两种苹果砧木对干旱的响应机理及抗性基因表达分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱胁迫是农业生产中存在的重要问题,对世界作物产量的影响,在环境胁迫中占首位。而国内外关于干旱对果树的影响及其适应机理研究落后于其它农作物。苹果是世界上重要的栽培果树之一,是我国北方落叶果树中栽培面积最大的树种之一。苹果是嫁接繁殖的果树,其抗逆性主要决定于砧木。在我国苹果砧木的抗性研究起步较晚,因此了解苹果砧木的耐旱能力,深入研究干旱胁迫对苹果砧木的伤害及其响应生理和分子机理,对抗旱遗传改良都具有重要的意义。
     本文以两年生楸子(Malus prunifolia(Willd)Borkh.)和平邑甜茶(M. hupehensis (Pamp) Rehd.)盆栽幼苗为试材,采用控水方式进行干旱处理。比较分析了干旱胁迫下这两种苹果砧木叶片的活性氧代谢变化、细胞形态解剖结构及亚细胞超微结构的变化及其两者的抗性差异。在此研究基础上利用抑制消减杂交(SSH)技术构建干旱处理的楸子叶片cDNA文库,筛选并鉴定出部分与抗旱相关的ESTs,并应用定量PCR(qRT-PCR)技术分析它们在干旱胁迫下的表达谱。采用菌液PCR筛选SSH cDNA文库与电子克隆方法,克隆抗性基因的全长cDNA序列,运用生物信息学方法分析抗性基因的核酸序列特征、基因编码的氨基酸序列特征及分子进化关系,使用同源建模技术预测和分析基因编码蛋白的空间结构与生物功能。另外,采用qRT-PCR和半定量PCR技术分析抗性基因在不同组织及不同逆境胁迫下的表达谱。主要结果如下:
     1.楸子和平邑甜茶对干旱胁迫的生理响应不同。耐旱性强的楸子受到氧化胁迫的伤害较小,其抗氧化防御能力强于耐旱性较差的平邑甜茶。
     正常水分条件下,楸子和平邑甜茶幼苗叶片内活性氧代谢系统均无明显变化。在干旱处理后,两种苹果砧木叶片中O_2产生速率和H_2O_2含量均增加,膜脂过氧化产物MDA含量上升,且随着干旱胁迫程度的加重呈上升趋势。抗氧化酶SOD、CAT和POD活性及AsA-GSH循环系统中的4种关键酶,即APX、GR、MDHAR和DHAR活性,在干旱胁迫前期和中期都有所提高,而在后期降低,部分抗氧化酶活性低于对照。干旱胁迫下,抗氧化剂AsA和GSH含量呈现先升后降的变化趋势,在干旱胁迫结束时(12 d)均低于对照(楸子GSH除外)。
     与平邑甜茶相比,楸子具有较低的ROS水平和较高的抗氧化系统的防御能力。这些结果表明,干旱胁迫下两种苹果砧木幼苗叶片中活性氧(reactive oxygen species,ROS)增加,诱导植株体内抗氧化防御系统启动以减轻(缓)或抵抗干旱胁迫对细胞所造成的氧化伤害;但随着干旱胁迫程度的持续加重,植株抗氧化防御能力下降,ROS大量积累,导致细胞膜脂过氧化加重,MDA大量产生。而楸子植株叶片的活性氧清除系统能力高于平邑甜茶。
     2.干旱胁迫下,两种苹果砧木叶肉细胞的形态解剖结构及亚细胞超微结构发生了适应性变化,但两者之间存在较大的差异。
     光学显微镜观察发现,干旱胁迫下苹果砧木的叶片厚度、栅栏组织厚度及叶肉组织结构紧密度(CTR)都减小,海绵组织厚度、角质层厚度及叶肉组织结构疏松度(SR)均增加。与平邑甜茶相比,干旱胁迫下楸子叶肉细胞形态解剖结构的变幅较小。
     电子显微镜观察发现,干旱胁迫下,两种苹果砧木叶片的亚细胞超微结构发生了明显的变化,细胞损伤程度随着干旱胁迫程度的加重而增加。其主要的变化有:细胞体积变小、细胞核浓缩、细胞质凝集、细胞器数目减少、细胞膜结构解体、叶绿体膨胀及空泡化、基质片层(stroma lamella)排列混乱、淀粉粒消失、线粒体肿胀及嵴变模糊、表皮细胞气孔密度增大、气孔开张度变小等。与平邑甜茶相比,干旱胁迫下楸子叶片亚细胞超微结构遭受的损伤程度较小,楸子能较好地维持其细胞结构的完整性。
     3.以干旱处理的楸子幼叶为tester,正常生长的楸子幼叶为driver,利用SSH技术构建了一个干旱胁迫下楸子叶片的消减cDNA文库。该文库的重组率高于95%,插入片段集中在250~600 bp之间。经蓝白斑抗性筛选和菌液PCR鉴定后,对所挑选的阳性克隆进行测序而获得大量的ESTs。BLASTN和BLASTP比对分析表明,大部分ESTs与己知逆境胁迫相关基因在核酸和蛋白水平上有较高的同源性,也有一些ESTs功能未知。通过GO(gene ontology)分类进行功能注释,ESTs编码产物涉及能量、光合、蛋白质水解、RNA转录、信号转导、逆境防御以及功能未知和没有匹配的序列等。
     对文库部分克隆进行测序发现,文库中含有半胱氨酸蛋白酶、金属硫蛋白、凋亡因子、富含甘氨酸RNA结合蛋白、叶绿素a/b结合蛋白、光系统2放氧复合物增强蛋白等大量的抗旱相关基因。采用qRT-PCR对部分抗旱相关基因在楸子叶片和根系的表达谱进行分析。结果表明,干旱胁迫下大多数的所检测基因都上调表达,也有个别基因下调表达,但它们的表达强度和时序有所不同。由此可见,干旱胁迫下楸子植株体内与干旱相关的基因被诱导表达,这些基因可能参与楸子对干旱胁迫的抗性反应。
     4.通过菌液PCR筛选SSH cDNA文库和电子克隆,从楸子和平邑甜茶叶片中分别克隆到1个富含甘氨酸RNA结合蛋白(glycine-rich RNA-binding protein,GR-RBP)基因,并分别命名为MpGR-RBP1(HM042682)和MhGR-RBP1(HQ380209)。楸子MpGR-RBP1和平邑甜茶MhGR-RBP1基因分别编码171和164个氨基酸多肽,它们都包含一个RNA识别结构域(RNA recognition motif,RRM)和一个富含甘氨酸区(glycine-rich region)。Genbank数据库检索结果表明,该同源基因在苹果属(Malus)中为首次分离。经SignalIP 3.0和PSORT预测,这2个同源基因所编码的产物可能为非跨膜蛋白,位于细胞核中,能与RNA结合,属于转录因子类蛋白。序列比对及分子进化关系分析表明,MpGR-RBP1与MhGR-RBP1、欧洲甜樱桃(93.0%,AAL13082)、大豆(86.0%,AAD48471)、天竺葵(84.9%,AAB63581)、烟草(84.3%,ACD03270)马铃薯(82.9%,ABB87126)、柑橘(82.6%,BAA92156)、拟南芥(80.2%,AAM62447)、苜蓿(80.7%,AAF06329)等蛋白的同源性较高。
     表达谱分析表明,在转录水平上,MpGR-RBP1与MhGR-RBP1基因具有组织特异性;均受干旱诱导上调表达。MhGR-RBP1基因受盐胁迫诱导上调表达;在外源激素ABA或JA处理下,其表达被抑制,推测MhGR-RBP1基因表达可能属于非依赖ABA或非依赖JA的调控途径。在干旱胁迫下,MpGR-RBP1与MhGR-RBP1转录产物迅速积累,参与干旱逆境胁迫的响应反应,而它们是否在转录后或翻译水平调控苹果砧木抗性反应还需要进一步研究。
Drought is one of the most serious problems in sustainable agriculture, influencing plant growth and crop yield in agricultural production in many regions of the world. However, the mechanism research on drought influence of fruit trees is behind other crops. Apple is one of the world’s major fruit trees of cultivated species and one of the mostly cultivated deciduous fruit trees in northern China. Apple trees are propogated by crafting, therefore the resistance of apple trees to environmental stress depends on the resistance ability of rootstocks. In China, little has been done about the research of apple rootstocks resistance to environmental stress, thus understanding the resistance ability of apple rootstocks to drought stress and the physiological and molecular mechanism of their response to drought stress are becoming more and more important for genetic modification of apple trees under abiotic stress.
