草本纤维生物提取关键酶基因克隆与表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提取草本纤维是将草本原料中的纤维与非纤维物质分离开来的过程。草本纤维生物提取是利用微生物所分泌的酶降解原料中非纤维素物质,达到使纤维素分离的目的。草本纤维生物提取效果的好坏,关键在于菌种的优劣。自然界中能降解非纤维素类物质的微生物种类极多,但是能直接用于草本纤维提取的优良菌株很少。如何构建优良的草本纤维提取菌种是一个关键问题。本论文在已有的研究基础上,对草本纤维生物提取关键酶的新基因进行了发掘、对甘露聚糖酶基因的缺失表达、构建复合酶表达体系进行了研究,为草本纤维菌种的成功构建奠定基础。
     本论文获得的主要结果如下:
     用水解圈法对本实验室的一些产果胶酶菌种资源进行了筛选,同时测定这些菌株发酵液果胶酶酶活,结果筛选出分泌果胶酶能力强的欧文氏杆菌CXJZ-166。参考GenBank上已经登录的果胶酶基因序列,设计引物,采用PCR扩增的方法,从欧文氏杆菌CXJZ-166基因组DNA中克隆了果胶酶基因。该基因序列已经提交NCBI数据库,登录号:EU597234。该果胶酶基因序列全长877bp,共编码277个氨基酸。该果胶酶基因所编码蛋白质预测的二级结构表明,其主要的二级结构是β折叠,无规卷曲、α螺旋的含量很低。
     采用缺失表达的方法,对甘露聚糖酶基因进行了系统的缺失表达研究,未见他人的相关报道。结果表明,甘露聚糖酶基因3′单侧缺失最大可以删除387bp(对应129aa)不会使表达产物甘露聚糖酶丧失活性,缺失序列占源甘露聚糖酶基因序列长度的34%;甘露聚糖酶基因5′单侧缺失最多可以删除291bp(对应97aa),剩余部分序列表达产物依然具有甘露聚糖酶活性,删除的片段长度占全长的25.6%;甘露聚糖酶基因5′、3′两侧同时缺失,5′端删除234bp(78aa),3′端删除387bp(129aa),表达产物具有甘露聚糖酶活性,这是本实验所找到的最小的且具有甘露聚糖酶活性的序列片段,即为源甘露聚糖酶基因序列长度的45.1%。
     采用并联模式尝试构建复合酶表达体系,是一次新的策略,据现有资料来看,尚属首次。首先构建单质酶的复合表达载体,再通过热激转化法,将单质酶载体整合同一表达宿主中。将两种单质酶载体整合到同一宿主,获得了P-M、P-X、M-X表达体系,结果表明,一种单质酶的表达并不影响另外一种酶。将三种单质酶载体整合到同一宿主,获得的P-M-X表达体系同时分泌果胶酶、甘露聚糖酶、木聚糖酶三种酶,与现有生产用的菌株相比,果胶酶酶活相同,甘露聚糖酶酶活提高41.7%、木聚糖酶酶活提高了350%。脱胶实验表明,P -M-X的脱胶效果远远不如现在生产上所用的菌株。
The extracting of herbaceous fiber is a process to make cellulose apart from non-cellulose. The process is completed by enzyme produced by microbiology. The effect of bio-extracting of herbaceous fiber depends on the strain. Though there are various types microbiology that can secreting enzyme to degrade non-cellulose in the nature, a few kind of microbiology can be directly applied to extracting of herbaceous fiber. The key problem is how to improve the characters of the strain. The paper is on the key enzyme for bio-extracting of herbaceous fiber, including three parts: novel gene, lose expression and constructing compound enzyme expression system.
     By comparison the clearing halos and the enzyme activity, CXJZ-166 was the strain of pectinase high, which was the most suitable strain for cloning pectinase gene. By PCR, a fragment of DNA were amplified from the the genome DNA of CXJZ-166.The PCR product were linked with pMD 18-T vector, transformed into E.coli JM109. Clear halos were made by positive clones in pectinase selecting plate. The DNA fragment is 877bp,coding 277aa, had been registered in Genbank under the accession number of EU597234.
     Lose expression ofβ-mannanase had been tested systematically. The DNA sequence were shorten to 513bp (the full length 1134bp) in 3′end, accounting for 45% of the full length ,which hasβ-mannanase activity. 291bp had been deleted in 5′end, accounting for 25.6%, the fragment had the mannanase activity,. If some fragment ofβ-mannanase gene were deleted in two ends at the same time, 234bp in 5′and 387bp in 3′could be truncated. This was the most short fragment with mannanase activity in the paper, accounting for 45.1%.
     Some kinds of enzyme were integrated into the same strain to secret kinds of enzyme simultaneously. Three kinds of two-enzyme strain were acquired in bio-extracting of herbaceous fiber,which were pectinase, mannanase and xylanase. Three kinds strain producing two kinds of enzyme had been acquired, which were Pectinase-Mannanase strain, Pectinase-Xylanase strain and Mannanase-Xylanase strain. P-M-X compound enzyme expression can secret pectinase,mannanase and xylanase. Mannanase and xylanase activity in fermented liquid of P-M-X were increased by 41.7% and 350% than the strain for production now.
引文
1.艾尼瓦尔,付时雨,詹怀宁.白腐菌预处理芦苇制浆的研究[J].造纸科学与术,2002,21(5):4-9.
