用户名: 密码: 验证码:
厂矿企业配电网谐波治理控制策略和工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究课题受国家科技攻关项目“电网谐波有源滤波系统的研究”[NO.2002BA218C]和湖南省电力局重点科技攻关项目“电网谐波治理工程应用的研究”(湘电公司科[2001]772号)资金的支持。本文以某冶炼厂110KV变电站10KV馈电网的谐波治理为研究对象,旨在研究中压、中等容量电网的谐波治理控制策略和工程应用技术,为有源电力滤波器(APF)在国内的早日普及应用奠定理论和技术基础,为高压、大功率APF的应用投石问路、积累经验。本文研究成果被列为国家重点新产品计划项目[2003ED770013]。
     首先,本文简要介绍了基于瞬时功率理论的谐波电流检测方法——i_p,i_q算法,并将之推广应用于单相系统、三相三线制系统和三相四线制系统中任意次数谐波的正序、负序有功、无功分量的检测,大大拓宽了该优良瞬时谐波检测算法的应用范围。
     接着,本文研究了数字化APF系统中各部分和各过程存在的延时和惯性。APF系统中的延时常极误认为很小,其影响可以忽略,本文从理论分析和实验结果上均证明实事并非如此,延时对高次谐波的补偿的影响比较严重。鉴于此,本文引进基于LMS算法的自适应预测滤波器,提出了APF参考电流的自适应预测算法和优化预测策略,并导出了一种预测电网谐波的方法。本文针对传统LMS算法的缺陷,并结合电网电流的特点,提出了三点改进措施,这些改进都极大地提高了自适应预测算法的性能。本文提出的APF参考电流的自适应预测方法的最大优势是在保证较高的预测准确度和良好的动态跟踪性能的前提下,增加的计算量不大,且实现简单,不需额外地增加任何硬件。在APF参考电流自适应预测算法的具体实施中,本文采取了一些措施,巧妙地解决了电网频率变化、系统和环境中一些不确定性和随机因素对自适应预测算法的恶劣影响,从而拓宽了所提出的APF参考电流自适应预测算法的适用性,增强了鲁棒性,可为自适应预测算法的其它应用所借鉴。
     然后,本文对APF和无源滤波器通过耦合变压器串联后再和电网并联的混合型拓扑结构(本文简称之为NPHAPF)进行了深入的研究,涵盖NPHAPF的工作机理、控制策略和系统的稳定性等。本文针对电网谐波电流的抑制,提出了匹种控制策略,并比较了各自的优缺点,
    
    中南大学博士学位论文
    摘要
    分析了各自的适用场合。然后考虑电网谐波电压对NpH即J的不良
    影响,本文提出了NPHApF的复合控制方式。采用本文提出的复合
    控制方式,NPHApF中的APF不但可以有效地改善整套滤波系统的
    谐波抑制效果,阻尼或抑制NPHAPF中无源滤波器电感、电容和系
    统电感之间可能发生的串并联谐振,还可以改善滤波器易受电网谐波
    电压影响的弊端。此外,采用本文提出的复合控制方式,也可以避免
    电网电感引起的谐波补偿电流的相位偏移,并能有助于进一步降低有
    源电力滤波器的容量要求。论文还详细分析了NPHAPF系统的稳定
    性,研究了延时和电流控制环比例系数K对系统稳定性的影响,并给
    出了在不同的系统延时下保证系统稳定的K的取值范围。还研究了电
    网参数和无源滤波器参数对K的稳定取值范围的影响。虽然在某种稳
    态条件下,固定K值可以取得良好的谐波抑制效果,但是一旦电网状
    况发生变化,仍固定K值,将不能取得始终如一的谐波抑制效果。针
    对上述问题,本文提出了K的在线自适应调整技术,即根据电网瞬时
    谐波状况,自动调整A卫F电流控制环比例系数K的大小,使得妙F
    不管是在轻微的谐波畸变情况下,还是在严重的谐波畸变情况下,都
    可以在谐波抑制效果和能耗双方面取得最佳的工作状态。
     最后,本文研究了中等功率NPHAPF的工程应用技术,详细讨论
    了NPHAI叩主要元部件的参数设计,并充分考虑滤波器支路电流的
    瞬时变化对ApF直流侧电容冲放电的影响,提出了基于模糊比例控
    制器的直流侧电容电压的稳定控制方法,大大提高了电容电压的调整
    速度和调整的精细性。本文还简要介绍了本课题组研制的某冶炼厂混
    合有源电力滤波器工程应用系统数字化控制器的实现,它主要由两块
    电路板组成,其一是以TMS320 F240为核心的控制电路板,其二是
    以TMS32O C32为核心的信号处理电路板。文章的最后给出了该工程
    应用系统典型的实验数据和实验波形。
The involved project is funded by National Science-Tech Tackle Key Project, ' Research on Active Power Filter for Power Harmonic Eliminating' (NO.2002BA218C) and Hunan Power Corp. Science-Tech Tackle Key Project, 'Research on Engineering Application of Power Harmonic Eliminating ( No. [2001]772) . Taking the harmonic attenuation of the 10KV power distribution network at the 110KV substation in a smeltery as object of study, this dissertation aims to do research on the control strategies and its industrial application technologies for eliminating harmonic in medium and high voltage power network, prepare theory and teclinological knowledge for its universal application in our country, and accumulate experiences for its high-voltage and high-power application. The production of the project is listed as one of the new important products in China[2003ED770013].
