蓝圆鲹蛋白制备抗氧化肽的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓝圆鲹(Decapterus maruadsi)属于鲈形目鲹科圆鲹属的一种,是我国重要的经济鱼类之一。对其加工利用制成鱼糜罐头制品或改性制备功能活性肽,则可大大提高其附加值。本文以蓝圆鲹蛋白为原料,运用酶解技术制各抗氧化肽,采用体外评价法测定其抗氧化活性,通过多种分离技术手段对蓝圆鲹多肽进行分级分离,并采用基质辅助激光解析电离飞行时间串联质谱对目标肽段进行一级氨基酸序列鉴定。新发现的肽段经化学合成后,对其进行体外抗氧化活性验证及反应动力学研究。最后研究了蓝圆鲹多肽在加工储藏过程中,及体外模拟胃肠消化道过程中的抗氧化活性稳定性,并探讨了蓝圆鲹多肽与其他常见抗氧化剂的协同抗氧化效应。主要研究结果如下:
     (1)通过凯氏定氮法、索氏抽提法和OPA柱前衍生化高效液相色谱法分别测定蓝圆鲹蛋白的基本组分含量。结果表明蓝圆鲹是一种高蛋白(80.16%)、低脂肪(10.38%)、必需氨基酸含量(46.28g/100g protein)和抗氧化性氨基酸含量(32.59g/100g protein)均较理想的食品原料。在此基础上运用蛋白酶解技术,以DPPH-清除活性、O2-··清除活性及还原能力三种体外抗氧化能力为评价指标,分别采用碱性蛋白酶、木瓜蛋白酶、中性蛋白酶、胰蛋白酶和胃蛋白酶五种商业蛋白酶水解蓝圆鯵蛋白。综合比较后选择碱性蛋白酶作为制备蓝圆鲹蛋白抗氧化肽的最佳蛋白酶。
     (2)以水解度为指标,分别采用单因素法和Box-Benhnken Design (BBD)响应面法优化碱性蛋白酶水解蓝圆鲹蛋白的酶解工艺条件,建立了水解度(Y)与初始底物浓度(S0,X1)、初始酶浓度(E0,X2)、pH (X3)、酶解温度(T,X4)4个因素之间的二元回归模型:Y=22.23-1.05X,+0.66X2+0.79X3+1.09X4-0.082X,X2+0.11X,X3+0.16X,X4-0.17X2X3-0.O67X2X4-0.25X3X4-0.04X12-0.22X22-0.37X32-0.44X42。并根据此数学模型进行参数最优化分析计算得到最佳酶解条件:初始底物浓度16.3g·L-,初始酶浓度0.11g·L-,酶解温度50.5℃, pH8.18,水解300min,理论上可达到22.2%的水解度值,与模型验证实验值22.4%接近。同时,实验研究发现蓝圆鲹蛋白水解产物的抗氧化活性、氨基酸组成及分子量分布均与水解度密切相关。水解度为23.0%的酶解产物的抗氧化活性较高,与其产物中的抗氧化性氨基酸含量相对应。
     (3)碱性蛋白酶在45.0°C至65.0°C范围内的酶失活热动力学性质研究表明,碱性蛋白酶失活符合蛋白酶一级热失活动力学方程。在50.0℃、pH9.5的反应条件下,碱性蛋白酶酶解蓝圆鲹蛋白的米氏常数Km值为29.115g·L-1。并建立了碱性蛋白酶可控酶解蓝圆鲹蛋白的水解度动力学模型为:水解速率动力学模型为:实验验证表明在一定程度上模型数据与实验结果吻合良好。
     (4)采用超滤、凝胶层析、高效液相色谱等不同分离纯化技术对蓝圆鲹蛋白酶解产物进行分离纯化,得到抗氧化活性较好的两个高亲水性肽片段B11和B12。采用MALDI-TOF-TOF MS分析鉴定其氨基酸序列结构,得到B11、B12抗氧化肽氨基酸序列分别为His-Asp-His-Pro-Val-Cys (HDHPVC,707.11Da)和His-Glu-Lys-Val-Cys (HEKVC,615.22Da)。B11、B12经化学合成后,分别采用DPPH-清除法、02-·清除法及还原能力法三种体外抗氧化活性检测法验证其抗氧化能力。结果表明两个抗氧化肽均具有较强的抗氧化能力。
     (5)对抗氧化肽HDHPVC和HEKVC清除DPPH-反应进行了动力学研究。结果表明]HDHPVC和HEKVC均属于慢反应动力学性质,其在固定30min反应时间条件下的ECso值(分别为31.0μM和67.7μM)比稳态条件下的ICso值(分别为9.0μM和14.5μM)偏大3至5倍。HDHPVC和HEKVC的二级反应速率常数k2分别为2.00×10-5μM-'·s-1和0.70×10-5μM-1·S-1,表明HEKVC清除能力较差,而HDHPVC清除能力稍逊于对照物GSH(k2为2.30x10-5μM-1.s-1)。
     (6)热稳定性实验结果显示,蓝圆鲹多肽(RSH-Ⅲ,Mw<5.0kDa)具有较好的耐热性能;在pH≤7的酸、中性环境中活性保持较好,但不耐碱;蓝圆鯵多肽经体外胃肠道消化后仍能保持70%左右的抗氧化活性,说明其具有一定的耐受胃肠道酶系消化的能力。对蓝圆鲹多肽与其他抗氧化剂的协同抗氧化作用的初探研究发现,只有低浓度条件下的蓝圆鲹多肽与GSH复合清除DPPH·和02-·,及与vitamin C复合清除DPPH·时,表现出了一定的正协同效应,高浓度时存在负协同效应。而当与vitamin C复合清除O2-·时,表现出负协同作用。
Round scad (Decapterus maruadsi) belongs to the family of mackerel, it is an important economic fish in China. Processing this low-valued pelagic fish into high market-value products of surimi production and bioactive peptide will pave a way for the full use of round scad. In the study, antioxidative peptide was prepared from round scad protein through enzymatic technology, and purified by a series of separation technology, then matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS) was used to identify the amino acid sequence of the purified peptides. Subsequently, the identified peptides was synthesized, antioxidative activities and reaction dynamics of the synthetic peptides were studied. At last, the effects of temperature, pH, and the enzyme in the simulated gastrointestinal digestion on the antioxidative peptide were discussed, a pilot study on the synergistic effects between round scad protein and other antioxidants was also carried out. The major results are as follows:
     (1) The protein content was determined to be80.16%by using Kjeldahl, lipid content of10.38%was measured through Soxhlet extraction method, OPA-precolumn derivatization and RP-HPLC assembly system were used to analyse amino acids composition. Therefore, Round scad is a kind of food material with high protein, low fat, ideal essential amino acids (46.28g/100g protein) and antioxidative amino acids content (32.59g/100g protein). Five commercial proteases, namely, alcalase, papain, neutral protease, trypsin and pepsin were used to hydrolyze round scad protein. The antioxidative activities of round scad protein hydrolysate (RSH) were evaluated through methods of DPPH· scavenging activity, O2-· scavenging activity and reducing power. Therefore, alcalase-treated RSH was selected for further study after comprehensive comparison.
     (2) Taking the degree of hydrolysis (DH) as criterion, single factor experiment and response surface methodology (RSM) were used to optimize the hydrolysis conditions. The effects of initial substrate concentration (S0, X1), initial enzyme concentration (E0, X2), pH (X3), and temperature (T, X4) on DH (Y) were obtained by multiple regression analysis using Box-Benhnken Design (BBD):Y=22.23-1.05X1+0.66X2+0.79X3+1.09X4-0.082X,X2+0.11X1X3+0.16X1X4-0.17X2X3-0.067X2X4-0.25X3X4-0.04X12-0.22X22-0.37X32-0.44X42. A theoret-ical DH of22.2%could be obtained after reacted for300min under the optimal conditions:initial substrate concentration of16.3g·L-1, initial enzyme concentration of0.11g·L-1,50.5℃and pH8.18, which was validated to be closed to the experimental DH of22.4%. It was also confirmed that the molecular weight distribution, amino acid composition and antioxidative activity of RSH varied with DH. Fractions with the molecular weight under3.0kDa keep increasing with the increase of DH. A slight increase of antioxidative amino acids could be found when DH was ranged from17.0%to23.0%, RSH exhibited the strongest antioxidative activities at23.0%DH.