    2.包怡红,刘伟丰,毛爱军,等.耐碱性木聚糖酶高产菌株的筛选、产酶优化及其在麦草浆生生物漂白中的应用[J].农业生物技术学报,2005,13(2):235-240.
    3.曹要玲,白晓婷,刘辉,等.一株产碱性木聚糖酶的芽胞杆菌的分离鉴定及其相关研究[J].畜牧与兽医,2006,38(9):11-14.
    4.成莉凤,刘正初,张运雄,等.CXJZ11-01菌株分泌中性β-甘露聚糖酶的研究[J].中国麻业科学,2007,29(5):264-269.
    5.邓兵兵,熊凌霜.外源蛋白在芽孢杆菌中分泌表达的研究进展[J].生物工程进
    6.丁宏标,乔宇,陈小兵.β-甘露聚糖酶的基因工程技术研究[J].新饲料,2006,(10):10- 12.
    7.高必达.真菌果胶酶的分子生物学研究进展[J].生物工程进展,2000,20(6):14-18.
    8.顾红燕,齐鸿雁,张洪勋.高大毛霉制取果胶酶发酵条件实验[J].过程工程学报,2002,2(3):252-256.
    9.顾佳佳,刘正初,张运雄,等.CXJZ95-198菌株果胶酶活力检测方法研究[J].中国麻业科学2006,28(6):309-312.
    10.郝利民.国内外苎麻微生物脱胶研究概述[J].中国麻作,1983,(3):28-32.
    11.胡春霞,陆平,李卫芬,等.短芽孢杆菌耐碱性木聚糖酶(xylB)的分子生物学研究[J].食品与生物技术学报,2009,28(1):86-90.
    12.胡平平,付时雨,惠生.固体培养条件下外加营养碳源及微量元素对贝壳状革耳菌酶系产生的影响[J].纤维素科学与技术,2001,9(4):44-50.
    13.黄峰,陈嘉翔,等.纸浆造纸工业中的微生物及其酶[J].中国造纸学报,1997,12:109- 115.
    14.黄俊丽,王贵学.脱胶关键酶基因的克隆及其在黑曲霉中的整合表达[J].微生物学通报,2005,32(3):62-67.
    15.李彩霞,房桂干,刘书钗.木聚糖酶活的具体测定方法[J].林产化工通讯,2001,35 (1):20-23.
    16.李富伟,汪勇,汤海鸥.重组毕赤酵母工程菌产木聚糖酶酶学性质的研究[J].这个畜牧杂志,2009,45(3):43-45,61.
    17.李剑芳,邬敏辰,夏文水.微生物β-甘露聚糖酶的研究进展[J].江苏食品与发酵,2004(3):4-9.
    18.李松瑜,陈小玲,王军军,等.β-甘露聚糖酶在毕赤酵母中的组成型分泌表达[J].生物技术通讯,2009,20(1):12-14.
    19.李忠福,许建国.分光光度法测定果胶酶活力方法的研究[J].黑龙江医药,2002(6):428-430.
    20.林加涵,魏文铃,彭宪宣.现代生物学实验(下册)[M].北京:高等教育出版社,施普林格出版社,2001.10:5-7.
    21.刘兰英,等.果胶酶的分离提纯及某些性质研究[J].吉林大学自然科学学报,1989(2):96-100.
    22.刘连成,沈标,陆健,等.地衣芽孢杆菌碱性果胶酶基因PelA的克隆与原核表达[J].工业微生物学,2008,38(1):24-29.
    23.刘瑞田,曲音波.木聚糖酶分子的结构区域[J].生物工程进展,1998,18(6):26-28,51.
    24.刘正初,周裔彬.罗布麻韧皮非纤维生物降解的工艺基础[J].中国麻业,2002,24(1):30- 33.
    25.刘正初.我国主要麻类纤维加工领域的发展前景与策略[C].北京: 21世纪农业科技发展研讨会,1996,10.
    26.刘正初.用科学发展观看我国草本纤维产业前景[J].中国麻业科学,2007,29(增刊):68-71.
    27.龙健儿,陈一平.β-甘露聚糖酶的研究现状[J].微生物学杂志,1998,18(3):44-49.
    28.马鑫,赵仲麟,李亮,等.芽孢杆菌β-甘露聚糖酶基因的克隆及表达[J].生物技术通报,2009,(2):77-81.
    29.马延和,田新玉,周培谨,等.碱性β-甘露聚糖酶的产生条件及一般特性[J].微生物学报,1991,31(6):43—48 .
    30.毛绍名,章怀云.β-甘露聚糖酶分子生物学研究进展[J].生物技术通讯,2006,17(6):99
    5-997.
    31.聂国兴.底物浓度、DNS量对木聚糖酶活性测定结果的影响[J].饲料工业,2002,23 (11) :
    24-25.
    32.皮雄蛾,费笛波,王龙英,等.黑曲霉AS6034酸性β-甘露聚糖酶的性质研究[J].酶制剂与生态制剂,2006,2:51-52.
    33.石君.欧文氏杆菌CXJZ11-01基因组文库构建及木聚糖酶基因克隆[D].中国农业科学院,2008.
    34.孙庆祥.麻类作物的微生物脱胶(综述)[J],中国麻作,1981(1):38-41.
    35.谭秀山.CXJZ95-198菌株分泌果胶酶和半纤维素酶的活性研究及果胶酶的分离纯化[D].乌鲁木齐:新疆农业大学,2004.