    Firstly, harmonic detection method using ip,iq algorithm, which is based on the instantaneous power theory proposed by H.Akagi, is introduced briefly and is extended to detect positive or negative sequence of arbitrary order harmonic in single-phase system, three-phase three-wire system or three-phase four-wire system.
    Secondly, time delay and inertia embedded in every course of the digital APF system is studied. Due to high clock rate and short sampling time, the delay is customarily assumed to have very little influence on the effectiveness of the harmonic compensation process. However, the considerations and calculations presented in this dissertation proved totally otherwise. In view of that, predictive method to calculate APF harmonic reference is proposed based on adaptive LMS algorithm. Optimum predictive strategy is also presented. Furthermore, three modified measures were introduced to improve the performance of the traditional LMS adaptive predictive algorithm in light of the characters of APF control. Simulation and experimental results confirm its effectivity. In the practice of the APF harmonic reference predictive method, some skillful measures were utilized to alleviate the detrimental influence of
    
    
    
    the great variation the line frequency and the indeterminate and stochastic factor in the environment on the adaptive algorithm. Consequently, the adaptivity and correctness of the predictive algorithm is enhanced, and its applied range is extended. The thought of the methods can be used for reference in other applications of adaptive predictive algorithm.
    In succession, deep research on the topology of APF in series with shunt passive filter through coupling transformer (NPHAPF for short) was made. Its operation principle was detailedly analyzed. Four kinds of APF control strategies were proposed and compared. And the optimum control strategy was chosen in terms of the involved project. Using the selected control strategy, the APF in NPHAPF can not only enhance the harmonic attenuating effect of the whole hybrid APF system, damp the series and parallel resonances between the passive filter capacitor and the line inductance, it can also effectively mitigate the large harmonic current caused by the harmonic voltage on the resonance circuit of the passive filter. A thorough investigation into the effect of delay time and proportion coefficient K of APF control on the stability of NPHAPF is done. The validate range of K, not causing system instability, is evaluated under different delay time. Good harmonic attenuating effect might be obtained with constant K in c
    ertain stable situation. But in case of dynamic situation, good performance cannot be hold with constant K any more. To alleviate such problems, automatic K adjusting technology was proposed. That is to regulate K adaptively on-line according to the real-time line harmonic distortion rate. It makes APF work well in terms of both harmonic attenuation and power consumption regardless of the severity of line harmonic distortion.