     (3) Thermal inactivation of alcalase was found to follow the first-order kinetics in the temperature range from45.0℃to65.0℃. A series of hydrolytic experiments of round scad protein with alcalase were processed at50.0℃and pH9.5. The kinetic parameter, Km, was estimated as29.115g·L-1through Lineweaver-Burk plot. The kinetic equation of DH and hydrolysis rate (r) for the enzymatic hydrolysis of round scad protein by using alcalase were suggested as respectively.
     (4) Alcalase-treated RSH was purified by ultrafiltration, gel chromatography, and RP-HPLC method, two hydrophilic fractions of B11and B12were obtained. The amino acid sequences of B11and B12were identified as His-Asp-His-Pro-Val-Cys (HDHPVC,707.11Da) and His-Glu-Lys-Val-Cys (HEKVC,615.22Da) by MALDI-TOF/TOF MS, respectively. After being synthesized, antioxidative activities of the two peptides were verified. Results revealed that the two novel peptides exhibited effective antioxidative capacity.
     (5) Kinetic study of HDHPVC and HEKVC through DPPH-scavenging method indicated that the two peptides could be classified as slow kinetics behaviour. EC50values for HDHPVC and HEKVC at fixed30min reaction time were31.0μM and67.7μM respectively. Whereas, at the steady state, IC50 values for HDHPVC and HEKVC were9.0μM and14.5μM respectively, which were only part of the EC50values at fixed30min. The calculated values of k2for GSH, HDHPVC and HEKVC were2.30×10-5μM-1·s-1,2.00×10-5μM-1·s-1and0.70×10-5μM-1·-s-1, respectively. Thus the antiradical properties could be arranged as GSH≥HDHPVC>HEKVC.
     (6) The effects of temperature, pH and in vitro simulated digestion model system on the DPPH· and O2-· scavenging activities of RSH-III (Mw<5.0kDa) were investigated. RSH-III exhibited good tolerance for heat treatment and acid conditions under pH7.0, but not alkali-resistant. RSH-III could also resist gastrointestinal enzyme digestion, about70%of initial antiradical activity was maintained after being digested by pepsin and trypsin. A pilot study of synergistic effects between RSH-III and other antioxidants was processed. Among all combinations, group of RSH-III and GSH revealed synergist effects when scavenging DPPH· and O2-· at low concentration. For vitamin C, slight synergist effects could be observed for scavenging DPPH· under low concentration, but there was no synergist effect existed for O2-· scavenging activity.
引文
[1]王导,朱翠凤.海洋生物活性肽的生理活性研究进展[J].医学综述,2011,17(5):661-663
    [2]Hale M. B. Making fish protein concentrates by enzymatic hydrolysis [J]. NOAA Technical Report NMFS SSRF,1972,657
    [3]Yanez E., Ballester D., Monckeberg F. Enzymatic fish protein hydrolyzate:chemical composition, nutritive value and use as a supplement to cereal protein [J]. Journal of Food Science,1976,41(6):1289-1292
    [4]Agar A. Footprints in the Sea [M]. Evans Bros,1959
    [5]Neway H., Smith P. Intercellutar hydrolysis of dipeptides during Intestinal absorption [J]. Physiol,1960,152:367-380
    [6]程云辉,文新华.生物活性肽制备的研究进展[J].食品与机械,2001,84(4):4-7
    [7]金嫘,王晶,李新华.应用化学发光法研究蛋清肽的抗氧化活性[J].食品科技,2009,34(1):187-190
    [8]Mellander O. The physiological importance of the casein phosphopeptide calcium salts. II. Peroral calcium dosage of infants [J]. Acta Societatis Medicorum Upsaliensis,1950,55: 247-255