    36.唐朝枢,齐永芬.蛋白质种类的多样性及功能复杂性[J].国外医学·生理病理科学与临床分册,2004,24(1):1-4.
    37.田新玉,徐毅,马延和,等.嗜碱芽孢杆菌N16-5β-甘露聚糖酶的纯化与性质[J].微生物学报,1993,33(2):115-121.
    38.王镜岩,朱圣庚,徐长法.生物化学(第三版)[M].北京:高等教育出版社,2002:352-380.
    39.王炎松,郭安平,章霄云,等.果胶酶基因片段的克隆及其序列分析[J].生物技术通报,2006,(增刊):381-386.
    40.吴襟,何秉旺.诺卡氏放线菌β-D-甘露聚糖酶的化学修饰及活性中心的研究[J].中国生物化学与分子生物学学报,2000,16(2):227-230.
    41.吴襟,何秉旺.诺卡氏菌形放线菌β-甘露聚糖酶的纯化和性质[J].微生物学报,2000,40(1):69-74.
    42.吴襟,何秉旺.微生物β-甘露聚糖酶[J].微生物学通报,1999,26(2):134-136.
    43.吴萍,史钧,骆丙国.真菌木聚糖酶产生菌的筛选及酶学性质研究[J].食品科学,2009,30(1):159-163.
    44.谢占玲,汪永录,赵国珍,等.产木聚糖酶白地霉培养特性及部分纯化的酶学特性[J].菌物学报,2009,28(2):253-260.
    45.徐君飞.欧文氏杆菌变异菌株CXJZ11-01分泌木聚糖酶的分离纯化及其酶学性质研究[D].新疆农业大学,2007.
    46.徐燕,田宝玉,姜贤章,等.木聚糖酶高产菌株的鉴定极其产酶条件的优化[J].生物技术,2009,19(1):51-55.
    47.杨清香,李学梅,李用芳.嗜碱芽孢杆菌NTT33β-甘露聚糖酶的特性研究[J].河南师范大学学报,1999,27(3):70-74.
    48.余红英,王炜军,孙远明,等.枯草芽孢杆菌β-甘露聚糖酶活性中心氨基酸的化学修饰[J].工业微生物,2005,35(1):21-23.
    49.余红英,杨幼慧,孙元明,等.枯草芽孢杆菌SA-22β-甘露聚糖酶的纯化及其特性[J].生物工程学报,2003,19(3):327.
    50.袁勤生,赵健.酶与酶工程[M].上海:华东理工大学出版社,2005:152-158.
    51.张飞.果胶酶活力的测定方法研究[J].西北农业学报,2004(4):134-137.
    52.张海燕,吴天祥.微生物果胶酶的研究进展[J].酿酒科技,2006,(9):82-84.
    53.张敏,江正强,李里特.重组海栖热袍菌极耐热甘露聚糖酶的纯化和性质研究[J].微生物学通报,2008,35(10):1565-1571.
    54.张宁,童步章.酶在纺织工业中应用有利于环保[J].国外纺织技术,2003(5):40-42.
    55.张盆,胡惠仁,等.生物制浆的探讨[J].黑龙江造纸,2005,(3):26-28.
    56.张闻,汪立平,汪之和.甘露聚糖酶产生菌F1-5的鉴定[J].安徽农业科学,2009,37(4):14 69-1470,1478.
    57.张占斌,张辉.青霉QM-1产酸性β-甘露聚糖酶液体发酵条件研究[J].安徽农业学,2009,37(2):537-539.
    58.周海燕,董蕾,田梅,等.甘露聚糖酶Man23的化学修饰及活性必需基团测定[J].激光生物学报,2007,16(6):717-721.
    59.周海燕,饶力群,吴永尧.甘露聚糖酶man23基因的重组及其在短短芽孢杆菌中的表达[J].浙江大学学报(农业与生命科学版),2008,34(4):389-394.
    60.周海燕,吴永尧.点突变对枯草芽孢杆菌甘露聚糖酶结构和功能的影响[J].高等函授学报(自然科学版),2008,22(1):9-12.
    61.周海燕,赵文魁,吴永尧.甘露聚糖酶的多样性分析[J].生物技术通报,2008,(2):60-63,67.
    62.周海燕,周大寨,周毅峰,等.高活性魔芋葡甘聚糖酶产生菌B23的鉴定及培养条件优化[J].湖北农业科学,2005,(4):67-70.
    63.朱劼.β-甘露聚糖酶的研究现状[J].安徽农业科学,2007,35(19):5678-5679.
    64.诸葛斌,堵国成,沈微,等.碱性果胶酯裂解酶工程菌的构建[J].应用与环境生物学报2006,12(4):547~549.
    65. Aguilar G, Huirton C. Constitutive exo-pectinase produced by Aspergillus sp.CH-Y-1043 on different carbohydrate source [J].Biotechnol Lett 1990,12:655-660.
    66. Akino T., Kato C. Two Bacillus Mannanases Having Different COOT Termini Are Produced in E.coli Carrying pMAH5 [J]. Applied and Environmental Microbiology,1989,55:3178- 3183.
    67. Akino, T., N. Nakamura, and K. Horikoshi. Characterization of threeβ-mannanases of an alkalophilic Bacillus sp. Agric. Biol. Chem. 1988,52:773–779.