    In the end, industrial application technology was researched. Parameter designing rales of the main components were discussed in detail. Based on instantaneous variabl
引文
[1] 张直平,李芬辰.城市电网谐波手册.北京:中国电力出版社,2001
    [2] 国家技术监督局.电能质量公用电网谐波(GB/T14549-93).北京:标准出版社,1993
    [3] Christopher K.D. etc. Update of harmonic standard IEEE-519: IEEE recommended practices and requirements for harmonic control in electric power system. IEEE Trans on Industry Apllications, 1989.25(6): 1025~1034
    [4] 鲍敏铎.电力系统谐波及其危害.浙江电力,1994(4):13~18
    [5] 林海雪,孙树勤.电力网中的谐波.北京:中国电力出版社,1998
    [6] 吴竟昌.供电系统谐波.北京:中国电力出版社,1998
    [7] 周贯清.谐波对电力系统运行的影响及危害.安徽电力,1992(2):35~38
    [8] 李科靖.曲河变电所并联电容器组投入系统后放大谐波的测试与分析.湖南电力技术,1994,(6):37~42
    [9] Siriroj Sirisukprasert, Jih-Sheng Lai, and Tian-Hua Liu. Optimum harmonic reduction with a wide range of modulation indexes for multilevel converters. IEEE Trans. Ind. Electron.,2002,49(4):875~878
    [10] 杨君.三相串联型有源电力滤波器及其补偿特性的研究:[博士学位论文].西安:西安交通大学,1999
    [11] 翁利民.抑制电力系统高次谐波的并联无源滤波装置的设计分析.电力电容器,1993,(2):9~15,23
    [12] 罗世国.无源电力滤波器的补偿特性及其存在的问题分析.铁道学报,1996,18(2):36~39
    [13] NASTRAN,J., CAJHEN,R., SELIGER,M., et al. Active power filter for nonlinear ac loads, IEEE Trans.P.E.,1994,9(1):92~96
    [14] M Takeda, K Ikeda, A. Teramoto etc. Harmonic Current and Reactive Power Compensation with an Active Filter. Proc. IEEE-PESC,1988:1174~1179
    [15] Peng F Z, et al. New approach to harmonic compensation in power system. IEEE-IAS, Conf. Rec.,1988:874~880
    [16] Fujita H, et al. Practical approach to harmonic compensation in power systems. IEEE-IAS Annual Meeting, Conf. Rec., 1995:1107~1112
    [17] VAN ZYL A., ENSLIN J., SPEE R. Converter based solution to power quality problems on radial distribution lines, IEEE Trans. I.A.,1996,32(6):883~887
    [18] Peng F.Z, et al. A novel harmonic power filter. IEEE PESC REC., 1998:1151~1159
    [19] 石阳春.电力系统谐波补偿的有源滤波器研究.湖南电力技术,1993,13(2):17~23,2
    [20] GRADY, W.M., SAMOTYJ, M.J., and NOYOLA, A.H. Surwey of active power line conditioning methodologies, IEEE Trans.on P.D.,1990, 5 (3): 1536~1542
    [21] Akagi H. Trends in active power line conditioners. IEEE Trans on P.E., 1994,9(3):263~268
    [22] AKAGI, H. New trends in active filters. Proceedings of European Power Electronics conference, Sevilla, Spain, September 1995:17~26
    [23] AKAGI, H. Trends in active filters for power conditioning, IEEE Trans. Ind.
    
    Applicat., 1996,32(6):311~318
    [24] Bhim Singh, Kamal Al-Haddad, Ambrish Chandra. A review of active filters for power quality improvement. IEEE Trans. on I.E.,1999,46(5): 1~12
    [25] 钱照明,叶忠明,董伯藩.谐波抑制技术,电力系统自动化,1997,21(10):48~54
    [26] 王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,1998.