    [9]Hartmann R., Wal J. M, Bernard H., et al. Cytotoxic and allergenic potential of bioactive proteins and peptides [J]. Current pharmaceutical design,2007,13(9):897-920
    [10]Nagai T., Suzuki N., Nagashima T. Antioxidative activities and angiotensin I-converting enzyme inhibitory activities of enzymatic hydrolysates from commercially available Kamaboko species [J]. Food Science Technology,2006,12:335-346
    [11]Murray B. A., FitzGerald. R. J. Angiotensin converting enzyme inhibitory peptides derived from food proteins:biochemistry, bioactivity and production [J]. Current pharmaceutical design,2007,13(8):773-791
    [12]Mizushima S., Ohshige K., Watanabe J., et al. Randomized controlled trial of sour milk on blood pressure in borderline hypertensive men [J]. American Jouanal of Hypertension, 2004,17:701-706
    [13]Motoi H., Kodama T. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides from wheat gliadin hydrolysate [J]. Nahrung/Food,2003,47: 354-358
    [14]Meisel H. Biochemical properties of peptides encrypted in bovine milk proteins [J]. Current Medicinal Chemistry,2005,12:1905-1919
    [15]Takahashi M., Moriguchi S., Yoshikawa M., Sasaki R. Isolation and characterization of oryzatensin-a novel bioactive peptide with ileum-contracting and immunomodulating activities derived from rice albumin [J]. Biochemistry Molecular Biology International, 1994,33:1151-1158
    [16]McCann K. B., Shiell B. J., Michalski W. P., et al. Isolation and characterisation of a novel antibacterial peptide from bovine aS1-casein [J]. International Dairy Journal,2006, 16:316-323
    [17]Mine Y., Kovacs-Nolan J. New insights in biologically active proteins and peptides derived from hen egg [J]. Worlds Poultry Science Journal,2006,62:87-95
    [18]Chabance B., Jolles P., Izquierdo C., et al. Characterization of an antithrombotic peptide from kappa-casein in newborn plasma after milk ingestion [J]. British Journal of Nutrition,1995,73:583-590
    [19]Wang W., deMejia E. G. A new frontier in soy bioactive peptides that may prevent age-related diseases [J]. Comprehensive Reviews in Food Science and Food Safety,2005, 4:63-78
    [20]Nagaoka S., Futamura Y., Miwa K., et al. Identification of novel hypocholesterolemic peptides derived from bovine milk beta-lactoglobulin [J]. Biochemistry and Biophysical Research Communications,2001,281:11-17
    [21]Erdmann K., Grosser N., Schipporeit K., et al. The ACE inhibitory dipeptide Met-Tyr diminishes free radical formation in human endothelial cells via induction of heme oxygenase-1 and ferritin [J]. Journal of Nutrition,2006,136:2148-2152
    [22]Hernandez-Ledesma B., Davalos A., Bartolome B., et al. Preparation of antioxidant enzymatic hydrolysates from alpha-lactalbumin and beta-lactoglobulin. Identification of active peptides by HPLC-MS/MS [J]. Journal of Agricultural and Food Chemistry,2005, 53:588-593
    [23]Takahashi M., Fukunaga H., Kaneto H., et al. Behavioral and pharmacological studies on gluten exorphin A5, a newly isolated bioactive food protein fragment, inmice [J]. Japanese Journal of Pharmacology,2000,84:259-265
    [24]Fukudome S., Yoshikawa M. Gluten exorphin C:A novel opioid peptide derived from wheat gluten [J]. FEBS Letters,1993,316:17-19
    [25]Korhonen H., Pihlanto A. Bioactive peptides:production and functionality [J]. International Dairy Journal,2006,16:945-960
    [26]林金莺.火麻仁蛋白水解及其抗氧化肽的研究[D].广州:华南理工大学,2010