     In present thesis, two apple rootstocks with significant differences under drought stress were used as plant materials. Two-year old pot grown plants were treated to drought stress by withholding water. The accumulation of reactive oxygen species (ROS), the oxidation of membrane lipid, the activities of antioxidant enzymes, the contents of antioxidants, the change of plant hormone and leaf anatomical structure as well as subcellular ultrastructure were studied, we were about to reveal the physiological mechanism of injury and the adaptive metabolism of apple rootstocks seedlings under drought stress, and we discussed the relationship between these changes and drought tolerance. To investigate how M. prunifolia, an excellent apple rootstock with strong drought tolerance, adapts to drought stress and to identify genes responsible to this important trait, we constructed a cDNA library with drought-treated leaves of M. prunifolia, using suppression subtractive hybridization (SSH) technique. A PCR-based screening method of SSH cDNA library then was used for identification of resistance-related expression sequence tags (ESTs). To get an insight into their behavior and regulation by drought stress, we have characterized the expression profile of mRNA from these apple leaves and roots during drought treatment using real-time RT-PCR. To better understand their function at the molecular level in stress responses, we isolated and identified several novel full-length cDNA, using in silico cloning and reverse-transcription PCR. We characterized the nucleotide sequence and deduced amino acid sequence of these novel genes, and multiple alignment and phylogenetic analyses were made. To further characterize these genes, we also applied a model for predicting their homology of protein structure with other species, and their putative roles were discussed. Both organ-specific and stress-related expression profile of the genes were detected by quantitative real-time PCR and semi-quantitative RT-PCR. The main results are included as follows:
     1. The general responses of the two apple rootstocks to drought are different, and we identified significant differences in the adaptive metabolisms employed to achieve tolerance. Drought-tolerant M. prunifolia showed a better protection mechanism against drought damage by maintaining higher constitutive and induced activities of antioxidant enzymes as well as contents of antioxidants than drought-sensitive M. hupehensis.
     In this study, we compared responses of anti-oxidant defence system in the leaves of two contrasting apple rootstocks. Two-year old pot-grown plants were subjected to drought for 12 days by withholding water, until plants began to wilt. Under well-watered conditions, there are significant differences between the lipid peroxidation and relevant antioxidant parameters in both apple species during the whole control experiment. Water stress increased lipid peroxidation, hydrogen peroxide (H_2O_2) as well as superoxide radicals (O_2 ) production in leaves of stressed plants. Compared with M. prunifolia, M. hupehensis was more sensitive to drought stress, resulting in larger increases in the levels of H_2O_2, O_2 and MDA. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) displayed an initial increase with gradual development of water deficit, reaching the highest level after 6 days of withholding water, and then dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) activities peaking on Day 6 and 8, respectively. But peroxidase (POD) activity was substantially enhanced, and peaked on Day 10, and then decreased at the end of the experiment (Day 12). In addition, the contents of antioxidant ascorbic acid (ASA) as well as glutathione (GSH) content peaked on Day 4 and 6, respectively. In responses to drought stress, the activities of SOD, POD, APX, GR, and DHAR as well as contents of ASA and GSH in M. prunifolia were more increased than that of M. hupehensis, but CAT and MDHAR activities changed. These results demonstrated that both antioxidant enzymes activities and antioxidant contents in leaves of M. prunifolia and M. hupehensis are increased in response to soil drought stress to minimize oxidative damage, and the former exhibited higher antioxidant ability and protective action during drought stress.
     2. We compared changes in lamina anatomical structure and subcellular ultrastructure in leaves of two apple rootstocks during drought treatment. Under drought stress, observation through method of light microscope showed that the palisade tissue thickness, leaf lamina thickness, and the ratio of palisade tissue to leaf lamina thickness (CTR) of two apple rootstocks decreased, but their sponge tissue thickness, leaf cuticle thickness and the ratio of sponge tissue to leaf lamina thickness (SR) increased. Changes of lamina anatomical structure in M. prunifolia was less than that of M. hupehensis.
     Ultrastructural observations on mesophyll cells showed, that under soil drought stress, drought cells exhibited obvious ultrastructural changes over control, and cellular damage rised with the increasing drought stress. Main ultrastructural changes included nucleus condensation, cytoplasm degeneration, decreased organelles, and damaged membrane systems, decreased the number of chloroplast, greater starch grain disappeared, deformation and vacuolization of chloroplasts, much less grana stacking, loosening and distortion of thylakoid, mitochondria swelling and cristae appear vague, and increased stomatal density, and so on. Our results demonstrated that M. prunifolia was able to maintain structural cell integrity longer than M. hupehensis under water stress.
     3. A cDNA library was constructed from drought-stressed and well-watered leaves of M. prunifolia, using suppression subtractive hybridization technique, in which the rate of recombination was 95% and the size of inserts ranged from 250 bp to 600 bp. Based on their blue/white coloring, recombinant colonies were then selected using PCR-based method of screening the SSH cDNA library. To identify which M. prunifolia genes are differentially expressed under drought treatment, positive clones obtained from the subtraction libraries were subjected to sequencing. BLASTN and BLASTP alignment analyses were used to search against database of NCBI, whose related-stress genes encoding proteins were involved in energy and metabolism, signal transduction and defense, protein metabolism, and no hit or unknown ESTs. Functional annotation and classification of these ESTs were made by GO method.