    [27] 肖湘宁,徐永海.电网谐波与无功功率有源补偿技术的进展,中国电力,1999,3:10~13
    [28] 胡铭,陈珩.有源滤波技术及应用.电力系统自动化,2000,10(2):66~70
    [29] 陈国柱,吕征宇,钱照明。有源电力滤波器的一般原理及应用.中国电机工程学报,2000,9:17~21
    [30] Po-Tai Cheng, S.Bhattacharya, D.Divan. Operations of the dominant harmonic active filter (DHAF) under realistic utility conditions. IEEE Trans. I.A.,2001,37(4):1037~1044
    [31] 纪勇,李向荣,朱庆翔等.基于GTO的±20Mvar STATCOM的现场运行及改进.电力系统自动化,2003,27(4):61~65
    [32] L.Benchaita, S.Saagate, A.Salem nia. A comparison of voltage source and current source shunt active filter by simulation and experimentation. IEEE Trans. Power System, 1999,14(2):642~647
    [33] FUKUDA, S., and YAMAJI, M. Design and characteristics of active power filter using current source converter. IEEE IAS Annual meeting, 1990:965~970
    [34] FUKUDA, S.,and ENDOH, T. Control method for a combined active filter system employing a current source converter and a high pass filter, IEEE Trans. I. A., 1995,31 (3):590~597
    [35] HAYASHI, Y., SATO,N., and TAKAHASH, K. A novel control of a current source active filter for ac power system harmonic compensation, IEEE Trans. I. A., 1991,27 (2):380~384
    [36] S.Fukuda, M.Yamaji. Design, characterstics of active power filter using current source converter. IEEE IAS Annu. Meeting,1990:965~970
    [37] P.Humberto, Z.C.Albenes. A simple control strategy for shunt power line conditioner with inductive energy storage. Proc. IEEE IECON, 1993:1093~1098
    [38] 王玉凯译.用于交流电力系统谐波补偿的电流源有源滤波器的新颖控制.国外电气自动化,1992,3:8~13
    [39] 张代润 李开禄.电压逆变器式有源滤波器分析.电工技术.1998(2):4~10
    [40] Peng F.Z.,Agagi H.,and Nabae, A.. A study of active power filters using quad series voltage source PWM converters for harmonic compensation. IEEE Trans. P. E.,1990,5(1):9~15
    [41] G.H.Rim,Y.Kang, W.H. Kim, et al. Performance improvement of a voltage source active filter. IEEE Proc APEC'95:613~619
    [42] J.H.Xu, C.Lott, S.Saadate, et al. Simulation, Experimentation of a voltage source active filter compensating current harmonics,power factor.Prc.IEEE IECON, 1994:411~415
    [43] 卓放.三相四线制有源电力滤波器的研究:[博士学位论文].西安:西安交通大学,2001
    
    
    [44] 卓放,胡军飞,王兆安.采用多重化主电路实现的大功率有源电力滤波器.电网技术,2000,8:5~7
    [45] Akagi H, A.Nabae, S.Atoh. Control strategy of active power filters using multiple voltage-source PWM converters. IEEE-IA 1986,22(3):460~465
    [46] H.Akagi, S.Atoh, A.Nabae. Compensation characteristic of active power filter using multi-series voltage-source PWM converters. Elect. Eng. Jpn., 1986,106(5):28~36
    [47] G.Ledwich, P.Doulai. Multiple converter performance, active filtering. IEEE Trans. P.E. 1995,10(5):273~279
    [48] F.Kamran, T.G.Habetler.Combined deadbeat control of a series-parallel converter combination used as a universal power filter. Proc. IEEE PESC, 1995:196~201
    [49]. PENG F., LAI J. Dynamic performance and control of a static Var generator using cascade multi-level inverters. IEEE Trans. I.A.,1997,33 (3):748~755
    [50] FUJITA, H., and AKAGI, H. The unified power quality conditioner: the integration of series active filters. Proc. PESC:494~501
    [51] 叶忠明.几种混合有源电力滤波器分析.电工电能新技术,1998,17(2):23~28
    [52] P.T.Cheng, S.Bhattacharya, D.M.Divan. Hybrid solutions for improving passive filter performance in high power applications. Proc.IEEE APEC,1996:911~917
    [53] M.Rastogi, N.Mohan, A.A.Edris. Hybrid-active filtering of harmonic currents in power systems.IEEE Trans. ED., 1995,10(10): 1994~2000
    [54] G.Kamath, N.Mohan, D.Albertson. Hardware implementation of a novel reduced rating active filter for 3-phase 4-wire loads. Proc.IEEE APEC,1995:984~989