    [27]Harman D. Aging:a theory based on free radical and radiation chemistry [M]. Berkeley: University of California Radiation Laboratory,1955
    [28]Najafian L., Babji A. S. A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications [J]. Peptides,2011,33:178-185
    [29]Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide:general properties and effect of hyperbaric oxygen [J]. Biochemical Journal,2003,134:707-716
    [30]黎观红,晏向华.食物蛋白源生物活性肽[M].北京:化学工业出版社,2010
    [31]阎果兰,靳利娥.食品中抗氧化剂的发展趋势[J].山西食品工业,2005,3:20-22
    [32]Gulcin, I. Antioxidant activity of food constituents:an overview [J]. Archives of Toxicology,2012,86,345-391
    [33]Wright J. S., Johnson E. R., DiLabio G A. Predicting the activity of phenolic antioxidants: theoretical methods, analysis of substituent effects, and application to major families of antioxidants [J]. Journal of American Chemical Society,2001,123:1173-1183
    [34]Chen H. M., Muramoto K., Yamauchi F., et al. Antioxidative activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein [J]. Journal of Agricultural and Food Chemistry,1996,44:2619-2623
    [35]王瑞雪,孙洋,钱方.抗氧化肽及其研究进展[J].食品科技,2011,36(5):83-86
    [36]Suetsuna K., Ukeda H., Ochi H. Isolation and characterization of free radical scavenging activities peptides derived from casein [J]. Journal of Nutritional Biochemistry,2000,11: 128-131
    [37]Rival S. G., Boeriu C. G, Wichers H.J. Caseins and casein hydrolysates. Ⅱ. Antioxidative properties and relevance to lipoxygenase inhibition [J]. Journal of Agricultural and Food Chemistry,2001,49:295-302
    [38]Rival S. G, Fornaroli S., Boeriu C. G., Wichers H. J. Caseins and casein hydrolysates. I. Lipoxygenase inhibitory properties [J]. Journal of Agricultural and Food Chemistry, 2001,49:287-294
    [39]Zhang J., Zhang H., Wang L., et al. Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS [J]. Food Chemistry,2010,119:226-234
    [40]Chen H. M., Muramoto K., Yamauchi F. Structural analysis of antioxidative peptides from soybean β-conglycinin [J]. Journal of Agricultural and Food Chemistry,1995,43: 574-578
    [41]Tsuge N., Eikawa Y., Namura Y., et al. Antioxidative activity of peptides prepared by enzymic hydrolysis of egg white albumin [J]. Nippon Nogeikagaku Kaishi,1991,65: 1635-1641
    [42]Davalos A., Miguel M., Bartolome B., et al. Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis [J]. Journal of Food Protection,2004, 67:1939-1944
    [43]Park P.J., Jung W. K. N., Shahidi F., et al. Purification and characterization of antioxidative peptides from lecithin-free egg yolk [J]. Journal of American Oil Chemists Society,2001,78:651-656
    [44]Suetsuna K., Chen J. R. Isolation and characterization of peptides with antioxidant activity derived from wheat gluten [J]. Food Science and Technology Research,2002,8: 227-230
    [45]Tang X., He Z., Dait Y., et al. Peptide fractionation and free radical scavenging activity of zein [J]. Journal of Agricultural and Food Chemistry,2010,58:587-593
    [46]Hernandez-Ledesma B., Miralles B., Amigo L., et al. Identification of antioxidant and ACE-inhibitory peptides in fermented milk [J]. Journal of the Science of Food and Agriculture,2005,85:1041-1048
    [47]Saiga A., Tanabe S., Nishimura T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment [J]. Journal of Agricultural and Food Chemistry,2003,51:3661-3667
