多载荷条件下VANET网络接入协议研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速移动性与负载多样性的约束条件对智能交通系统中车辆通信网络的信道接入机制提出了新的挑战。传统接入协议的性能表现难以满足新时期智能车辆通信网络对信道接入机制提出的需求,因此必须在多种传统信道分配方式的基础上进行混合设计,使之能够动态、自适应的针对多载荷与车辆移动性进行信道的优化分配,实现在低负载条件下保持对信道的高效利用,高负载条件下保持网络性能的稳定与可靠,对节点的高移动性具有较强的鲁棒性。
     针对以上问题,本文提出CSMA与TDMA相融合的混合接入协议方案,将网络的接入协议设计要求与上层的多载荷应用综合考虑,通过合理的时隙规划与信道接入规则设计,实现以网络负载为控制因子的自适应调节机制。本文主要贡献与创新点如下:
     (1)深入调研了多载荷条件下VANET网络发展背景,分析了多载荷与与快速移动性对无线信道接入协议的性能要求,详细评估了CSMA与TDMA接入技术在相关交通通信网络中的应用现状,论证了两者的性能特点与互补性,明确了接入协议设计所面临的问题与挑战。
     (2)通过分布式时隙分配算法为节点进行初始化时隙分配并建立区域范围内帧结构,设置计时器功能模块,将CSMA竞争机制融入时隙中,采用退避机制区分节点优先级,利用广播竞争通告消息作为冲突解决方案。通过一系列功能模块的设计与信道接入规则的制定,形成在高负载时倾向以时隙分配信道为主,低负载条件下以竞争接入信道为主的自适应接入机制。
     (3)根据VANET网络应用的调研结果建立了高速公路环境下仿真场景,在NS2网络仿真软件中对相关设计方案进行了仿真实现。以仿真数据为依据,从信道利用率、丢包率和网络开销三个方面对混合型接入协议进行性能评估。结果表明,混合型接入协议在由低到高的动态负载条件下均具有较高的信道利用率,虽然由于竞争机制的固有缺陷出现了少量的丢包,但是与传统TDMA相比网络开销所占比例大大降低,提高了可用带宽。与此同时,混合协议对节点速度的变化表现出了很高的稳定性,表现更加均衡。最后通过辅助技术的仿真评估,对协议的进一步研究提供了理论基础。
Multiple load data traffic and high speed mobility bring a new challenge to the medium access control protocol of VANET in intelligent transportation system. It is hard for the traditional MAC protocols to meet the need of the new network. Thus it is very important to improve the performance of the traditional MAC protocol. A new MAC protocol which can keep efficient and reliable in both low and high load networks is needed, which should also keep robust in the network with high mobility nodes.
     A hybrid MAC mechanism is proposed in this paper, which takes the advantages of both TDMA and CSMA mechanism. This hybrid mechanism is based on TDMA, while CSMA mechanism is added in time slots to improve the slot utilization. The main contribution and innovation of this paper are as follows:
     (1) A conclusion about the development of VANET and analysis on the demand of the multiple-load VANET are made in this paper. The performances of CSMA and TDMA in the related scene are evaluated. The challenge and problems which brought by the new constraints of multiple load are especially concerned in this paper.
     (2) The key functional modules in the new mechanism are as follows:Slots are assigned to the nodes in the network with distributed slot assignment algorithm. Clock module is set for every node, and a hybrid protocol with backoff mechanism is carried out. Contention Notify Message is set to be the collision solution. Through these series of designs and access control rules, the new MAC mechanism becomes to be flexible and stable, which tend to be a TDMA mechanism when the load is high on the network, a CSMA mechanism in the low contention network.
     (3) Based on the data of simulation, the performance of the hybrid MAC protocol is evaluated in channel utilization, packet loss ratio and the overhead. It is can be concluded that the new protocol have a good performance in channel utilization whenever the load is high or low, though there are some packet lost because of the problem of contention-based mechanism, the overhead of the hybrid protocol has been reduced remarkably. The hybrid protocol also keeps a good robustness when the node speed changed. Through the research on the assistance mechanism, an idea for the future research is provided.
引文
[1]M.J. Booysen, S. Zeadally, G.-J. van Rooyen, etl. Survey of Medium access control protocols for vehicular ad hoc networks [J]. IET Communications,2011,11(5):1619-1631.
    [2]Abdelmalik Bachir, Mischa Dohler, Thomas Watteyne, Kin K. Leung, etl. MAC Essentials for Wireless Sensor Networks [J]. IEEE Communications Surveys & Tutorials,2010,12(2): 222-248.
    [3]中国智能交通协会概况[OL], http://www.itschina.org/article.asp?articleid=5,2009-5-12.
    [4]Qian Dong, Waltenegus Dargie. A Survey on Mobility and Mobility-Aware MAC Protocols in Wireless Sensor Networks [J]. IEEE Communications Surveys & Tutorials,2012,99: 1-13
    [5]Katrin Bilstrup, Elisabeth Uhlemann, Erik G. Strom and Urban Bilstrup. On the Ability of the 802.11p MAC Method and STDMA to Support Real-Time Vehicle-to-Vehicle Comunication [J]. EURASIP Journal on Wireless Communication and Networking,2009: 1-13.