    68. Alkorta I,Garbisu C, Llama MJ, et al. Industrial applications of pectic enzymes-a review[J].Process Biochem,1998.
    69. Antonio Di Pietro and M. Isabel G. Roncero.Cloning, Expression,and Role in Pathogenicity of pg1 Encoding the Major Extracellular Endopolygalacturonase of the Vascular Wilt Pathogen Fusarium oxysporum[J].MPMI,1998,11(2):91-98.
    70. Anwar Sunna, Moreland D. Gibbs , et al. A novel thermostable multidomain 1,4-β- xylanase from“Caldibacillus cellulovorans”and effect of its xylan-binding domain on enzyme activity[J].microniology and Growth,2000,(146):2947-2955
    71. Arisan-Atac I.,Hodits R.,Ristufek D,et a1.Purification and characterization of aβ-mannanase of Trichoderma reesei C-30[J].Appl Microbiol Biotech,1993,(39):58-62.
    72. Assis SA, Ferreira BS, Fernandes P, et al.Gelatin immobilized pectinmethylesterase for productionof low methoxyl pectin[J].Food Chem 2004,86:333-337.
    73. Ball A S, McCarthy A J. Production and properties of xylanase from actinomycetes[J]. J. Appl. Bacteriol., 1989, 66(4): 439~444.
    74. Belen Patino, Martha Lucia Posada,Covadonga Vazquez, et al. Control of polygalacturonase synthesis in Fusarium oxyspotum f.sp. radicis lycopersici[J].Can. J. Microbiol.,1997,43(11): 1084-1090.
    75. Bergquist P, et al. Expression of xylanase enzymes from thermophilic microorganisms in fungal hosts [ J]. Extremophiles, 2002, 6(3): 177-84.
    76. Bernard Henrissat A. Classification of glycosyl hydrolases based on amino acid sequence similarities[J].Biochem J,1991,280:309-316.
    77. Bourgault R, Bewley JD.Variation in its C-terminal amino acids determines, whether endo-beta-mannanase is active or inactive in ripening tomato fruits of different cultivars[J].Plant Physiol,2002,13(3):l254-l262.
    78. C J B van der Vlugt-Bergmans,P J A Meeuwsen,A G J Voragen,et al. Endo-Xylogalacturonan Hydrolase, a Novel Pectinolytic Enzyme[J].Applied and Environmental Microbiology,2000, 66(1) 36-41.
    79. Cann I K,Kocherginskaya S,King M,et a1.Molecular cloning,sequencing,and expression of a novel multidomain mannanase gene from Thermoanaerobacterium polysaccharolyticum[J].Jourmal of Bacteriology,1999,181(5):1643-1651.
    80. Cao J, Zheng L, Chen S. Screening of pectinase producer from alkalophilic bacteria and study on its potential application in degumming of rammie[J].Enz. Microbiol. Technol.,1992, 14: 1013-1016.
    81. Carrington CMS, Vendrell M, Domynguez-Puigjaner E. Characterisation of an endo-(1,4)-β-mannanase (LeMAN4) expressed in ripening tomato fruit[J]. Plant Sci,2002,63:599.
    82. Chaudhary P, Deobagkar DN. Characterization of cloned endoxylanase from Cellulomonassp. NCIM2353 expressed in Escherichia coli[J].Curr Microbiol,1997,34:273-279.
    83. Chen, C.-C., R. Adolphson, J.F. D. Dean, et al. Release of lignin from kraft puip by a hyperthermophilic xylanase from Thermotoga maritime. Enzyme Microb.Technol. 1997,20:39-45.
    84. Cole C, Barber JD and Barton GJ. (2008) The Jpred 3 secondary structure prediction server, Nucleic Acids Res. doi:10.1093/nar/gkn238
    85. Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases [ J]. FEMS Microbiol Rev, 2005, 29 (1):3-23.
    86. Coughlan M P, Hazlewood G P.β-1,4-D-xylan-degrading enzyme system: Biochemistry, molecular biology and applications[J].Biotechnol Appl Biochem,1993,17:259-289.
    87. Cuff, J. A. and Barton, G. J. (1999) Evaluation and Improvement of Multiple Sequence Methods for Protein Secondary Structure Prediction, PROTEINS: Structure, Function and Genetics 34:508-519
    88. Cuff, J. A. and Barton, G. J. (2000) Application of Enhanced Multiple Sequence Alignment Profiles to Improve Protein Secondary Structure Prediction, PROTEINS: Structure, Function and Genetics 40:502-511
    89. Cuff, J. A., Clamp, M. E., Siddiqui, A. S., Finlay, M. and Barton, G. J. (1998) Jpred: A Consensus Secondary Structure Prediction Server, Bioinformatics 14:892-893
    90. Decelle B, Tsang A, Storms R K. Cloning, functional expression and characterization of three Phanerochaete chrysosporiumendo-1,4-β-xylanases[J].Curr Genet,2004,published online.
    91. DIANA IRWIN, ELYSE D.JUNG,AND DAVID B.WILSON.Characterization and Sequence of a Thermomonospora fusca Xylanase [J]. Applied and Environmental Microbiology,1994, 60(3):763-770.
    92. Ding Fengping, Hidetaka Noritomi, Kunio Nagahama. Concentration of Alkali ne Pectic Lysase with Ultrafiltration process [J]. Membrane Science and Technology,2001 (6):53-58.