    [55] S.Senini, EJ.Wolfs. Hybrid active filter for harmonic unbalanced three phase three wire railway traction loads. IEEE Trans. RE.,2000, 15(4):702~709
    [56] 颜晓庆.并联混合型电力有源滤波器的研究.电工技术杂志,1998,32(5):4~6,25
    [57] Hafner J, Aredes M, Heumann K. A combined system of a passive filter and a shunt active power filter to reduce line current harmonics. Proc. IPEC,1995:388~393
    [58] CHOE G., PARK M. Analysis and control of active power filter with optimized injection. IEEE Trans. P.E., 1989,4(4):427~433
    [59] 路国锋,郑琼林,郝荣泰.有源滤波器高压隔离注入的方案研究.北方交通大学学报,1998,12:67~74
    [60] A.Nakajinma et al. Development of Active Filter with Series Resonant Circuit. IEEE PESC,1998,1168~1173
    [61] PENG E Z., AKAGI H.,and NABAE A.. Compensation characteristics of the combined system of shunt passive and series active filters, IEEE Trans. I. A., 1992,29 (1):144~152
    [62] F.Z.Peng, H. Akagi, A. Nabae. A new approach to harmonic compensation in power Systems-a combined system of shunt passive and series active filters. IEEE Trans. I.A.,1990,26 (6)
    [63] S.Bhattacharya and D.M.Divan. Hybrid series active/parallel passive power lie conditioner with controlled harmonic injection. U.S.Patent 5465203,Nov. 1995
    [64] 刘进军,王兆安.串联混合型单相电力有源滤波器稳态特性的研究.中国电机工程学报,1997,7:248~253
    
    
    [65] 陈国柱,吕征宇,钱照明.串联型混合有源滤波器设计中的几个关键问题.电力系统自动化,2000,10:49~52
    [66] 刘进军 刘波 王兆安.基于瞬时无功功率理论的串联混合型单相电力有源滤波器.中国电机工程学报,1997,17(1):37~41
    [67] 刘进军 王兆安.串联混合型单相电力有源滤波器稳定特性的研究.中国电机工程学报,1997,17(4):248
    [68] 刘进军 刘波 王兆安.串联混合型电力有源滤波器及其在单相电路中的应用.电工技术杂志,1996,(3):11~13.
    [69] Hideaki Fujita, et al. A practical approach to harmonic compensation power system series connection of passive and active filter. IEEE IAS,Ann. Meeting Conf. Rec. 1990:1107~1112
    [70] 马大铭,朱东起,姜新建.新型综合电力滤波系统的研究.清华大学学报,1997,37(S1):48~52
    [71] 马大铭,朱东起,谢磊.综合电力滤波系统中无源滤波器的设计.电工电能新技术,1997(3):1~4
    [72] 朱东起,姜新建,马大铭.无源和有源滤波器串联构成的并联型综合电力滤波系统.清华大学学报,1999,39(3):49~52
    [73] S.Mariethoz, A.C.Rufer. Open loop and closed loop spectral frequency active filtering. IEEE Trans. on P. E.,2002,17(4):564~573
    [74] S. Fryze. Active, reactive and apparent powers in nonsinusoid systems. (In Polish),Prezeglad Elektrot.,1931,7:193~203
    [75] VAN HARMELEN G.L., ENSLIN J.. Real time dynamic control of dynamic power filters in supplies with high contamination. IEEE Trans. P.E., 1993,8(3): 301~308
    [76] Enslin J., Van Wyk J.D.. A new control philosophy for power electronic converters as fictitious power compensators. IEEE Trans PE, 1990,5 (1):88~97
    [77] J.Sebastian Tepper, Juan W.Dixon, Gustavo Venegas, et al.A simple frequency-independent method for calculating the reactive, and harmonic curren in a nonlinear load. IEEE Trans. on I.E., 1990, 43(6):647~654
    [78] 王群,姚为正,王兆安.一种简单的谐波和无功电流检测方法.工业仪表及自动化装置,2000,3:37~40
    [79] 张波,黄朝凯,王昊等.谐波电流和任意次数谐波电流检测新方法.华南理工大学学报,2000,1:70~75
    [80] T.Furuhashi, S.Okuma, Y.Uchikawa. A study on the theory of instantaneous reactive power. IEEE Trans. on I.E.,1990,37(2):86~90
    [81] F.Z.Peng,J.S.Lai. Generalized instantaneous reactive power theory for three-phase power system. IEEE Trans I.M., 1996,45(2):293~297
    [82] Tanaka T, Akagi H. A new method of harmonic power detection based on the instantaneous active power in three-phase circuits.IEEE Trans.On Power Deli.,1995,6(3):1737~1742
    [83] 王莉娜,唐欣,涂春鸣等.基于瞬时无功功率理论的谐波检测方法及实现技术.中南工业大学学报.2000
    [84] 姚为正,王群,刘进军等.基于瞬时无功功率理论的谐波电压瞬时检测方法.西安交通大学学报,1998,12:8~11
    [85] 李庚银,陈志业,丁巧林等.dq0坐标系下广义瞬时无功功率定义及其补偿.