    [6]Ondrej Linda, Milos Manic. Online Spatio-Temporal Risk Assessment for Intelligent Transportation Systems [J]. IEEE Transactions on Intelligent Transportation Systemss,2011, 12(1):194-200.
    [7]Kashif Dar, Mohamed Bakhouya, Jaafar Gaber and Maxime Wack. Wireless Communication Technologies for ITS Applications [J]. IEEE Communication Magazine, 2010,48:158-162.
    [8]F.J. Martinez, C.K. Toh, J.C. Cano, C.T. Calafate and P. Manzoni. Emergency Services in Future Intelligent Transportation Systems Based on Vehicular Communication Networks [J]. Intelligent Transportation Systems Magazine,2010,2(2):6-20.
    [9]R. A. Saeed, A. B. H. Naemat, A. B. Arts and M. K. B. Awang. Design and Evaluation of Lightweight IEEE 802.11p-based TDMA MAC method for Road Side-to-Vehicle [C]. International Conference on Advanced Communication Technology,2010,1483-1488.
    [10]IEEE 802.11, Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications [S]. Jun,2007.
    [11]IEEE 802.11P/D 10.0, Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications [S]. Jan,2010.
    [12]I. Rhee, A. Warrier, J. Min and L. Xu. DRAND:Distributed Randomized TDMA Scheduling For Wireless Adhoc Networks [J], IEEE Transactions on Mobile Computing, 2009,8(10):1384-1396.
    [13]Alexey Vinel, Claudia Campolo, Jonathan Petit and Yevgeni Koucheryavy. Trustworthy Broadcasting in IEEE 802.11p/WAVE Vehicular Networks:Delay Analysis [J].2011,15(9): 1010-1012.
    [14]Krishna Sampigethaya, Mingyan Li, Leping Huang and Radha Poovendran. AMOEBA: Robust Location Privacy Scheme for VANET [J]. IEEE Journal on Selected Areas in Communications,2007,25(8):1569-1589.
    [15]Claudia Campolo, Alexey Vinel, Antonella Molinaro and Yevgeni Koucheryavy. Modeling Broadcasting in IEEE 802.11p/WAVE Vehicular Networks [J]. IEEE Communications Letters,2011,15(2):199-201.
    [16]Jelena Misic, Ghada Badawy and Vojislav B. Misic. Performance Characterization for IEEE 802.11p Network With Single Channel Devices [J]. IEEE Transactions on Vehicular Technology,2011,60(4):1775-1787.
    [17]Younghyun Kim, Jaeduck Ko, Wonjung Kim and Sangheon Pack. A Measure Study on Internet Access in Vehicular Wi-Fi Networks [C]. Study of the Feasibility of VANET and its Routing Protocols [C]. Vehicular Technology Conference Fall,2010 IEEE 72nd:1-5.
    [18]Wenjing Wang, Fei Xie and Mainak Chatterjeee. Small-scale and Large-scale Routing in Vehicular Ad hoc Networks [J]. IEEE Transaction on Vehicular Technology,2009,58(9): 5200-5213.
    [19]Jing Zhu, Sumit Roy. Mac for Dedicated Short Range Communications in Intelligent Transport System [J]. IEEE Communications Magazine, Dec 2003:60-67.
    [20]Todd Murray, Tammy Murray, Michael Cojocari and Huirong Fu. Measuring the Performance of IEEE 802.11p Using ns-2 Simulator for Vehicular Networks [C]. IEEE International Conference on Eletro/Information Technology, May,2008:498-503.
    [21]Tarik Taleb, Ehssan Sakhaee, Abbas Jamalipour, Kazuo Hashimoto, Nei Kato and Yoshiaki Nemoto. A Stable Routing Protocol to Support ITS Services in VANET Networks [J]. IEEE Transactions on Vehicular Technology,2007,56(6):3337-3346.
    [22]Hamid Menouar, Fethi Filali and Massimiliano Lenardi. A Survey and Qualitative Analysis of MAC Protocols for Vehicular Ad Hoc Networks [J]. IEEE Wireless Communications, 2006,5(13):30-35.
    [23]Daiheng Ni. Determining Traffic-Flow Characteristics by Definition for Application in ITS [J]. IEEE Transactions on Intelligent Transportation Systems,2007,8(2):181-187.
    [24]Jeremy J. Blum, Azim Eskandarian and Lance J. Hoffman. Challenges of Intervehicle Ad hoc Networks [J]. IEEE Transactions on Intelligent Transportation Systems,2004,5(4): 347-351.
    [25]Razvan Stanica, Emmanuel Chaput and Andre-Luc Beylot. Comparison of CSMA and TDMA for a Heartbeat VANET Application [C]. IEEE International Conference on Communications, May,2010:1-5.