    93. Dominguez R, Souchon H, Spinelli S, et al. A common protein fold and similar active site in two distinct families ofbetaglycanases [J].Nat Struct Biol,1995, (2): 569-576.
    94. EspinarMTF, Valles S, Pinaga F, et al. Construction of anAspergillus nidulansmulticopy transformant for clnB gene and its use in purifying the minor X24xylanase[J].Appl Microbiol Biotechnol,1996,45:338-341.
    95. Eva Stratilova, Maria Dzurova,Oskar Markovie, et al.An essential tyrosine residue of Aspergillus polygalacturonase[J].FEBS Letters,1996,382(1-2):164-166.
    96. Fabiano de Aquino Ximenes, MarceloValle de Sousa, Jurgen Puls,et al. Purification and characterization of a low-molecular-weight xylanase produced by Acrophialophora nainiana[J].Curr Microbiol,1999,38:18-21.
    97. Filichkin S A, Leonard J M,Monteros A, et a1.A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development [J].PlantPhysiology,2004,3:1080-1087.
    98. FQ de Paula Silveira, MV de Sousa, CAO Ricart, et al. A new xylanase from a Trichoderma harzianum strain[J].J Industrial Microbiol Biotechnol, 1999, 23:682-685.
    99. G W Black, G P Hazlewood, S J Millward-Sadler, et al. A modular xylanase containing a novel non-catalytic xylan-specific binding domain[J].Biochem J,1995,307(Pt1):191-195.
    100. Gallardo O, Diaz P, Pastor F I J. Characterization of a Paenibacilluscell-associated xylanase with high activity on aryl-xylosides: a new subclass of family 10 xylanases[J].Appl Microbiol Biotechnol,2003,61:226-233.
    101. Gessesse A, MamoG. Purification and characterization of an alkaline xylanase from alkaliphilic Micrococcussp. AR-135[J].J Industrial Microbiol Biotechnol,1998,20:210-214.
    102. Grange D C L, Claeyssens M, Pretorius I S, et al. Coexpression of the Bacilluspumilusβ-xylosidase (xynB) gene with theTrichoderma reeseiβ-xylanase 2 (xyn2) gene in the yeastSaccharomyces cerevisiae[J].Appl Microbiol Biotechnol,2000,54:195-200.
    103. Gummadi S N, Panda T. Purification and biochemical properties of microbial pectinases-/a review[J].Process Biochemistry,2003, 38: 987-996.
    104. Guneet Kaur, Sanjeev Kumar,T Satyanarayana. Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis [J].Bioresource Technology, 2004, 94(3):239-243.
    105. Hadj-Taieb N,Ayadi M,Trigui S, et al. Hyper production of pectinase activities by fully constitutive mutant(CT1)of Penicillium occitanis[J].Enzyme Microbial Technol 2002,30:662- 666.
    106. Hagglund P, Eriksson T, Collen A, et al. A cellulose-binding module of the Trichoderma reeseiβ-mannanase Man5A increases the mannan-hydrolysis of complex substrates[J].J Biotechnol,2003,101:37
    107. Haltrich D, Nidetzky B, Kulbe K D, et al. Production of fungal xylanases[J]. Bioresour. Technol., 1996, 58(2): 137~161.
    108. Harris G W, Jenkins JA, Connerton I, et al. Structure of the catalytic core of the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites [ J]. Structure, 1994, (2): 1107-1116.
    109. Hasunuma T, Fukusaki EI, Kobayashi A. Methanol production is enhanced by expression of an Aspergillus niger pectin methylesterase in tobacco cells[J].J Biotechnol 2003,106:45-52.
    110. Heidorne F O, Magalhes P O, Ferraz A L, et al. Characterization of hemicellulases and cellulases produced byceriporiopsis subvermisporagrown on wood under biopulping conditions [J]. Enzyme Microb. Technol., 2006, 38(3~4): 436~442.
    111. Henk A Schols, Edwin J Bakx, Dick Schipper, et al. A xylogalacturonan subunit present in the modified hairy regions of apple pectin [J].Carbohydrate Research, 1995,279: 265-279.
    112. Henrissat A B. Classification of glycosyl hydrolases based on amino acid sequence similarities [J]. Biochem. J., 1991, 280(3): 309~316.
    113. Hiroyuki N, Gee OH, Bradford KJ. A germination-specific endo-β-mannanase gene is expressed in the micropylar endosperm cap of tomato seeds [J]. Plant Physiol, 2000,(1):231-235.
    114. Hogg D.Pell G, Dupree P, et al. The modular architecture of Cellvibrio japonicus mannanase in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation[J].Biochemical Journal,2003,371:l027-l043.
    115. Homrichhausen TM, Hewitt JR, Nonogaki H. Endo-β-mannanase activity is associated with the completion of embryogenesis in imbibed carrot (Daucus carota L.)seeds[J].Seed Sci Res,2003,13:219
    116. Hrmova M, Biely P, Vrsanska M. Specificity of cellulase andβ-xylanase induction intrichoderma reesei QM 9414 [J]. Arch. Microbiol., 1986, 144(3): 307~311.
    117. Innocenzo MD, Lajalo FM. Effect of gamma irradiation on softening changes and enzyme activities during ripening of papaya fruit [J].J Food Biochem 2001, 25:19-27.
    118. JW David, Gibbs MD, Bergquist PL. Expression and secretion of a xylanase from the extreme thermophile, Thermotogastrain FjSS3B.1 in Kluyveromyces lactis [J]. Extremophil- es,1998,2:9-14.
