘世英,包宗宏.助溶剂在生物柴油酯化反应过程中的促进作用[J].中国油脂,2007,32(6):38-42.
    [37] Kim H J,Kang B S.Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst[J].Catalysis Today,2004,93-95:315-320.
    [38] Nelson L A,Foglia A ,Marmer W N.Lipase-catalyzed production of biodiesel[J].J.Am.Oil Chem.Soc,1996,73(9):1191-1195.
    [39] Krisnangkura K,Sinamaharnnop R.Continuous transmethylation of paln oil in an organic solvent[J].J.Am.Oil Chem.Soc,1992,69(2):166-169.
    [40]申勇刚,薛锦峰,郭丰盛.利用共溶剂生产生物柴油试验的初探[J].中国油脂,2007,32(4):55-56.
    [41] Boocock D G B,Konar S K,Mao V.Fast form ation of high-purity methyl esters from vegetable oils[J].J.Am.Oil Chem.Soc,1998,75(9):1167-1172.
    [42] Li L.L.,Du W.Lipase-catalyzed transecterification of rapeseed oils for biodiesel production with a novelorganic solvent as the reaction medium[J].Journal of Molecular Catalysis B:Enzym atic,2006,43(1-4):58-62.
    [43] Nicholas E.L.,Lauren M S.Fast,easy preparation of biodiesel using micro wave heating[J].Energy and Fuels,2006,20(5):2281-2283.
    [44] Vicente G,Martinez M,Aracil J.Integrated biodiesel production:a comparison of different homogeneous catalysts systems[J].Bioresource Technology,2004,92(3):297-305.
    [45]刘爱民,李燕玲,冯婷婷,等.生物柴油产业发展与植物油供求关系分析[J].资源科学,2008,30(4):560-564.
    [46]张涨,华新,柏益尧,等.中国生物柴油原料供应前景研究[J].河南科学,2008,26(8):987-991.
    [47] Hardy J.Green future with biodiesel[J].Green Chemistry,2001,(8):56-58.
    [48] Anon.Filtered used frying fat powers diese fleet[J].J.Am.Oil Chem.Soc.,1982,59:780-781.
    [49] Adams C,Peters J F,Rand M C,et al.Investigation of soybean oil as a diesel fuel extender:endurance tests[J].J.Am.Oil Chem.Soc.,1983,60:1574-1579.
    [50] Ziejewski M,Kaufman K R,Schwab A W,et al.Diesel engine evalution of a nonionic sunflower oil-aqueous ethanol microemusion[J].J.Am.Oil Chem.Soc.,1984,61:1620-1626.
    [51] Schwab A W,Dykstra G J,Selke E,et al.Diesel fuel from thermal decomposition of soybean oil[J].J.Am.Oil Chem.Soc.,1988,65:1781-1786.
    [52] Tsai Wen-tien,Lin Chin-chung,Yeh Ching-wei.An analysis of biodiesel fuel from waste oil in Taiwan[J].Renewable and Sustainable Energy Reviews,2005,77:1-22.
    [53] Z Siti,C L Chao,R V Shaik,et al.A two-step acid-catalyzed process for the production of biodiesel from rice bran oil[J].Bioresour.Technol.,2005,96(17):1889-1896.
    [54]蔡樱英,江映翔,刘维维.我国生物柴油的研究现状分析[J].云南化工,2008,35(1):74-78.
    [55] Barbicri L.,Battclli M G,Stripc F.Ribosome-inactivating proteins from plants[J].Biochim Biophys Acta,1993,1154:237-282.
    [56] Gluck A,Endo Y,Wool I G.Ribosomal RNA identity elements for Ricin Achain recognition and catalysis Analysis with tegraloop mutants[J].J Mol Biol.1992,226:411-424.
    [57] Tumer N E,Hwang D J,Bonness M.C-terminal deletion mutant of pokeweed antiviral protein inhibits viral infection but does not depttrinate host ribosomes[J].Proc.Nail.Acad.Sci.USA,1997,94(8):3866-3871.
    [58] Krishnan R,McDonald K A,Dandekar A M,et al.Expression of recombinant trichosanthin,a ribosome-inactivating protein[J].Intransgenictobacco.Journal of Biotechnology,2002,97:69-88.
    [59] Chen Y,peumans W J,Van Damme E J.The Sambucusnigra type-2 ribosome-inactivating protein SNAI’exhibits in plant antiviral activity in transgenictobacco[J].FEBS Letters,2002,516:27-30.
    [60]刘娟,雷蕾,唐琳,等.麻疯树提取物体外抗病毒和杀菌作用的初步研究[J].时珍国医国药,2009,20(8):1890-1893.
    [61] Hudak K.A,Wang P,and Tumer N E.A novel mechanism for inhibition of transiation by prokeweed antiviral protein:depurination of the capped RNA template[J].RNA,2000,6:369-380.