    [48]Sheih I. C., Wu T. K., Fang T. J. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems [J]. Bioresource Technology,2009,100:3419-3425
    [49]Qian Z. J., Jung W. K., Kim S. K. Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw [J]. Bioresource Technology,2008,99:1690-1698
    [50]Ren J., Zhao M., Shi J., et al. Purification and identification of antioxidant peptides from grass carp hydrolysates by consecutive chromatography and electrospray ionization-masss pectrometry [J]. Food Chemistry,2008,108:727-736
    [51]You L., Zhao M., Regenstein J. M., et al. Purification and identification of antioxidative peptides from loach (Misgurnus anguillicaudatus) protein hydrolysate by consecutive chromatography and electrospray ionization-masss pectrometry [J]. Food Research International,2010,43:1167-1173
    [52]Jun S. Y, Park P. J., Jung W. K., et al. Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein [J]. European Food Research Technology,2004,219:20-26
    [53]Qian Z. J., Jung W. K., Byun H. G, et al. Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage [J]. Bioresource Technology,2008,99:3365-3371
    [54]Jung W. K., Rajapakse N., Kim S. K. Antioxidative activity of a low molecular weight peptide derived from the sauce of fermented blue mussel, Mytilus edulis [J]. European Food Research Technology,2005,220:535-539
    [55]Je J. Y., Qian Z. J., Byun H. G, et al. Purification and characterization of an antioxidant peptide obtained from tuna back bone protein by enzymatic hydrolysis [J]. Process Biochemistry,2007,42:840-846
    [56]Mendis E., Rajapakse N., Kim S. K. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate [J]. Journal of Agricultural and Food Chemistry,2005,53:581-587
    [57]Je J. Y., Park P. J., Kim S. K. Antioxidant activity of a peptide isolated from Alaska pollak (Theragra chalcogramma) frame protein hydrolysate [J]. Food Research International,2005,38(1):45-50
    [58]Suetsuna K. Antioxidant peptides from the protease digest of prawn (Penaeus japonicus) muscle [J]. Marine Biotechnology,2000,2:5-10
    [59]Ranathunga S., Rajapakse N., Kim S. K. Purification and characterization of antioxidative peptide derived from muscle of conger eel(Conger myriaster) [J]. European Food Research Technology,2006,222:310-315
    [60]Byun H. G, Lee J. K., Park H. G, et al. Antioxidant peptides isolated from the marine rotifer, Brachionus rotundiformis [J]. Process Biochemistry,2009,44:842-846
    [61]农业部渔业部编制,中国渔业统计年鉴[M].北京:中国农业出版社.2011
    [62]肖安风,倪辉,杨远帆,等.中性蛋白酶水解蓝圆鲹条件的优化[J].中国酿造,2009,9:114-117
    [63]杨萍,洪鹏志,黄凯.蓝圆鲹蛋白水解条件的优化[J].食品研究与开发,2007,28(12):100-103
    [64]张静,刘书成,郝记明,等.酶解蓝圆鲹鱼肉蛋白制备小分子肽的工艺研究[J].广东海洋大学学报,2009,29(4):54-57
    [65]杨燊,郝更新,陈申如,等.蓝圆鲹酶解条件的响应面法优化及其产物抗氧化活性的研究[J].中国食品学报,2012,12(8):32-40
    [66]Thiansilakul Y, Benjakul S., Shahidi F. Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi) [J]. Food Chemistry,2007,103:1385-1394
    [67]Thiansilakul Y., Benjakul S., Shahidi F. Antioxidative activity of protein hydrolysate from round scad muscle using alcalase and flavourzyme [J]. Journal of Food Biochemistry,2007,31:266-287
    [68]何婷.蓝圆鲹蛋白控制酶解及酶解物抗氧化特性研究[D].广州:华南理工大学.2008
    [69]Prodpran T., Benjakul S., Artharn A. Properties and microstructure of protein-based film from round scad(Decapterus maruadsi) muscle as affected by palm oil and chitosan incorporation [J]. International Journal of Biological Macromolecules,2007,41:605-614