    119. J. P. Wubben, W. Mulder, A. ten Have, et al. Cloning and Partial Characterization of Endopolygalacturonase Genes from Botrytis cinerea [J].Applied and Environmental Microbiology,1999,65(4):1596-1602.
    120. John S. Scott-Craig, Yi-Qiang Cheng, et al.Targeted Mutants of Cochlibolus carbonum Lacking the Two Major Extracellar Polygalacturonases [J].Appl Environ Microbiol,1998,64 (4):1497-1503.
    121. Johnson, K.G., Ross, N.W. Enzymic propertities ofβ-mannanase from Polyporus versicolor [J]. Enzyme and Microbial Technology, 1990,12:960- 964.
    122. Kapoor M, Beg Q K, Bhushan B, et al. Production and partial purification and characterization of a thermo-alkali stable polygalacturonase from Bacillus sp. MG-cp-2[J].Pr- ocess Biochemistry,2000, 36: 467-473.
    123. Kashyap D R, Vohra P K, Chopra S, et al.Applications of pectinases in the commercial sector: a review[J].Bioresource Technology,2001, 77: 215-227.
    124. Khanongnuch C,Ooi T, Kinoshita S.Cloning and nucleotide sequence ofβ-mannanase and cellulose genes from Bacillus sp.5H [J].Microbiology & Bioteehnology,1999.15:249-258.
    125. Kimura T, Mizutani T, TanakaT, et al. Molecular breeding of transgenicrice expressing a xylanase domain of thexynAgene fromClostridium thermocellum [J].Appl Microbiol Biotechnol,2003,62:374-379.
    126. Kittura F S, Kumara A B V, Gowdab L R, et al.Chitosanolysis by a pectinase isozyme of Aspergillus niger-A non-specific activity[J].Carbohydrate Polymers,2003, 53: 191-196.
    127. Kluepfel D, Vets-Menta S, Aujmont F, et al. Purification and characterization of a new xylanase (xylanase B) [J].Biochem. J., 1990, 267(1): 45~50.
    128. Paul J,Varma A K. Influence of sugars on endoglucanase andβ-xylanase activities of a bacillus strain[J]. Biotechnol. Lett., 1990, 12(1): 61~64.
    129. Kulkarni N, Shendye A, Rao M. Molecular and biotechnological aspects of xylanase[J]. FEMS Microb. Rev., 1999,23(4): 411~456.
    130. Kuno A, Shimizu D, Kaneko S, et a.l Significant enhancement in the binding of p-nitrophenyl-beta-D-xylobioside by the E128H mutant F/10 xylanase from Streptomyces olivaceoviridisE-86 [ J]. FEBS Lett, 1999, 45 (3): 299-305.
    131. Lang C, Dornenburg H. Perspectives in the biological function and the technological application of polygalacturonases [J].Appl Microbiol Biotechnol, 2000, 53:366-375.
    132. Laurence Fraissinet-Tachet, Pascale Reymond-Cotton·Michel Fevre. Characterization of a multigene family enconding an endopolygalacturonase in Sclerotinia sclerotiorum[J].Curr Genet,1995,29(1):96-99.
    133. Li X T, Jiang Z Q, Li L T, et al. Characterization of a cellulase-free, neutral xylanase from thermomyces lanuginosus CBS 288·54 and its bio-bleaching effect on wheat straw pulp[J]. Bioresour. Technol., 2005, 96(12): 1370~1379.
    134. Liu Z C,Pcng Y D.Study on techniques of bio--pulping based on kenaf bark/Eulaliopsis binala.In:lnternational Development of and Allied Fibers.Minneapolis:CCG International,2004:311-315.
    135. M M H Huisman, H A Schols, A G J Voragen. Enzymatic degradation of cell wall polysaccharides from soybean meal [J].Carbohydrate Polymers, 1999,38:299-307.
    136. M. L. T. M. Polizeli, A. C. S. Rizzatti, R. Monti, et al. Xylanases from fungi: properties and industrial applications[J]. Appl microbial Biotechnol,2005,67(5):577-591.
    137. M.Dolores Huertas-Gonzalez, M. Carmen Ruiz-Roldan·Fe I. Garcia Maceira, M. Isabel G. Roncero·Antonio Di Pietro. Cloning and characterization of pl1 enconding an in planta-secreted pectate lyase of Fusarium oxysporum [J].Curr Genet,1999,35:36-40.
    138. Ma Y H, Xue Y F,Dou Y L, et a1.Characterization and gene cloning of a novel mannanase from alkaliphilic Bacillus sp.N16-5[J].Extremophiles,2004,8(6):447-454.
    139. Maldonaldo M S, Saad A M S. Production of pectinesterase and polygalacturonase by Aspergillus niger in submerged and solid state systems[J].J Ind Microbiol Biotechnol 1998,20:34-38.
    140. MCCLEARY B V.β-mannanase[J].Methods in Enzymology,1988,160:596-610.
    141. Michael G. Paice, Robert Bourbonnais, Michel Desrochers, et al. A xylanase gene from Bacillus subtilis: nucleotide sequence and comparison with B. pumilus gene [J]. Arch Microbiol, 1986,144:201-206.
    142. Mmarraccinni P, Rogers W J,Allard C,et a1.Molecular and biochemical characterization of endo-β-mannanases from germinating coffee(coffea arabica)grains[J].Planta,2001,213:296-308.