    [62]王莉江,安成才,陈章良.核糖体灭活蛋白在植物中的作用[J].生物技术通报,2000,(2):1-4.
    [63]单丽波,贾旭.核糖体失活蛋白及其在植物抗真菌病基因工程中的应用[J].生物工程进展,2000,20(6):74-78.
    [64] Dowd P F,Zuo W N,Gillikin J W.Enhanced resistance to Helicoverpa zea in tobacco expressing an activated form of maize ribosome inactivating protein[J].Journal of Agricultured and Food Chemistry,2003,51:3568-3574.
    [65] Wang L J,An C C,Chen Z L.The effects of ribosome-inactivating proteins in plants[J].Shengwu Jishu Tongbao Biotechnology Information,2000,2:1-4.
    [66] Wang J H,Nie H L,Tam S C,et al.Anti-HIV-1 property of trichosanthin correlates with its ribosome inactivating activity[J].FEBS Lett,2002,531(2):295-298.
    [67] Shaw P C,Chan W L,Yeung H W,et al.Minireview:trichosanthin-a protein with multiple pharmacological properties[J].Life Sci,1994,55(4):253-262.
    [68]王建华,郑永唐.天然来源具有抗HIV活性的多肽和蛋白类化合物[J].中国天然药物,2004,2(6):321-326.
    [69] Mcgrath M S,Hwang K M,Caldwell S E,et al.An inhabitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocytes and mononuclear phagocyte lineage[J].Proc Natl Acad Scil USA,1989,86(8):2844-2848.
    [70] Wang J H,Tam S C,Huang H,et al.Sit-directed PEG ylation of trichosanthin retained its anti-HIV activity with reduced potency in vitro[J].Biochem Biophys Res Commun.2004,317:965-971.
    [71] Wang J H,Nie H L,Huang H,et al.Independency of anti-HIV-1 activity from ribosome-inactivating activity of trichosanthin[J].Biochem Biophys Res Commun,2003,302(1):89-94.
    [72] Sun Y,Huang P L,Li J J,et al.Anti-HIV agent MAP30 modulates the expression profile of viral and cellular genes for proliferation and apoptosis in AIDS-related lymphoma cells infected with Kaposi’s sarcoma-associated virus[J].Biochem Biophys Res Commun,2001,287:983-994.
    [73]孙健,吴志全,薛琼,等.天花粉蛋白抑制肝细胞癌转移的实验研究[J].中华肝胆外科杂志,2008,11(4):253-256.
    [74] Huang S,Hung P L,Sun Y.Inhibition of MDA-MB-231 human breast trmor xenografls and HER2 expression by anti-tumor agents GAP31 and MAP30[J].Anticancer Res,2000,20:653-659.
    [75]杨海燕,李荣秀,刘望夷.香樟树种子中两种II型核糖体失活蛋白凝集素活性的研究[J].生物化学与生物物理进展,2004,31(7):650-653.
    [76]胡俊,孙素荣,张智,等.核糖体失活蛋白的应用研究进展[J].新疆大学学报:自然科学版,2007,24(2):204-210.
    [77]林娟,颜钫.麻疯树核糖体失活蛋白的分离纯化和作用机制研究[J].高技术通讯,2002,12(11):36-40.
    [78]魏琴,赖家业,周锦霞,等.干旱胁迫下麻疯树毒蛋白的Western杂交分析[J].北京林业大学学报,2004,26(5):26-30.
    [79]肖建辉,刘宜锋.超滤法脱除麻疯树籽饼粕毒蛋白的研究[J].中国饲料,2009,(15):36-37,40.
    [80]王晓东.生物柴油的制备技术及应用现状[J].工业催化,2008,16(8):38-42.
    [81]韩秀丽,黄晓敏.生物柴油生产技术现状[J].现代化工,2007,27:129-133.
    [82]张丽霞,金青哲,王兴国.合成生物柴油的油/甲醇/醚反应体系的选择[J].中国油脂,2008,33(3):42-45.
    [83]胡玮,曹红燕,李建平.用Origin绘制氯仿-醋酸-水三元液系相图[J].实验技术与管理,2007,(3):46-48.
    [84]刘伟伟,苏有勇,张无敌,等.生物柴油中甘油含量测定方法的研究[J].可再生资源,2005,(5):14-20.
    [85]王赫麟,张无敌,尹芳.生物柴油中甘油含量测定及甘油分离提纯工艺研究[J].安徽农学通报,2007,(12):181-182.
    [86]王秀娟,熊智,朱晓琴.麻疯树应用研究进展[J].西南林学院学报,2008,28(2):36-40.
    [87]李远发,梁葵华,王凌晖.麻疯树资源分布及其应用研究[J].广西农业科学,2009,40(3):311-314.
    [88] Oloyo RA,Ilelaboye NOA.Studies on the production of protein Hydrolysates from palm kernel meal and Jatropha curcas seed meal[J].Journal of Food Science and Technology,2003,40(3):328-332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700