风送式喷雾风机液压无级调速控制系统设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风送式喷雾技术由于减少了农药的雾滴漂移、增加了附着率,可使得环境污染的风险大大降低。风送式喷雾效果的主要影响因素之一是风机的转速,但目前风送式喷雾风机转速大都是由档位控制,很难得到精确的转速,大大影响了喷雾效果。为此,本文首次提出并设计了风送式喷雾风机的液压无级调速控制系统,为实现更好的风送式喷雾效果提供途径。
     本文以3WZ600型自走式果园风送定向喷雾机平台为基础,以单片机控制技术为核心,采用直流步进电机调速技术,设计了风送式喷雾风机液压无级调速控制系统。建立液压无级变速系统模型并分析,采用模糊控制策略,进行试验验证。主要内容如下:
     1、根据系统精度及稳定度要求、控制对象特性及作业环境,完成了单片机硬件系统、步进电机及驱动器、丝杆和传感器的选型及设计,并对执行机构与控制对象的连接装置进行合理调整。
     2、建立液压无级变速系统模型,结合实际运行情况进行模型分析;根据专家知识和实践经验设计了模糊控制器。利用Simulink对理想的液压无级变速系统模型添加不同干扰模拟实际运行过程,并采用模糊控制进行了仿真,结果表明模糊控制具有较好的动态响应,对于不同的干扰都有很好的抗干扰性,符合本系统控制需求。
     3、完成喷雾风机转速无级调节系统设计,分别有风机转速检测、液压无级变速系统和转速控制系统,其中包括液晶显示、按键功能、风速检测、模糊控制和归零的程序设计。为提高系统可靠性与稳定性添加的归零程序采用绝对零位法,实际应用中,消除了由液压无级变速系统延时问题带来的风机反转和不稳定问题。
     试验结果表明,本系统运行稳定、可靠,符合预期设计要求。
The air assisted spraying technology, which greatly reduces the droplet drift, and has good adhesion, significantly reduces the risk of environmental pollution. One of the most important factors affecting spray effect is the fan speed. But until now, fan speed of the air-blast sprayer at home and abroad is mostly controlled by the operator through the gears, which had not only the unattainable required accuracy, but also the poor scheduling. Therefore, this article firstly proposed and designed the hydraulic stepless speed regulation control system of the air-blast sprayer, which provided a way for better spray.
     Based on the platform of the orchard self-propelled air-blast sprayer with type 3WZ600, the air-blast sprayer fan hydraulic stepless speed regulation control system was designed, which focused on SCM control technology, and adopted DC stepper motor speed control technology. The hydraulic continuously variable transmission system model was established and analyzed, which used the fuzzy control strategy and verified by the experiments. Main contents were as follows:
     1. According to the system accuracy and stability requirements, the controlled object characteristics and the operating environment, the selections of microcontroller hardware system, stepper motor and devices, screw and sensor were finished. Simultaneously, the connected device between actuator and controlled object was adjusted reasonably.
     2. The ideal model of the hydraulic continuously variable transmission was established and analyzed with the actual operation. The ideal model of the hydraulic continuously variable transmission, added different disturbances to reflect the actual operating conditions, was simulated with fuzzy control strategy using Simulink. The results showed that the fuzzy controller had better dynamic response and good immunity with different interferences, which met the needs of control system.
     3. The software and hardware designs of air-blast sprayer fan speed regulation control system were finished, which were composed of speed detection、the hydraulic continuously variable transmission system and speed control system, including programs of LCD display、key detection speed detection and fuzzy control. The return-to-zero program for system reliability and stability adopted Absolute-Zero method, which eliminated the problem of the fan reversal and instability, caused by the delay of the hydraulic continuously variable transmission in practical application.
     Experiments showed that the system met the expected requirements, stable and reliable.
引文
[1]湖州市统计局.2007湖州统计年鉴[M].中国统计出版社:北京,2007.
    [2]彭军.风送式超低量喷雾装置内流场数值模拟研究[D].湖北:武汉理工大学.2006.10
    [3]袁会珠.液力式喷头类型及靶标适应性[J].植保技术与推广.1998,8(2):34-36.
    [4]袁会珠.农药使用技术指南[M].北京:化学工业出版社,2004,6.
    [5]屠予钦.化学防治技术研究进展[M].乌鲁木齐:新疆科技卫生出版社,1992,,9.
    [6]屠予钦,袁会株,齐淑华,等.我国农药的有效利用率与农药的负面影响问题[J].世界农药,2003,(6):1-4.
    [7]耿爱军,李法德,李陆星.国内外植保机械及植保技术研究现状[J].农机化研究,,2007,4(4):189-191.
    [8]Piche M, Panneton B. Reduced drift from air-assisted spraying[J].Can Agric Eng,2000, 42:117-122.
    [9]Svensson S A; Brazee R D; Fox R D; Williams K A (2003). Air jet velocities in and beyond apple trees from a two-fan crossflow sprayer. Transactions of the ASAE,46(3),611-621.
    [10]Panneton B; Lacasse B; Piche'M (2005). Effect of air-jet configuration on spray coverage in vineyards. Biosystems Engineering,90(2).173-184
    [11]祁力钧,傅泽田,风助式喷雾器雾滴在果树上的分布[J].农业工程学报,1998,14(3):135-139
    [12]何雄奎,曾爱军,何娟,果园喷雾机风速对雾滴的沉积分布影响研究[J].农业工程学1报,2002,18(4):75-77
    [13]Ade G, Pezzi F. Evaluation of a sprayer fitted with adjustable air outlets [J].L'informatore Agrario,1997,19:75-79.