    [70]Benjakul S., Artharn A., Prodpran T. Properties of protein-based filn from round scad (Decapterus maruadsi) muscle as influenced by fish quality [J]. LWT,2008,41:753-763
    [71]Sun L. C., Yoshida A., Cai Q. F., et al. Mung bean trypsin inhibitor is effective in suppressing the degradation of myofibrillar proteins in the skeletal muscle of blue scad {Decapterus maruadsi) [J]. Journal of Agricultural and Food Chemistry,2010,58: 12986-12992
    [72]Zhong C., Cai Q. F., Liu G M., et al. Purification and characterisation of cathepsin L from the skeletal muscle of blue scad(Decapterus maruadsi) and comparison of its role with myofibril-bound serine proteinase in the degradation of myofibrillar proteins [J]. Food Chemistry,2012,133:1560-1568
    [73]Krictinsson H. G., Rasco B. A. Fish Protein Hydrolysates:Production, Biochemical, and Functional Properties [J]. Critical Reviews in Food Science and Nutrition,2000,40(1): 43-81
    [74]董玉莲,闻克威,李宝才,等.蓝圆鲹酶解物的营养成分分析[J].营养学报,2003,25(2):178-180
    [75]郭善广.猪血血红蛋白酶解及其酶解产物抗氧化活性研究[D].广州:华南理工大学.2007
    [76]黄伟,舒冰,廖丹葵,等.柱前衍生化-HPLC测定蓝圆鲹蛋白的氨基酸组成[J].应用化工,2012,41(7):1271-1274
    [77]黄伟.蓝圆鲹蛋白酶解动力学研究[D].南宁:广西大学.2012
    [78]Adler-Nissen J. Enzymatic Hydrolysis of Food Protein [M]. London. Elsevier Applied Science Publishers,1986,12-14
    [79]Alma M. H., Mavi A., Yildirim A., et al. Screening chemical composition and in vitro antioxidant and antimicrobial activities of the essential oils from Origanum syriacum L. growing in Turkey [J]. Biological Pharmaceutical Bulletin,2003,26:1725-1729
    [80]Li Y. H., Jiang B., Zhang T., et al. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH) [J]. Food Chemistry,2008,106(2):444-450
    [81]Oyaizu, M. Studies on products of browning reactions antioxidative activities of products of browning reaction prepared from glucosamine [J]. Japanese Journal of Nutrition,1986, 44:307-315
    [82]谢宁宁.鱿鱼加工副产物水解蛋白的制备及抗氧化活性研究[D].舟山:浙江海洋学院.2010
    [83]游丽君.泥鳅蛋白抗氧化肽的分离纯化及抗疲劳、抗癌功效研究[D].广州:华南理工大学.2010
    [84]Slizyte R., Dauksas E., Falch E., et al. Yield and composition of different fractions obtained after enzymatic hydrolysis of cod (Gadus morhua) by-products [J]. Process Biochemistry,2005,40:1415-1424
    [85]杨梅琳.蚕蛹蛋白的酶法水解及其产物的抗氧化性研究[D].无锡:江南大学.2006
    [86]贾韶千.银杏抗氧化肽的制备、结构鉴定及活性研究[D].南京:南京林业大学.2011
    [87]Ferreira I. C., Baptista P., Vilas-Boas M. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal:Individual cap and stipe activity [J]. Food Chemistry,2007,100(4):1511-1516
    [88]Kishimura H., Tokuda Y., Yabe M., et al. Trypsins from the pyloric ceca of jacopever (Sebastes schlegelii) and elkhorn sculpin (Alcichthys alcicornis):Isolation and characterization [J]. Food Chemistry,2007,100:1490-1495
    [89]Li G H., Wan J. Z., Le G. W., et al. Novel angiotensin I-converting enzyme inhibitory peptides isolated from Alcalase hydrolysate of mung bean protein [J]. Journal of Peptide Science,2006,12:509-514
    [90]Wijesekara I., Qian Z. J., Ryu B., et al. Purification and identification of antihypertensive peptides from seaweed pipefish (Syngnathus schlegeli) muscle protein hydrolysate [J]. Food Research International,2011,44:703-707
    [91]Machie I. M. Proteolytic enzymes in recovery of proteins from fish waste [J]. Process Biochemistry,1974,9:12-14