     Analysis of sequences from the positive clones picked randomly revealed that many drought stress associated genes, including cysteine protease, metallothionein, apoptosis facilitator, glycine-rich RNA-binding protein, chlorophyll a/b-binding protein, oxygen evolving enhancer protein, et al., were obtained. The successful construction of the subtracted cDNA libraries enabled us to identify new differentially expressed genes involved in the resistance mechanism of Malus plants. Some related-stress genes in leaves and roots of M. prunifolia were selected for further expression characterization under drought stress using quantitative real-time RT-PCR analyses. These results indicated that expression patterns of the genes revealed by real-time RT-PCR analyses were induced by drought stress, with different expression levels, inducing that these genes were involved in the adaptive mechanism to drought.
     4. Two apple drought-related protein genes, which named MpGR-RBP1 (HM042682) and MhGR-RBP1 (HQ380209), were successfully identified from the drought-treated leaves of M. prunifolia and M. hupehensis, respectively, using screening library, in silico cloning, or RT-PCR methods. This is the first report of this class of proteins in Malus plants. The encoded proteins of two homologous genes, MpGR-RBP1 and MhGR-RBP1, consisted of 171 and 164 amino acids, respectively. Their deduced amino acids contain an amino-terminal RNA recognition motif (RRM) and a carboxyl-terminal glycine-rich domain, with structural similarity to a class of stress-induced GR-RBP proteins found in other plants. Phylogenetic analysis confirmed that both MpGR-RBP1 and MhGR-RBP1 proteins belong to the plant GR-RBP family, members of which play important roles in posttranscriptional regulation of gene expression under various stress conditions. The expression profiles of the two apple GR-RBP transcripts were detected by quantitative real-time RT-PCR and semi-quantitative RT-PCR. MpGR-RBP1 and MhGR-RBP1 were expressed in roots shoots, and leaves, and the expression level of MpGR-RBP1 in leaves is higher than that of MhGR-RBP1 under drought stress. MhGR-RBP1 in leaves was expressed both under drought and high salt stresses, with higher expression levels in the former than the latter. Additionally, MhGR-RBP1 was sensitive to ABA and JA treatment and down-regulated with different concentrations of ABA and JA, and indicated MhGR-RBP1 might play a role in the signal pathway of independent-ABA or independent-JA. And the putative roles of MpGR-RBP1 and MhGR-RBP1 proteins are discussed. These results indicated that MpGR-RBP1 and MhGR-RBP1 might be involved in apple rootstocks to stresses response.
引文
白登忠,邓西平,黄明丽. 2003.水分在植物体内的传输与调控.西北植物学报, 23(9): 1637~1643
    曹慧,王孝威,韩振海,等. 2004a.水分胁迫诱导平邑甜茶叶片衰老期间内肽酶与活性氧累积的关系. 中国农业科学, 37(2): 274~279
    曹慧,王孝威,韩振海,等. 2004b.水分胁迫对苹果属植物叶片超微结构的影响.中国农学通报, 22(4): 175~178
    陈立松,刘星辉. 1997.作物抗旱鉴定指标的种类及其综合评价.福建农业大学学报, 26(1): 48~55
    陈立松,刘星辉. 2001.水分胁迫对荔枝叶片超微结构的影响.福建农业大学学报, 30(2): 171~174
    崔宏安,刘莉丽,陈铁山,等. 2003.葛藤不同类型叶耐旱结构的比较解剖学研究.西北植物学, 23(12): 2211~2215
    樊卫国,李迎春. 2007.部分梨砧木的叶片组织结构与抗旱性的关系.果树学报, 25(1): 17~21
    高俊凤. 2000.植物生理学试验技术.西安:世界图书出版社: 101~202
    关义新,戴俊英,林艳. 1995.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯, 31(4): 293~297
    郭泽建,李德葆. 2000.活性氧与植物抗病性.植物学报, 42(9): 881~891
    郭振飞,卢少云,李宝盛,等. 1997.不同耐旱性水稻幼苗对氧化胁迫的反应.植物学报, 39(8): 748~752
    胡朝晖,杨丽霞,宋涛平,等. 2009.水分胁迫对花生幼苗叶片内源激素含量的影响.中国农学通报, 25(17): 133~136
    简令成,王红. 2009.逆境植物细胞生物学.北京:科学出版社: 115~227
    姜立智,梁宗锁. 2001.干旱胁迫对植物基因的诱导及基因产物的变化.干旱地区农业研究, 19(3): 87~92
    蒋明义,郭绍川. 1996.水分亏缺诱导的氧化胁迫和植物的抗氧化作用.植物生理学通讯, 32: 144~150
    康莲娣. 2003.生物电子显微技术.合肥:中国科技大学出版社
    李合生,孙群,赵世杰. 2000.植物生理生化实验原理和技术.北京:高等教育出版社: 164~169
    李红梅,万小荣,何生根. 2010.植物水孔蛋白最新研究进展.生物化学与生物物理进展, 37(1): 29~35
    李嘉瑞,任小林,王民柱. 1996.干旱对果树光合的影响及水分信息传递.干旱地区农业研究, 14(3): 67~72
    李晓燕,李连国,刘志华,等. 1994.葡萄叶片组织结构与抗旱性关系的研究.内蒙古农牧学院学报, 15(3): 30~32
    利容千,王建波. 2002.植物逆境细胞及生理学.武汉:武汉大学出版社: 2~5
    刘飞虎,张寿文,梁雪妮,肖德兴. 1999.干旱胁迫下不同苎麻品种的形态解剖特征研究.中国麻作, 21(4): 1~6
    刘友良. 1992.植物水分逆境生理.北京:农业出版社: 106~109
    刘祖祺,张石城. 1994.植物抗性生理学.北京:中国农业出版社: 97~98
    卢少云,郭振飞. 1999.水稻幼苗叶绿体保护系统对干旱的反应.热带亚热带植物学报, 7(1): 47~52
    马兰春,王丽雪,王有年,等. 1996.干旱对苹果叶片形态解剖结构的影响.北京农学院学报, 11(2): 27~29
    马小卫. 2009.苹果砧木种间水分利用效率的差异及其机理研究.西北农林科技大学博士学位论文
    孟庆杰,王光全,董绍锋,等. 2004.桃叶片组织解剖结构特征与其抗旱性关系的研究.干旱地区农业研究, 22(3): 123~126
    彭立新,李德全,束怀瑞. 2002.园艺植物水分胁迫生理及耐旱机制研究进展.西北植物学报, 22(5): 1275~1281
    彭永宏,章文才. 1996.称猴桃叶片耐旱性指标研究.果树学报, 13(增刊): 29~32
    蒲光兰,周兰英,胡学华,等. 2005.干旱胁迫对金太阳杏叶绿素荧光动力学参数的影响.干旱地区农业研究, 23(3): 44~48
    綦伟,谭浩,翟衡. 2006.干旱胁迫对不同葡萄砧木光合特性和荧光参数的影响.应用生态学报, 17(5): 835~838
    曲桂敏,李兴国,赵飞,等. 1999.水分胁迫对苹果叶片和新根显微结构的影响.园艺学报, 26(3): 147~151
    任庆成,杨铁钊,刘培玉,等. 2009.物植抗旱性研究进展.中国农学通报, 25(15): 76~79
    萨姆布鲁克,拉塞尔. 2001.分子克隆实验指南.第三版.黄培堂译. 2002.北京:科学出版社
    宋纯鹏. 1998.植物衰老生物学.北京:北京大学出版社: 30~57
    孙歆,雷韬,袁澍,林宏辉. 2005.脱水素研究进展.武汉植物学研究, 23(3): 299~304
    汤章诚. 1983.植物对水分胁迫的反应和适应性.植物生理学通讯, (3): 24~29
    唐国顺,李广敏. 1994.水分胁迫下玉米叶肉细胞超微结构的变化及其与膜脂过氧化伤害的关系.植物学报, 36: 43~49
    王爱国,罗广华. 1990.植物的超氧化物自由基与羟胺反应的定量关系.植物生理学通讯, (6): 55~57