    
    中国电机工程学报,1996,16(3):176~179
    [86] 刘进军,王兆安.基于旋转空间矢量分析瞬时无功功率理论及其应用.电工技术学报,1999,2:49-54
    [87] 杨君,王兆安,丘关源.不对称三相电路谐波及基波负序电流实时检测方法研究.西安交通大学学报,1996,3:94~99
    [88] 杨君,王兆安,丘关源.单相电路谐波及无功电流的一种检测方法,电工技术学报,1996,6:42~47
    [89] 叶忠明,董伯藩,钱照明.谐波电流的提取方法比较,电力系统自动化,1997,21(12):21~24,4
    [90] 杨君,王兆安.三相电路谐波电流两种检测方法的对比研究.电工技术学报,1995(2):43~48
    [91] 杨君.谐波和无功电流检测方法及并联型电力有源滤波器的研究.西安交通大学博士学位论文.1996
    [92] 杨君,王兆安,邱关源.不对称三相电路谐波及基波负序电流实时检测方法研究.西安交通大学学报,1996,30(3):94~100
    [93] 王群 吴宁 苏向丰.有源电力滤波器谐波电流检测的一种新方法.电工技术学报,1997,12(1):1~5
    [94] 王群 吴宁 谢品芳.一种基于神经元的自适应谐波电流检测法.电力系统自动化,1997,21(10):13~16
    [95] 王群 谢品芳 苏向丰.神经元自适应谐波电流检测方法.电工技术杂志,1998,2:3~5
    [96] CHICHARO, J. F., and WANG, H. Power system harmonic signal estimation and retrieval for active power filter applications, IEEE Trans. P.E., 1994, 9 (6):580~586
    [97] BLAJSZCZAK, G. Direct method for voltage distortion compensation in power networks by series converter filter. IEE Proc. E.P.A., 1995,142(5):308~312
    [98] 姚为正,王群,刘进军等.采用负载电压检测控制方式的串连型电力有源滤波器.电工技术学报,1999,8:53~59
    [99] 姚为正,刘进军,王群等.采用检测电源电流控制方式的串连型电力有源滤波器.西安交通大学学报,1999,10:1~5
    [100] 姚为正,王群,刘进军等.串连型有源电力滤波器控制方式的研究.电工技术学报,1999,12:47~51
    [101] Z.A.Wang, Q.Wang, W.Z.Yao, et al. A series active power filter adopting hybrid control approach. IEEE Trans. P.E., 2001,16(3):301~309
    [102] 叶忠明,董伯藩,钱照明.串联有源电力滤波器的控制策略.浙江大学学报.1998,7:437~443
    [103] V.Soares, E Verdelho, Gil D.Marques. An instantaneous active and reactive current component method for active filters. IEEE Trans. on P.E.,2000,15(4):660~669
    [104] Ambrish Chandra, Bhim Singh, B.N.Singh. An improved control algorithm of shunt active filter for voltage regulation, harmonic elimination, power-factor correction, and balancing of nonlinear loads. IEEE Trans. on P.E.,2000,15(3):495~507
    [105] 张鹏鹰,王向军,曹跃云.并联型电力有源滤波器直流电容电压控制的研究.电力电子技术,2000,(3):3~6
    [106] S.Buso, L.Malesani, P.Mattabelli, et al. Design and fully digital control of parallel active filters for thyristor. IEEE Trans. I.A., 1998,34(3):508~517
    
    
    [107] B. K. Bose. An adaptive hysteresis-band current control technique of a voltage-fed PWM inverter for machine drive system. IEEE Trans. on Ind. Electron., 1990, 37(5):402~408
    [108] 李亚男 肖湘宁.有源电力滤波器控制方式的仿真与分析.现代电力,1996,(4):21~27
    [109] L.Malessani, P.Mattavelli, P.Tamasin. High-performance hysteresis modulation technique for active filters. Proc. IEEE APEC, 1996:939~946
    [110] Simone Buso, Sandro Fasolo, Luigi Malesani, et al. A dead-beat adaptive hysteresis current control. IEEE Trans. I. A., 2000,36(4): 1174~1180
    [111] 罗世国.有源电力滤波器补偿特性的仿真研究.西南交通大学学报,1994,29(6):P602~608
    [112] 何卫东,王长永,张仲超等.相移正弦脉宽调制技术在电网有源滤波和无功补偿中的应用.电网技术,1999,6:5~7
    [113] J.H.Marks, T.C.Green. Predictive control of active power filters. Power Electronic and Variable Speed Drive, 2000,9:18~23