    [26]Katrin Sjoberg-Bilstrup, Elisabeth Uhlemann and Erik G. Strom. Scalability Issues of the MAC Methods STDMA and CSMA of IEEE 802.11p When Used in VANETs [C]. International Conference on Communications, May,2010:23-27.
    [27]Panos Papadimitratos, Arnaud de La Fortelle, Knut Evenssen, Robeto Brignolo and Stefano Cosenza. Vehicular Communication Systems:Enabling Technologies, Applications and Futrue Outlook on Intelligent Transportation [J]. IEEE Communications Magazine, Nov, 2009:84-95.
    [28]A. Khayatzadeh Mahani, M. Naderi, C. Casetti and C. F. Chiasserini. MAC-layer Channel Utilization Enhancements for Wireless Mesh Networks [J]. IET Communications,2009,3(5): 794-807.
    [29]Jun Peng, Liang Cheng. A Distributed MAC Scheme for Emergency Message Dissemination in Vehicular Ad Hoc Networks [J]. IEEE Transaction on Vehicular Technology,2007,56(1): 3300-3308.
    [30]Xinming Zhang, Nana Li, Wenbo Zhu and Dan Keun Sung. TCP Transmission Rate Control Mechanism Based on Channel Utilization and Contention Ratio in Ad hoc Networks [J]. IEEE Communications Letters,2009,13(4):280-282.
    [31]Y. Toor, P. Muhlethaler and A. Laouiti. Vehicle Ad hoc Networks:Applications and Related Technical Issues [J]. IEEE Communications Survey & Tutorials,2008,10(3):74-88.
    [32]TANG Jiqiang, ZHANG Youguang. Mobile Awareness Based Hybrid MAC Protocol for Tactical Data Link Networks [C]. International Conference on Multimendia Information Network and Security.2010:203-207.
    [33]S.Y. Wang, C.L. Chou, K.C. Liu, T.W. Ho, W.J. Hung, C.F. Huang, M.S. Hsu, H.Y. Chen and C.C. Lin. Improving the Chanenl Utilization of IEEE 802.11p/1609 Networks [C]. Wireless Communications and Networking Conferenc,2009:1-6.
    [34]陈楠.无线传感器网络LEACH算法的研究与改进[D].北京邮电大学,2008.
    [35]Hicham Anouar. Design and Optimization of multiple Access Protocols for Ad Hoc Wireless Networks [D]. Ecole Nationale Superieure des Telecommunications de Paris,2006.
    [36]Kuklinski Slawomir, Wolny Grzegorz. Density Based Clustering Algorithm for Vehicular Ad Hoc Networks [J]. International journal of internet protocol technology,2009,4(3): 149-157.
    [37]Daeinabi Ameneh, Pour Rahbar Akbar Ghaffar, Khademzadeh Ahmad. VWCA:An Efficient Clustering Algorithm in Vehicular Ad hoc Networks [J]. Journal of Network and Computer Applications,2011,34(1):207-222.
    [38]Roberto A. Uzcategui, Guillermo Acosta-Marum. WAVE:A Tutorial [J]. IEEE Communications Magazine.2009,47(1):126-133.
    [39]Yuangou Bi, Kuang-Hao Liu, L.X. Cai, Xuemin Shen, Hai Zhao. A Multi-channel Token Ring Protocol for QoS Provisioning in Inter-vehicle Communication [J]. IEEE Transaction on Wireless Communication,2009,8(1):5621-5631.
    [40]董魏.IEEE802.11无线局域网性能表现——跨层模型,系统仿真与实验验证[D].北京邮电大学,2009.
    [41]I-Sheng Liu, F. Takawira, Hong-Jun Xu. A hybrid token-CDMA MAC protocol for wireless ad hoc networks [J]. IEEE Transaction on Mobile Compute,2009,7(5):557-569.
    [42]朱近丹.基于WLAN的无线网状网络WMN安全接入协议研究[D].上海交通大学,2009.
    [43]熊炜,李清泉.高速公路场景中车用自组织网络的节点度[J].电子与信息学报,2010,32(9):2303-2308.
    [44]H. Hartenstein, K.P. Laberteaux. A Tutorial Survey on Vehicular Ad hoc Networks [J]. IEEE Communication Magazine,2008,46(6):164-171.
    [45]Jeremy J. Blum, Azim Eskandarian. A Reliable Link-Layer Protocol for Robust and Scalable Inter-vehicle Communications [J]. IEEE Transaction on Intelligent Transportation Systems, 2007,8(1):4-13.
    [46]Fan Bai, H. Krishnan. Reliability Analysis of DSRC Wireless Communication for Vehicle Safety Application [C]. IEEE Intelligent Transportation Systems Conference,2006: 355-362.
    [47]V. Ajay Chandra Gummalla, O. John Limb. Wireless Medium Access Control Protocols [J]. IEEE Communications Surveys & Tutorials,2000,3(2):2-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700