    王爱国. 1998.植物的氧代谢.余叔文,汤章成.植物生理与分子生物学(第2版).北京:科学出版社: 366~389
    王清泉,陈云,谢虹,等. 2004.干旱和氮素交互作用对玉米叶片水势、气孔导度及根部ABA与CTK合成的影响.中国农学通报, 20(3): 210~213
    王霞,尹林克. 2002.土壤水分胁迫对柽柳体内膜保护酶及膜脂过氧化的影响.干旱地区研究, 19(3): 17~20
    王有年,张海英,卜庆雁,等. 2003.水分胁迫对李叶片抗氧化代谢的影响.北京农学院学报, 18(2): 97~100
    王玉珏,付秋实,郑禾,等. 2010.干旱胁迫对黄瓜幼苗生长、光合生理及气孔特征的影响.中国农业大学学报, 15(5): 12~18
    武玉叶,李德全. 2001.土壤水分胁迫对冬小麦叶片渗透调节及叶绿体超微结构的影响.华北农学报, 16(2): 87~93
    徐云刚,詹亚光. 2009.植物抗旱机理及相关基因研究进展.生物技术通报, 2: 11~17
    徐子勤. 2007.功能基因组.北京:科学出版社: 348~352
    许大全. 1984.气孔运动与光合作用.植物生理学通讯, (6): 6~12
    杨洪强,贾文锁,张大鹏. 2001.蛋白磷酸化参与湖北海棠根系中水分胁迫诱导的ABA积累.科学通报, 46(1): 50~53
    杨晓青,张岁岐,梁宗锁,山颖. 2004.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响. 西北植物学报, 24(5): 812~816
    姚允聪,高遐虹,程继鸿. 2001.苹果种质资源抗旱性鉴定研究Ⅶ.干旱条件下苹果幼树生长与叶片形态特征变化.北京农学院学报, 16(2): 16~21
    叶宝兴,束怀瑞,李德全. 2002.聚乙二醇对平邑甜茶叶片气孔器超微结构的影响.植物生态学报, 26(2): 239~242
    于海秋,王晓磊,蒋春姬. 2008.土壤干旱下玉米幼苗解剖结构的伤害进程.干旱地区农业研究, 26(5): 143~147
    于海秋,武志海,沈秀瑛,等. 2003.水分胁迫下玉米叶片气孔密度、大小及显微结构的变化.吉林农业大学学报, 25(3): 239~242
    张明生,谢波,谈锋. 2002.水分胁迫下甘薯内源激素的变化与品种抗旱性的关系.中国农业科学, 35(5): 498~501
    张岁岐,李金虎,山仑. 2001.干旱下植物气孔运动的调控.西北植物学报, 21(6): 1263~1270
    张文丽,张彤,吴冬秀. 2006.土壤逐渐干旱下玉米幼苗光合速率与蒸腾速率变化的研究.生态农业学报, 14(2): 72~75
    赵福庚,何龙飞,罗庆云. 2004.植物逆境生理生态学.北京:化学工业出版社: 2~14
    郑淑霞,上官周平. 2004.近一世纪黄土高原区植物气孔密度变化规律.生态学报, 24(11): 2457~2464
    朱桂才,杨中艺. 2008.水分胁迫下李氏禾营养器官的解剖结构研究.长江大学学报(自然科学版), 5(3): 17~21
    Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. 1997. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell, 9: 1859~1868
    AlbàM M, Pagès M. 1998. Plant proteins containing the RNA-recognition motif. Trends Plant Sci, 3: 15~21
    Allagulova C R, Gimalov F R, Shakirova F M, Vakhitov V A. 2003. The plant dehydrins: structure and putative functions. Biochem, 68: 945~951
    Alscher R G. 1989. Biosynthesis and antioxidant function of glutathione in plant. J Plant Physiol, 77: 457~464
    Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 55: 373~399
    Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 22: 195~201
    Asada K. 1999. The water-water cycle in chloroplasts: scavenging of activity oxygens and of excess photon. Annu Rev Plant physiol Mol Biol, 50: 601~639
    Asada K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol, 141: 391~396
    Asamizu E, Nakamura Y, Sato S, Tabata S. 2000. A large scale analysis of cDNA in Arabidopsis thaliana: generation of 12,028 non-redundant expressed sequence tags from normalized and size-selected cDNA libraries. DNA Res, 7: 175~180
    Bachem C W B, van der Hoeven R S, de Bruijn S M, et al. 1996. Visvalization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant J, 9: 745~753
    Bailly C, Audigier C, Ladonne F, et al. 2001. Changes in oligosaccharide content and antioxidant enzymeactivities in developing bean seeds as related to acquisition of drying tolerance and seed quality. J Exp Bot, 52: 701~708
    Bandziulis R J, Swanson M S, Dreyfuss G. 1989. RNA-binding proteins as developmental regulators. Genes Dev, 3: 431~437
    Barrs H D, Weatherley P E. 1962. A re-examination of the relative turgidity technique for estimating water cleficits in leaves. Aulst J Biol Sci, 15: 413~428
    Bartels D, Salamini F. 2001. Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol, 127: 1346~1353
    Bartels D, Sunkars R. 2005. Drought and salt tolerance in plants. Critical Rev in Plant Sci, 24: 23~58
    Bartoli C G, Yu J P, Gómez F, et al. 2006. Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot, 57: 1621~1631
    Bhattacharjee S. 2005. Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Curr Sci, 89: 1113~1121
    Bilger W, Johnsen T, Schreiber U. 2001. UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants. J Exp Bot, 52: 2007~2014
    Bilger W, Schreiber U. 1990. Chlorophyll luminescence as an indicator of stress-induced damage to the photosynthetic apparatus. Effects of heat-stress in isolated chloroplasts. Photosynth Res, 25: 161~171
    Boudsocq M. Lauriere C. 2005. Osmotic signaling in plants. multiple pathways mediated by emerging kinase families. Plant Physiol, 138: 1185~1194
    Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72: 248~254
    Bray E A. 1997. Plant responses to water deficit. Trends Plant Sci, 2: 48~54
    Breton G, Danyluk J, Charron J B F, Sarhan F. 2003. Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and Arabidopsis. Plant Physiol, 132: 64~74
    Burd C G, Dreyfuss G. 1994. Conserved structures and diversity of functions of RNA binding proteins. Sci, 265: 615~621
    Burg M B, Kwon E D, Kultz D. 1996. Osmotic regulation of gene expression. FASEB J, 10: 1598~1606
    Cao S, Jiang L, Song S, Jing R, Xu G. 2006. AtGRP7 is involved in the regulation of abscisic acid and stress responses in Arabidopsis. Cell Mol Biol Lett, 11: 526~535
    Cazale A C, Mayer M A R, Brygoo H B, et al. 1998. Oxidative burst and hypoosmotic stress in tobacco cell suspensions. Plant Physiol, 116: 659~669
    Chang S, Puryear J, Cairney J. 1993. Simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep, 11: 113~116? ?