    [114] S.G.Jeong, M.H.Woo. DSP based active power filter with predictive current control. IEEE IECON, 1995,1 (21):645~650
    [115] 席裕庚.《预测控制》.北京:国防工业出版社,1993.6
    [116] Z.Lu, T.Green. Neural network based predictive control strategy of active power filter for electric drives. IEE PEVD,1998,7(456):287~291
    [117] S.Fukuda and S. Sugawa. Adaptive signal processing based control of active filters, in conf. Rec.IEEE-IAS Annual Meeting, 1996:886~890
    [118] H. Kamiya and S. Fukuda, Current control of voltage source single-phase active filter using adaptive digital filter, in Conf. Rec. ofl IAS-Japan, 1999,1 (62): 197~200
    [119] S.Fukuda and H. Kamiya, Current control of active filters assisted by adaptive algorithm. Conf. Rec.of IEE PEVSD-Janpan, 2000(475): 13~17
    [120] Tai Ling Leung, Sami Valiviita and Seppo J. Ovaska, Adaptive and delayless filtering system for sinusoids with varying frequency. 1999 IEEE
    [121] O.Vainio, Sami Valiviita, S.J.Ovaska. Multi-stage adaptive filters for in-phase processing of line frequency signals. Proc. IEEE Instrum. Meas. Tech. ConE. Ottawa, Canada, 1997,5:428~433
    [122] O.Vainio and S.J. Ovaska. Digital filtering for robust 50/60 Hz. Zero-crossing detectors. IEEE Trans. Instrum. Meas., 1996,45(4):426~430
    [123] J.G.Proakis. Digital communications. McGraw-Hill, New Yoik, NY, third edition,1995
    [124] 胡广书.数字信号处理——理论、算法与实现.北京:清华大学出版社,1997:22~25
    [125] 王哲,戴连奎.基于多项式插值方法的FIR模型辨识.机电工程,2000,17(2):90~93
    [126] ENSLIN, J., and VAN WYK, J.D. Measurement and compensation of fictitious power under nonsinusoidal voltage and current conditions, IEEE Trans. Instrum. Meas., 1998, 37 (3):403~408
    [127] 马大铭,朱东起,高景德.三相电压不对称时谐波和无功电流的准确检测,清华大学学报,1997,4:7~10
    
    
    [128] V.Kaura, V.Blasko. Operation of a phase locked loop system under distorted utility conditions. IEEE APEC. 1996.2(11):703~708
    [129] 王群,姚为正,王兆安.低通滤波器对谐波检测电路的影响.西安交通大学学报,1999,33(4):5~8,12
    [130] 湖南省电力试验研究所/中南工业大学.智能化电网谐波监视、分析保护一体化装置.湖南科研成果99-008
    [131] 翁利民.无源滤波器的设计优化.电力电容器,1997,(4):12~15
    [132] 刘成民.无源滤波器组的综合优化设计.电网技术,1997,21(11):49~51,58.
    [133] 史伟伟,蒋全,胡敏强等.串联型电力有源滤波器中低通滤波器的设计和参数优化.中国电机工程学报,2001,21(11):74~78
    [134] 涂春鸣,罗安.电网谐波分析与滤除系统的研制.中南工业大学学报,2001,32(6):631~634
    [136] Simon Haykin. Adaptive filter theory. Prentice Hall, Englewood Cliffs, N J, third edition, 1986
    [137] 陈尚勤,李晓峰.快速自适应信息处理.北京:人民邮电出版社,1993
    [138] Douglas,S.C.,and T.H.-Y.Meng. Normalized data nonlinearitiers for LMS adaptation.IEEE Trans. Acoust. Speech Signal Process., 1994,42:1352~1365
    [139] Nagumo,J.I., and Noda. A learning method for system identification. IEEE Trans.Autom. Control, 1994,12:282~287

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700