    [14]刘秀娟,周宏平,正加强.农药雾滴漂移控制技术研究进展[J].农业工程学报,2005.1,21(1):186-189.
    [15]曾爱军.减少农药雾滴漂移的技术研究[D].北京:中国农业大学,2005.
    [16]林明远,赵刚.国外植保机械安全施药技术[J].农业机械学报,1996,27(增刊):149-153.
    [17]Walklate P J, Weiner K L, Parkin C S. Analysis of and experiment measurements made on a moving air-assisted sprayer with two-dimensional air-jets penetrating a uniform crop canopy. Journal of Agricultural Engineering Research,1996,63,365-378
    [18]Delele M A, Moor A De, Sonck B, et al. Modelling and validation of the air flow generated by a cross flow air sprayer as affected by travel speed and fan speed[J].Biosystems Engineering,2005, 92(2):165-174
    [19]Delele M A, Jaeken P, Debaer C, et al. CFD prototyping of an air-assisted orchard sprayer aimed at drift reduction[J].Computers and Electronics in Agriculture,2007,55:16-27
    [20]Baetens K, Nuyttens D, Verboven P, et al. Predicting drift from field spraying by means of 3D computational fluid dynamics model[J].Computers and Electronics in Agriculture,2007,56:161-173
    [21]张晓辉,郭清南,李法德,等.3MG-30型果园弥雾机的研制与试验[J].农业机械学报,2002,(5):30-33.
    [22]何雄奎,严荷荣,金宇,等.果园自动对靶静电喷雾机设计与试验研究[J].农业工程学报,2003,19(6):78-80.
    [23]宋淑然,洪添胜,孙道宗等.风送式喷雾机变速喷雾雾滴沉积试验.农机化研究,2009.1:166-169
    [24]吴根茂,邱敏秀,王庆丰等编著.新编实用电液比例技术A版.国家电液控制工程技术研究中心,2004.5.
    [25]章宏甲,黄谊.液压传动[M].北京:机械工业出版社,2007.5
    [26]林建亚,何存兴.液压元件[M].北京:机械工业出版社,1988.
    [27]陈松年,吴刚.喷雾机轴流风机系列设计[J].农业机械学报,1987.21(1).
    [28]欧亚明,刘青.轴流式风机在风送式喷雾机上的选型与计算[J].中国农机化,2004,2:24-25.
    [29]范超毅,范巍.步进电机的选型与计算[J].机床与液压,2008,36(5):310-314.
    [30]王鸿钰.步进电机控制技术入门[M].上海:同济大学出版社,1990,9.
    [31]李广弟,朱月秀,王秀山.单片机基础[M].北京:北京航空航天大学出版社,,2001.7.
    [32]求是科技.8051系列单片机C程序设计完全手册.北京:人民邮电出版社,2006.4
    [33]李娟.一种改善稳态性能的模糊控制器.控制与决策.2002,17(5):617-620.
    [34]余义斌,长修,李昌兵.基于神经模型预测控制的主动队列管理算法[J].控制与决策同,2006,21(09):1042-1044.
    [35]李帅,魏建华。自整定模糊PID在改善泵控马达动态特性中的应用[J].液压气动与密封,2009,3:18-22.
    [36]李婷婷.电液比例变量泵—马达恒速控制系统的研究[D].西安:长安大学,2004.
    [37]刘长年.液压伺服系统优化设计理论[M].北京:冶金工业出版社,1989.
    [38]高翔宇,苏东海.比例变量泵控马达系统的P1D控制与仿真[J].装备制造技术,2009,2:1-3.
    [39]彭天好,徐兵,杨华勇.大惯量变转速泵控马达调速系统模糊控制[J].机床与液压,2004(10):77-78
    [40]彭天好,徐兵,杨华勇.变频泵控马达调速系统遗传算法PID控制[J].液压与气动,,2003(11):1-3
    [41]魏海峰,萍萍,贾洪平.变频泵控马达调速系统变结构鲁棒设计[J],2009.40(10):188-192.
    [42]张红俊,李增玲.利用MATLAB实现变量泵定量马达调速系统的动态仿真[J],山西煤炭管 理干部学院学报,2004,1:82-83.
    [43]王炜方.液压无级变速器的设计与研究[D],南京:南京理工大学.2004.3.
    [44]王倩.非线性时滞系统的模糊控制[D].大连海事大学,2008:42-56.
    [45]孙增沂.智能控制理论与技术[M].北京:清华大学出版社.1997:23-55.
    [46]Analysis, design and tuning of the two-input two-output fuzzy control systems using the simplified fuzzy rules, Abdullah S.Alwadie.2003.
    [47]章卫国.杨向忠.模糊控制理论与应用[M].西安:西北工业大学出版社,1999:65-96.
    [48]李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,2006:23-80.
    [49]王秀峰.系统建模与辨识.北京:电子工业出版社,2004:27-41.
    [50]刘曙光,魏俊民,竺志超.模糊控制技术[M].北京:中国纺织出版社,2001:154-167.
    [51]薛定宇.控制系统计算机辅助设计—MATLAB语言与应用(第2版)[M].北京:清华大学出版社.2006.
    [52]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [53]刘革辉,单杰锋,郑楚光MATLAB软件中的Fuzzy Logic工具箱在模糊控制系统仿真中的应用[J].2000.5(17):69-71.
    [54]刘涛,刘清河,姜继海.静液传动系统自适应模糊控制[J].农业机械学报,2010,41(1):29-33.
    [55]胡寿松.自动控制原理(第五版)[M].北京:科学技术出版社,2007.
    [56]李士勇.模糊控制神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,2002,6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700