    Chang T, Liu X, Xu H, Meng K, Chen S, Zhu Z. 2004. A metallothionein-like gene htMT2 strongly expressed in internodes and nodes of Helianthus tuberosus and effects of metal ion treatment on its expression. Planta, 218:449~455
    Chaves M M, Maroco J P, Pereira J S. 2003. Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol, 30: 239~264
    Chen H J, Su C T, Lin C H, Huang G J, Lin Y H. 2010. Expression of sweet potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis plants.physiol plant, 167: 838~847
    Chen T H H, Murata N. 2002. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol, 5: 250~257
    Chen Z, Gallie D R. 2004. The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell, 16:1143~1162
    Christophe M, Maarten J C. 2001. Aquaporins- a molecular entry into plant water relations. Plant Physiol, 125: 135~138
    Cui Y Y, Pandey D M, Hahn E J, Paek K Y. 2004. Effect of drought on physiological aspects of Crassulacean acid metabolism in Doritaenopsis. Plant Sci, 167: 1219~1226?
    Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol, 139: 5~17
    Damour G, Vandame M, Urban L. 2009. Long-term drought results in a reversible decline in photosynthetic capacity in mango leaves, not just a decrease in stomatal conductance. Tree Physiol, 29: 675~684
    Davey M W, Franck C K W. 2004. Distribution, developmental and stress responses of antioxidant metabolism in Malus. Plant Cell Physiol, 27: 1309~1320
    Davey M W, Gilot C, Persiau G et al. 1999. Ascorbate biosynthesis in Arabidopsis cell suspension culture. Plant Physiol, 121: 535~543
    Davies W J, Zhang J. 1991. Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Mol Boil, 42: 55~76
    Desikan R, Cheung M K, Bright J, et al. 2004. ABA, hydrogen peroxide and nitricoxide signaling in stomatal guard cells. J Exp Bot, 55: 205~212
    Desikan R, Mackerness S A H, Hancock J T, et al. 2001. Regulation of the arabidopsis transcriptome by oxidative stress. Plant Physiol, 127: 159~172
    Diatchenko L, Lau Y F, Campbell A P, et al. 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci, 93: 6025~6030
    Diatchenko L, Lukyanov S, Lau YF, et al. 1999. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol, 303: 349~380
    Farquhar G D, Sharkey T D. 1982. Stomatal conductance and photosynthesis. Ann Rev Plant Physiol, 33: 317~345
    Ferreira F J, Kieber J J. 2005. Cytokinin signaling. Curr Opin Plant Biol. 8: 518~525
    Finkelstein R R, Lynch T J. 2000. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell, 12: 599~609
    Flowers T J, Yeo A R. 1986. Ion relation of plants under drought and salinity. Aust J Plant Physiol, 13: 75~91
    Foyer C H, Lopez-Delgado H, Dat J F, et al. 1997. Hydrogen peroxide and glutathione-associated mechanism of acclamatory stress tolerance and signalling. Physiol Plantarum, 100: 241~254
    Foyer C H. Noctor G. 2005. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell, 17: 1866~1875
    Fray R G, Wallace A, Grierson D, et al. 1994. Nucleotide sequence and expression of a ripening and waterstress-related cDNA from tomato with homology to the MIP class of membrane channel proteins. Plant Mol Biol, 24: 539~543
    Fu Z Q, Guo M, Jeong B R, Tian F, Elthon T E, Cerny R L, Staiger D, Alfano J R. 2007. A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature, 447: 284~288
    Fusaro A F, Bocca S N, Ramos R L, Barr?co R M, Magioli C, Jorge V C, Coutinho T C, Rangel-Lima C M, De Rycke R, InzéD, Engler G, Sachetto-Martins G. 2007. AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development. Planta, 225: 1339~1351
    Fusaro A, Mangeon A, Magrani Junqueira R, Benício Rocha C A, Cardoso Coutinho T, Margis R, Sachetto-Martins G. 2001. Classification, expression pattern and comparative analysis of sugarcane expressed sequences tags (ESTs) encoding glycine-rich proteins (GRPs). Genet Mol Biol, 24:263~273
    Glenn E P, Brown J J. 1999. Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci, 18: 227~255
    Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Sci, 296: 92~100
    Gong P, Zhang J, Li H, et al. 2010. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. J Exp Bot, 61: 3563~3575
    Grefen C, Harter K. 2004. Plant two-component systems: principles, functions, complexity and cross talk. Planta, 219: 733~742
    Griffith O W. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem, 106: 207~212
    Grün S, Lindermayr C, Sell S. 2006. Nitric oxide and gene regulation in plants. J Exp Bot, 57: 531~542
    Guiltinan M J, Niu X P. 1996. cDNA encoding a wheat (Triticum aestivum cv Chinese Spring) glycine-rich RNA-binding protein. Plant Mol Biol, 30: 1301~1306
    Gummuluru S, Hobbs S L A, Jana S. 1998. Physiological responses of drought tolerant and drought susceptible durum wheat genotypes. Photosynthetica, 23: 479~485
    G?mez J, Sánchez M D, Stiefel V, Rigau J, Puigdomènech P, Pagès M. 1988. A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature, 334: 262~264
    Halliwell B, Foyer C H. 1976. Ascorbic acid, metal ions and the superoxide radical. Biochemical J, 155: 697~700
    Hanano S, Sugita M, Sugiura M. 1996. Isolation of a novel RNA-binding protein and its association with a large ribonucleoprotein particle present in the nucleoplasm of tobacco cells. Plant Mol Bio, 31: 57~68
    Harrak H, Azelmat S, Baker E N, Tabaeizadeh Z. 2001. Isolation and characterization of a gene encoding a drought-induced cysteine protease in tomato (Lycopersicon esculentum). Genome, 44: 368~374
    Hideg E, Spetea C. 1994. Singlet oxygen production in thylakoid membranes during photo inhibition as detected by EPR spectroscopy. Photosynth Res, 39: 191~199
    Hoagland DR. 1920. Optimum nutrient solutions for plants. Sci, 52:562-564
    Hong S W, Jon J H, Kwak J M, Nam H G. 1997. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol, 113: 1203~1212
    Hsiao C T. 1973. Plant responses to water stress. Annu Rev Plant Physiol Plant Mol Biol, 24: 519~570
    Huang D Q, Wu W R, Abrams S R, Cutler A J. 2008. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot, 59: 2991~3007
    Huang X Q, Madan A. 1999. CAP3: A DNA sequence assembly program.Genome Research, 9: 868~877
    Igram J, Baison D. 1996. The molecular basis of dehydration tolerance in plants. Annu Rev Plant physiol, 47: 377~403
    IPCC. Climate Change 2001: the seientific basis. summary for polieymakers and teelinical sumnary. Cambridge, UK: Cambridge University Press, 2001
    Jackson M B, Kowalewska A K B. 1983. Positive and negative messages from roots induce foliar desiccation and stomatal closure in flooded pea plants. J Exp Bot, 34: 493~506
    Jaspers P, Kangasj?rvi J. 2010. Reactive oxygen species in abiotic stress signaling. Physiol Plantarum, 138: 405~413