    143. Mondou F, Shareck F, Morosoli R, et al. Cloning of the xylanase gene of Streptomyces Lividans.[J]. Gene, 1986; 49(3):323-329.
    144. N.B.Pau1, S.K.Bhattacharya. Microbial degumming of raw ramie fiber [J].The Indian Textile Journa1.1980(10).
    145. Nakamura M, NagamineT, Harada C, et al. Expression ofRuminococcus albusxylanase gene (xynA) inStreptococcus bovis12-U-1[J].Curr Microbiol,2003,47:71-74.
    146. Narang S, Sahai V, Bisaria V S. Optimization of xylanase production bymelanocarpus albomycesIIS-68 in solid state fermentation using response surface methodology [J]. J. Biosci. Bioeng., 2001, 91(4): 425~427.
    147. Pantaleone D, Yalpani M, Scollar M. Unusual ssusceptibility of chitosan to enzymic hydrolysis[J].Carbohydrate Research,1992,237:325-332.
    148. Paul J, Varma A K. Influence of sugars on endoglucanase andβ-xylanase activities of a bacillus strain [J]. Biotechnol. Lett., 1990, 12(1): 61~64.
    149. Perez-Avalos O P, Teresa P, Ignacio M, et al. Induction of xylanase andβ-xylosidase incellulomon as fravigena growing on different carbon sources [J]. Appl. Microbiol. Biotechnol., 1996, 46(4): 405~409.
    150. Petrescu I, Brasseur J L, Chessa J P, et al. Xylanase from the psychrophilic yeast Cryptococcus adeliae[J].Extremophiles,2000,4:137-144.
    151. Piccoli-Valle R H, Passos F J V, Brandi I V, et al. Influence of different mixing and aeration regimens on pectin lyase production by Penicillium griseoroseum [J].Process Biochemistry, 2003, 38: 849-854.
    152. Polizeli M L, Rizzatti A C, Monti R, et al. Xylanases from fungi properties and industrial applications [J]. Appl Microbiol Biotechnol 2005, 67(5): 577-91.
    153. Prade R A, Zohan D, Ayoubi P, Mort A J. Pectins, pectinases and plant-microbe interactions[J].Biotechnol Genetic Eng Rev 1999,16:361-391.
    154. Puchart V,V rsanska M,Svoboda P, et al. Purification and characterization of two forms of endo-beta-1,4-mannanase from a thermotolerant fungus , Aspergillus fumigatus IMI 385708(formerly Thermomyces lanuginosus IMI 158749)[J].Biochim Biophys Acta,2004: 1674(3):239-250.
    155. Raquel A, Carolina A, Emilia C, et al. Stability and chemical modification of xylanase from aspergillussp.[J]. Biotechnol. Appl. Biochem., 1997, 25(1): 19~27.
    156. Reid I, Richard M. Purified pectinase lowers cationic demand in peroxide-bleached mechanical pulp[J].Enzyme Microbial Technol 2004,34:499-504.
    157. Rosales E, Couto S R, Sanroman A.New uses of food waste: application to laccase production by Trametes hirsute[J].Biotechnology Letters,2002,24:701-704.
    158. S Gao, GH Choi, L Shain , et al.Cloning and targeted disruption of enpg-1, encoding the major in vitro extracellular endopolygalacturonase of the chestnut blight fungus,Cryphonectr- ia parasitica[J].Appl. Environ. Microbiol., 1996,62(6):1984-1990.
    159. Saha B C. Xylanase from a newly isolatedFusarium verticillioidescapable of utilizing corn fiber xylan [J].Appl Microbiol Biotechnol,2001,56:762-766.
    160. Sakka K, Kojima Y, Kondo T, et al. Nucleotide sequence of the Clostridium stercorarium xynA gene enconding xylanase A: idification of catalytic and cellulose binding domains[J].Biosci Biotechnol Biochem,1993,57:273~277.
    161. Semenova MV, Grishutin SG, Gusakov AV, et al.Isolation and properties of pectinases from the fungus Aspergillus japonicus.Biochemistry 2003,68:559-569.
    162. Setati M E,Ademark P,van Zyl W H, et a1.Expression of the Aspergilus aculeatus endo-beta-1,4-mannanase encoding gene(man1) in Saccharomyces cerevisiae and characterization of the recombinant enzyme[j].Protein.Expr.Purif.,2001,2l(1):105-114.
    163. Shah A R, Madamwar D. Xylanase production by a newly isolatedaspergillus foetidusstrain and its characterization [J].Process Biochem., 2005, 40(5): 1 763~1 771.
    164. Shallom D and Shoham Y. Microbialhemicellulases [J]. CurrOpin Microbiol, 2003, 6: 219-228.
    165. Shimahara H., Suzuki H., Sugiyama N. and Nishizawa K. Partial purification ofβ-mannanases from the konjac tubers and their substrate specificity in relation to the structure of konjac glucomannan. Agric. Biol. Chem.,1975,(39):301-312.
    166. Singh S, MadlalaAM, PriorB A. Thermomyces lanuginosus: properties of strains and theirhemicellulases [J]. FEMS Microbiol Rev,2003, 27(1):3-16.
    167. Singh S, Reddy P, Haarhoff J. Relatedness of thermomyces lanuginosusstrains producing a thermostable xylanase [J]. J. Biotech.,2000,81(2~3):119~128.