    Jin Y H, Tao D L, Hao Z E A. 2003. Environmental stresses and redox status of ascorbate. Acta Botanica Sinica, 45: 795~801
    Johansson I, Karlsson M, Johanson U. 2000. The role of aquaporins in cellular and whole plant water balance. Biochim Biophys Acta, 1465: 324~342
    Jones M M, Osmond C B, Turner N C. 1980. Accumulation of solutes in leaves of sorghum and sunflower in response to water deficit. Aust J Plant Physiol, 7: 193~205
    Julia V G, Sherwood M, Tepikin A V. 2006. NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area. J Cell Sci, 119: 226~238
    Kampfenkel K, Van Montagu M, InzèD. 1995. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal Biochem, 225: 165~167
    Kaur N, Gupta A K. 2005. Signal transduction pathways under abiotic stresses in plants. Curr Sci, 88(11): 1771~1780
    Kazuya Y, Yukinori Y, TakahiroⅠ, et al. 2000. Expression of spinach Ascorbate Peroxidase Isoenzymes in response to oxide stress. Plant Physiol, 123: 223~233
    Kenan D J, Query C C, Keene J D. 1991. RNA recognition: towards identifying determinants of specificity. Trends Biochem Sci, 16: 214~220
    Khanna-Chopra R, Srivalli B, Ahlawat Y S. 1999. Drought induces many forms of cysteine proteases not observed during natural senescence. Biochem Biophys Res Commun, 255: 324~327
    Kim J S, Jung H J, Kim K A, Goh C H, Woo Y, Oh S H, Han Y S, Kang H. 2008. Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J, 55: 455~466
    Kim J S, Park S J, Kwak K J, Kim Y K, Kim J Y, Song J, Jang B, Jung C H, Kang H. 2007. Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Res, 35: 506~516
    Kim J Y, Kim W Y, Kwak K J, Oh S H, Han Y S, Kang H. 2010a. Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. J Exp Bot, 61: 2317~2325
    Kim J Y, Kim W Y, Kwak K J, Oh S H, Han Y S, Kang H. 2010b. Zinc finger-containing glycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions. Plant Cell Environ, 33: 759~768
    Kim J Y, Park S J, Jang B S, Jung C H, Ahn S J, Goh C H, Cho K, Han O, Kang H. 2007. Functional characterization of a glycine-rich RNA-binding protein2 in Arabidopsis thaliana under abiotic stress conditions. Plant J, 50: 439~451
    Kim Y O, Kang H. 2006. The role of a zinc finger-containing glycine-rich RNA-binding protein during the cold adaptation process in Arabidopsis thaliana. Plant Cell Physiol, 47: 793~798
    Kim Y O, Kim J S, Kang H. 2005. Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J, 42: 890~900
    Kim Y O, Pan S, Jung C H, Kang H. 2007. A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant Cell Physiol, 48: 1170~1181
    Knight H. 2000. Calcium signaling during abiotic stress in plant. Int Rev Cytol, 195: 269~324
    Ko?cielniak J, Filek W, Ko?cielniak J B. 2006. The effect of drought stress on chlorophyll fluorescence in Lolium Festuca hybrids . Acta Physiologiae Plantarum, 28: 149~158
    Kozak M. 1987. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res, 15: 8125~8132
    Kratsch H A, Wise R R. 2000. The ultrastructure of chilling stress. Plant Cell Envion, 23: 337~350
    Krause G H, Weis E. 1991. Chlorophyll fluorescence and photosynthesis: The basis. Annu Rev Plant Physiol Plant Mol Biol, 42: 313~349
    Kumar A O, Swenson M C, Benning M M, Kielkopf C L. 2008. Structure of the central RNA recognition motif of human TIA-1 at 1.95 ? resolution. Biochem Biophys Res Commun, 367: 813~819
    Kwak K J, Kim Y O, Kang H. 2005. Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J Exp Bot, 421: 3007~3016
    Lecourieux D, Ranjeva R, Pugin A. 2006. Calcium in plant defence-signalling pathways. New Phytol, 171(2): 249~269
    Lee H C. 2005. Nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated calcium signaling. J Biol Chem, 280: 33693~33696
    Lee M O, Kim K P, Kim B G, Hahn J S. 2009. Flooding stress-induced glycine-rich RNA-binding protein from Nicotiana tabacum. Molecules Cells, 27: 47~54
    Levitt J. 1980. Responses of Plants to Environmental Stresses. Vol 2. Water, Radiation, Salt and other Stresses. Academic Press, New York, pp 93~128
    Liang P, Pardee A B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Sci, 257: 967~970
    Lisitsyn N, Lisitsyn N, Wigler M. 1993. Cloning the differences between two complex genomes. Sci, 259: 946~951
    Lorkovi? Z J, Barta A. 2002. Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res, 30: 623~635
    Lorkovi? Z J. 2009. Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci, 14: 229~236
    Ludwig A A, Romeis T, Jones J D G. 2004. CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot, 55: 181~188
    Ma F W, Cheng L L. 2003. The sun-exposed peel of apple fruit has higher xanthophyll cycle-dependent thermal dissipation and antioxidants of the ascorbate-glutathione pathway than the shade peel. Plant Sci, 165: 819~827
    MarèC, Mazzucotelli E, Crosatti C, Francia E, Stanca A M, Cattivelli L. 2004. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol, 55: 399~416
    Mariaux J B, Bockel C, Salamini F, Bartels D. 1998. Desiccation- and abscisic acid-responsive genes encoding major intrinsic proteins (MIPs) from the resurrection plant Craterostigma plantagineum. Plant Mol Biol, 38: 1089~1099
    Maym J, Vernoux T, Leave R, et al. 1998. Glutathione hemeostasis in plant: Implications for environmental sensing and plant development. J Exp Bot, 49: 649~667
    Meyer A J. 2007. The integration of glutathione homeostasis and redox signaling. J Plant Physiol, 31: 1~14
    Miller G, Shulaev V, Mittler R. 2008. Reactive oxygen signaling and abiotic stress. Physiol Plant, 133: 481~489
    Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ, 33: 453~467
    Mittler R. 2002. Oxidative stress, antidatants and stress tolerance. Trends Plant Sci, 7: 405~410
    Mizoguchi T, Hayashida N, Yamaguchi-Shinozaki K, Kamada H, Shinozaki K. 1995. Two genes that encode ribosomal-protein S6 kinase homologs are induced by cold or salinity stress in Arabidopsis thaliana. FEBS Lett, 358: 199~204
    Mizoguchi T, Ichimura K, Shinozaki K. 1997. Environmental stress response in plants: the role of mitogen-activated protein kinases. Trends Biotechnol, 15:15~19
    MizoguchiT, Hirayama T, Hayashida N. 1996. A gene encoding a mitogen-activated protein kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold and water stress in Arabidopsis thaliana. Proc Natl Acad Sci, 93:765~769
    Mizuno T. 2005. Two-component phosphorelay signal transduction systems in plants: from hormone responses to circadian rhythms. Biosci Biotechnol Biochem, 69: 2263~2276
    Mori I C, Schroeder J I. 2004. Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol, 135: 702~708
    Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 22: 867~880
    Nicot N, Hausman JF, Hoffmann L, Evers D. 2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot, 56: 2907~2914
    Olga T, Del longo, Claudio A, et al. 1993. Antioxidant defence under hyperoxygenic and hyperosmotic conditions in leaves of two lines of Maize with differential sensitivity to drought. Plant Cell Physiol, 34: 1023~1028
    Owler C, Van Montagu M, Inze D. 1992. Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol, 43: 83~116
    Pallardy S G, Kozlowski T T. 1980. Cuticle development in the stomatal region of Populus clones. New Phytol, 85: 363~368
    Paris R, Cova V, Pagliarani G, Tartarini S, Komjanc M, Sansavini S. 2009. Expression profiling inHcrVf2-transformed apple plants in response to Venturia inaequalis. Tree Genet Geno, 5: 81~91
    Park K Y, Jung J Y, Park J, Hwang J U, Kim Y W, Hwang I, Lee Y. 2003. A role for phosphatidylinositol 3-phosphte in abscisic acid-induced reactive oxygen species generation in guard cells. Plant Physiol, 132: 92~98
    Parkinson J, Blaxter M. 2009. Expressed sequence tags: an overview. Methods Mol Biol, 533: 1~12
    Parry M A J, Andralojic P J, Khan S, Lea P J, Keys A J. 2002. Rubisco activity: effects of drought stress. Ann Bot, 89: 833~839
    Pei Z M, Murata Y, Benning G, Thomine S, Klüsener B, Allen G J, Grill E, Schroeder J I. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 406: 731~734
    Pfaffl M W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res, 29: e45
    Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol Lett, 26: 509~515
    Popham P L, Novacky A. 1991. Use of dimethyl sulfoxide to detect hydroxyl radical during bacteria-induced hypersensitive reaction. Plant Physiol, 96: 1157~1160
    Posas F, Wyrgler-Murphy S M, Maeda T. 1996.Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in SLN1-YPD1-SSK1“two component”osmosensor. Cell, 86: 865~875
    Postaire O, Verdoucq L, Maurel C. 2008. Aquaporins in plants: from molecular structures to integrated functions. Adv Bot Res, 46: 75~136
    Price A H, Cairns J E, Horton P, Jones H G, Griffiths H. 2002. Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J Exp Bot, 53: 989~1004
    Radler F. 1965. Reduction of loss of moisture by the cuticle wax components of grapes. Nature, 207: 1002~1003
    Ramamurthy M, Nina F. 2001. Screening insertion libraries for mutations in many genes simultaneously using DNA microarrays. Proc Natl Acad Sci, 98: 7420~7425
    Razavi F, Pollet B, Steppe K, Van Labeke M C. 2008. Chlorophyll fluorescence as a tool for evaluation of drought stress in strawberry. Photosynthetica, 46: 631~633
    Rousseau S, Morrice N, Peggie M, Campbell D G, Gaestel M, Cohen P. 2002. Inhibition of SAPK2a/p38 prevents hnRNPA0 phosphorylation by MAPKAP-K2 and its interaction with cytokine mRNAs. EMBO J, 21: 6505~6514
    Sachetto-Martins G, Franco L O, de Oliveira D E. 2000. Plant glycine-rich proteins: A family or just proteins with a common motif ? Biochim Biophys Acta, 1492: 1~14
    Sahi C, Agarwal M, Singha A, Grover A. 2007. Molecular characterization of a novel isoform of rice (Oryza sativa L.) glycine rich-RNA binding protein and evidence for its involvement in high temperature stress response. Plant Sci, 173: 144~155
    Salin M L. 1991. Choroplast and mitochrondrial mechanisms for protection against oxygen toxicity. Free Rad Res Comunis, 12-13: 851~858
    Samard?i? J T, Nikoli? D B, Timotijevi? G S, Jovanovi? ? S, Milisavljevi? M ?, Maksimovi? V R. 2010. Tissue expression analysis of FeMT3, a drought and oxidative stress related metallothionein gene from buckwheat (Fagopyrum esculentum). J Plant Physiol, 167:1407~1411
    Santella L. 2005. NAADP: A new second messenger comes of age. Mol Interventions, 5:70~72
    Sathyanarayanan P V, Poovaiah B W. 2004. Decoding Ca2+ signals in plants. CRC Crit Rev Plant Sci, 23: 1~11
    Schmidt F, Marnef A, Cheung M K, Wilson I, Hancock J, Staiger D, Ladomery M. 2010. A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8. Mol Biol Rep, 37: 839~845
    Sch?ning J C, Streitner C, Page D R, Hennig S, Uchida K, Wolf E, Furuya M, Staiger D. 2007. Autoregulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. Plant J, 52: 1119~1130
    Schroder JI, Allen GJ, Hugouvieux V, et al. 2001. Guard cell signal transduction. Ann Rev Plant Physiol Plant Mol Bio, 52: 625~658
    Schuler GD. 1997. Pieces of the puzzle: expressed sequence tags and the catalog of human genes. J Mol Med, 75: 694~698
    Seki M, Narusaka M, Abec H, et al. 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stress by using a full-length cDNA microarray. Plant Cell, 13: 61~72
    Seki M, Narusaka M, Ishida J, et al. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J, 31: 279~292
    Sgherri C L M, Loggini B. 1994. Antioxidant system in sporobolus: response to cold acclimation in excess light. Planta, 35: 561~565
    Sgherri C L M, Navari-Izzo F. 1995. Sunflower seedlings subjected to increasing water deficit stress: oxidative stress and defense mechanisms. Physiol Plantarum, 93: 25~30
    Shalata A, Meumann P M. 2001. Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot, 52: 2207~2211
    Shinozaki K, Dennis E S. 2003. Cell signalling and gene regulation: Global analyses of signal transduction and gene expression profiles. Curr Opin Plant Biol, 6: 405~409
    Shinozaki K, Yamaguchi-Shinozaki K. 1997. Gene expression and signal transduction in water-stress response. Plant Physiol, 115: 327~334
    Shinozaki K, Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. J Exp Bot, 58: 221~227
    Simova-Stoilova L, Vaseva I, Grigorova B, Demirevska K, Feller Urs. 2010. Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery. Plant Physiol Biochem, 48: 200~206
    Siomi H, Dreyfuss G. 1997. RNA-binding proteins as regulators of gene expression. Curr Opin Genet Dev, 7: 345~353
    Smirnoff N, Pallanca J E. 1996. Ascorbate metabolism in relation to oxidative stress. Biochem Society Transactions, 24: 472~478
    Smirnoff N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. NewPhytol, 125: 27~58
    Smirnoff N. 2000. Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol, 3: 229~235
    Smitha A G, Crofta M T, Moulina M, et al. 2007. Plants need their vitamins too. Curr Opin Plant Biol, 10: 266~275
    Socias X, Correia M J, Chaves M, Medrano H. 1997. The role of abscisic acid and water relations in drought responses of subterranean clover. J Exp Bot, 48: 1281~1288
    Sofo A, Tuzio A C, Dichio B, et al. 2005. Influence of water deficit and rewatering on the components of the ascorbate-glutathione cycle in four interspecific Prunus hybrids. Plant Sci, 169: 403~412
    Song C P, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P C, Zhu J K. 2005. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell, 17: 2384~2396?