    168. Sunna A,Gibbs M D,Chin C W J,et al. A gene encoding a novel multidomainβ-l,4-mann- anase from Caldibacillus cellulovorans and action of the recombinant enzyme on kraft pulp[J].Applied and Environmental Microbiology,2000,66:664-670.
    169. Sutherland I W. Polysaccharases for microbial exopolysaccharides [J].Carbohydrate Polymers,1999,38:319-328.
    170. Sylvie Centis, Isabelle Guillas, Nathalie Sejalon, et al.Endopolygalacturonase Genes from Colletotrichum lindemuthianum:Cloning of CLPG2 and Comparison of Its Expression to That of CLPG 1 During Saprophytic and Parasitic Growth of the Fungus[J].MIPI,1997,10(6): 769-775.
    171. T K Kirk, R L Farrell. Enzymatic“Combustion”:The Microbial Degradation of Lignin[J].Annual Review of Microbiology,1987,41:465-501.
    172. Tamaru Y, Araki T. Purification and Characterization of an Extracellular Mannanase from a Marine[zyx15]Bacterium[J].Environment Microbe.1995,61(12):4454-4458.
    173. Tjalsma H , Bolhuis A , Jongbloed JDH , et al. Signal Peptide-Dependent Protein Transport in Bacillus subtilis : a Genome-Based Survey of the Secretome. Microbiol. Mol. Biol. Rev. 2000 , 64(3) : 515-547。
    174. Tomme P, Warren R A, Gilkes N R. Cellulose hydrolysis by bacteria and fungi [J].Adv Microb Physiol,1995,(3)71~81.
    175. Toshihide Takasawa,Keiko Sagisaka, Koichi Yagi, et al. Polygalacturonase isolated from the culture of the psychrophilic fungus Sclerotinia borealis[J].Can. J. Microbil.,1997,43(5):417- 424.
    176. Uhl AM, Daniel RM. The first description of an archaeal hemicellulase: the xylanase fromThermococcuszilligiis train AN1[J].Extremophiles,1999,3:263-267.
    177. Waino M, Ingvorsen K. Production ofβ-xylanase andβ-xylosidase by the extremely halophilic archaeonHalorhabdus utahensis [J].Extremophiles,2003,7:87-93.
    178. Wenjin Guo, Luis Gonzalez-Candelas and P.E.Kolattukudy.Identification of a Novel pelDG Gene Expressed Uniquely in Planta by Fusarium solanif.ap.pisi (Nectria haematococca, Mating Type VI) and characterization of its Protein Product as an Endo-Pectate Lyase[J]. Arch Biochem Biophys 1996,15;332(2):305-312.
    179. Whitaker JR. Microbial pectinolytic enzymes.In:Fogarty WM,Kelly CT,editors.Microbial enzymes and biotechnology.2nd ed [M].London:Elsevier Science Ltd.;1990.
    180. White A,Withers S G,Gilkes N R, et al. Crstal structure of the catalytic domain of theβ-1,4-glycanase Cex from Cellulomonas fimi[J].Biochemistry,1994,33:12546-12552.
    181. Winterhalter C, Heinrich P, Camdussio A, et al. Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritime[J]. Mol Microbiol,1995,15:431-444.
    182. Wong K K Y, Tan L U L, Saddler J N. Multiplicity ofβ-1, 4-xylanase in microorganism: functions and application[J].Microbiol. Rev., 1988, 52(3): 305~317.
    183. Ximenes EA, Chen Huizhong, Kataeva IA, et al. A mannanase, ManA, of the polycentric anaerobic fungus Orpinomyces sp. strain PC-2 has carbohydrate binding and docking modules[J], Can J Microbiol,2005,51:559.
    184. Xu Bingze,Sellos D,Jenson J-C.Cloning and expression in Pichia pastoris of a blue mussel(Mytilus edulis)β-mannanase gene[J].Eur.J.Bioehem,2002.269:1753-1760.
    185. Xu J, Takakuwa N, NogawaM, et al. A third xylanase from Trichoderma reesei PC-3-7 [J]. Appl Microbiol Biotechnol,1998,49:718-724.
    186. Xue G P, Johnson D J, Smyth D J, et al. Temperature-regulated expression of thetac/laclsystem for overproduction of a fungal xylanase in Escherichia coli[J].Appl Microbiol Biotechnol,1996,45:120-126.
    187. Yamaura I, Matsumoto T. Purification and some properties of endo-1, 4-β-D mannanase from a mud snail, Pomacea insularus (de Ordigny)[J]. Biosci Biotechn Biochem,1993,57:1316-13 21.
    188. Yamaura I, Nozaki Y, Matsumoto T. Purification and some properties of an endo-1,4-β-D-mannanase from a marine molluse, Littorina brevicula[J]. Biosci Biotechn Biochem,1996,60:674-681.
    189. Yoshida S,Sako Y, Uchida A.Cloning, sequence analysis,and expression in Escherichia coil of a gene coding for an enzyme from Bacillus circulans K-1 that degrades guar gum[J].Biosci.Bioteclmo1.Bioehem.,1998,62(3):514-520.
    190. Yunxiong ZHANG, Zhengchu LIU, Xinbo CHEN.Cloning and expression of a mannanase gene from Erwinia carotovora CXJZ95-198.Annals of Microbiology, 2007,57 (4):623-628.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700