    St?hlberg A, H?kansson J, Xian X J, Semb H, Kubista M. 2004. Properties of the reverse transcription reaction in mRNA quantification. Clinical Chem, 50: 509~515
    Staiger D, Zecca L, Wieczorek Kirk D A, Apel K, Eckstein L. 2003. The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. Plant J, 33: 361~371
    Tanaka K, Masuda R, Sugimoto T et al. 1990. Water deficiency induced changes in the contents of defensive substances against active oxygen in spinach leaves. Agric Bwl Chem, 54: 26~29
    Tardieu F, Davies W J. 1992. Stomatal responses to abscisic acid is a function of current plant water status. Plant Physiol, 98: 540~545
    Tezara W, Mitchell V J, Driscoll S D, Lawlor D W. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 1401: 914~917?
    Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E.1999. Housekeeping genes as internal standards: use and limits. J Biotechnol, 75:291~295
    Urao T, Yakubov B, Satoh R et al. 1999. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant cell, 11: 1743~1754? ?
    Vandesompele J, De Paepe A, Speleman F. 2002a. Elimination of primer dimer artifacts and genomic coamplification using a two step SYBR green ? Real time RT-PCR. Anal Biochem, 303: 95~98?
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002b. Accurate normaliza-tion of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 3:1~11
    Velculescu V E, Zhang L, Vogelstein B. 1995. Serial analysis of gene expression. Sci, 270: 484~487
    Vermel M, Guermann B, Delage L, Grienenberger J M, Maréchal Drouard L, Gualberto J M. 2002. A family of RRM-type RNA-binding proteins specific to plant mitochondria. Proc Natl Acad Sci 99: 5866~5871
    Wang S, Liang D, Shi S, Ma F, Shu H. 2011. Isolation and characterization of a novel drought responsive gene encoding a glycine-rich RNA-binding protein in Malus prunifolia (Willd.) Borkh. Plant Mol Biol Rep, 29: 125~134
    Wang Y C, Jiang J, Zhao X, Liu G F, Yang C P, Zhan L P. 2006. A novel LEA gene from Tamarix and rossowii confers drought tolerance in transgenic tobacco. Plant Sci, 171: 655~662
    Weig A, Deswarte C, Chrispeels M J. 1997. The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each of groups. Plant Physiol, 114: 1347~1357
    Wellmann S, Buhrer C, Moderegger E, Zelmer A, Kirschner R, Koehne P, Fujita J, Seeger K. 2004. Oxygen-regulated expression of the RNA-binding proteins RBM3 and CIRP by a HIF-1-independent mechanism. J Cell Sci, 117: 1785~1794
    Winter K, Schramm M J. 1986. Analysis of stomatal and nonstomatal components in the environmental control of CO2 exchanges in leaves of Welitschia mirabilis. Plant Physiol, 82: 173~178
    Wudick M M, Luu D T, Maurel C. 2009. A look inside: localization patterns and functions of intracellular plant aquaporins. New Phytol, 184: 289~302
    Wurgler-Murphy S M, Saito H. 1997. Two-component signal transducers and MAPK cascades. Trend Biochem Sci, 22: 172~176
    Xiong L, Zhu J K. 2001. Abiotic stress signal transduction in plants: Molecular and genetic perspectives. Physiol Plant, 112: 152~166
    Yahraus T, Chandra L, Legendre L. 1995. Evidence for a mechanically induced oxidative burst. Plant Physiol, 109: 1259~1266
    Yamaguchi-Shinosaki K, Koizumi M, Urao S, et al. 1992. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol, 33: 217~224
    Yamaguchi-Shinozaki K, Shinozaki K. 2005. Organization of cisacting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci, 10: 88~94
    Yamasaki H. 2005. The NO world for plants: achieving balance in an open system. Plant Cell Environ, 28: 78~85
    Yancey P H, Clark M E, Hand S C, Bowlus R D, Somero G N. 1982. Living with water stress: Evolution of osmolyte systems. Sci, 217: 1214~1222
    Yang R, Weber D J, Carrier F. 2006. Post-transcriptional regulation of thioredoxin by the stress inducible heterogenous ribonucleoprotein A18. Nucleic Acids Res, 34: 1224~1236
    Yang Z, Wu Y, Li Y, Ling HQ, Chu C. 2009. OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol, 70:219~29
    Yoshimura K, Masuda A, Kuwano M, Yokota A, Akashi K. 2008. Programmed proteome response for drought avoidance/tolerance in the root of a C3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiol, 49: 226~241
    Yue B, Xue W, Xiong L, Yu X, Luo L, Cui K, Jin D, Xing Y, Zhang Q. 2006. Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics, 172: 1213~1228
    Zhang J, Davies W J. 1987. Control of stomatal behaviour by abscisic acid which apparently originates in roots. J Exp Bot, 38: 1174~1181
    Zhang J, Davies W J. 1989. Abscisic acid produced in dehydration root may enable the plant to measure the water status of soil. Plant Cell Physiol, 12: 73~81
    Zhao J, Davis L C, Verpoorte R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv, 23: 283~333
    Zhu J K. 2002. Salt and drought stress signal transduction in plant. Annu Rev Plant Biol, 53: 247~273
    Ziemienowicz A, Haasen D, Staiger D, Merkle T. 2003. Arabidopsis transportin1 is the nuclear import receptor for the circadian clock-regulated RNA-binding protein AtGRP7. Plant Mol Biol, 53: 201~212

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700