    [92]曹向宇.麦麸多肽的制备及生物活性的研究[D].沈阳:沈阳农业大学.2009
    [93]冯克权.回归正交设计在优化油品配方中的应用[J].合成润滑材料,1995,3:9-16
    [94]路世鹏,王玉蓉.均匀设计和正交设计法优选吴茱萸提取工艺的研究[J].北京中医药大学学报,2004,27(5):66-70
    [95]Yang B., Yang H. S., Li J. Amino acid composition, molecular weight distribution and antioxidative activity of protein hydrolysates of soy [J]. Food Chemistry,2011,124(2): 551-555
    [96]Linderstrom-Lang K. Proteins and enzymes [M]. California:Stanford University Press, 1952,6:53-72
    [97]Gonzalez-Tello P., Camacho P., Jurado E., et al. Enzymatic Hydrolysis of Whey Protein: Kinetic Models [J]. Biotechnology and Bioengineering,1994,44:523-528
    [98]Marquez M. C., Vazquez M. A. Modeling of enzymatic protein hydrolysis [J]. Process Biochem,1999,35:111-117
    [99]Kristinsson H. G, Rasco B. A. Kinetics of the hydrolysis of Atlantic salmon (Salmo salar) muscle proteins by alkaline proteases and a visceral serine protease mixture [J]. Process Biochemistry,2000,36:131-139
    [100]Tardioli P. W., Jr R. S., Giordano R. C., et al. Kinetic model of the hydrolysis of polypeptides catalyzed by Alcalase immobilized on 10% glyoxyl-agarose [J]. Enzyme and Microbial Technology,2005,36:555-564
    [101]Kawamura Y., Nakanishi K., Matsuno R., et al. Stability of immobilized a-chymotrypsin [J]. Biotechnology and Bioengineering,1981,23:1219-1236
    [102]齐崴,何志敏,何明霞.蛋白质酶促水解反应机理与动力学模型[J].天津大学学报,2005(09):768-773
    [103]林伟锋,赵谋明,彭志英,等.海洋鱼蛋白可控酶解动力学模型的研究[J].食品与机械,2005,23(3):10-13
    [104]Marquez M. C., Fernandez V. Enzymic hydrolysis of vegetable proteins:mechanism and kinetics [J]. Process Biochemistry,1993,28:481-490
    [105]Barrett N. E., Grandison A. S., Lewis M. J. Contribution of the lactoperoxidase system to the keeping quality of pasteurised milk [J]. Journal of Dairy Research,1999,66:73-80
    [106]Labuza T. P. Enthalpy/entropy compensation in food reactions [J]. Food Technology, 1980,67:67-77
    [107]Michaelis L., Menten M. Die Kinetik der Invertinwirkung [J]. Biochemistry. Z.1913, 49:333-369
    [108]Tardioli P. W., Sousa R., Giordano R. C., et al. Kinetic model of hydrolysis of polypeptides catalyzed by Alcalase immobilized on 10% glyoxyl-agarose [J]. Enzyme and Microbial Technology,2005,36:555-64
    [109]Demirhan E., Apar D. K., Ozbek B. A Kinetic Study on Sesame Cake Protein Hydrolysis by Alcalase [J]. Journal of Food Science,2011,76(1):64-67
    [110]李影,巨芳,张艳华,等.生物活性多肽的分离纯化及其发展趋势[J].江苏调味副 食品,2009,26(3):33-36
    [111]李艳红.鹰嘴豆蛋白酶解物的制备及其抗氧化肽的研究[D].无锡:江南大学.2008
    [112]张君慧.大米蛋白抗氧化肽的制备、分离纯化和结构鉴定[D].无锡:江南大学.2009
    [113]Kim S. K., Kim Y. T., Byun H. G., et al. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin [J]. Journal of Agricultural and Food Chemistry,2001,49:1984-1989
    [114]Kumar N. S. N., Nazeer R. A., Jaiganesh R. Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyld) viscera protein [J]. Peptides,2011,32:1496-1501
    [115]袁其朋.膜分离技术处理大豆乳清废水[J].水处理技术,2001,27(3):161-163
    [116]Sun J., He H., Xie B. J. Novel antioxidant peptides from fermented mushroom Ganoderma lucidum [J]. Journal of Agricultural and Food Chemistry,2004,52: 6646-6652
    [117]Li B, Chen F, Wang X. Isolation and identification of antioxidative peptides from porcinecollagen hydrolysate by consecutive chromatography and electrospray ionization-massspectrometry [J]. Food Chemistry,2007,102:1135-1143
    [118]Je J. Y., Park P. J., Kim S. K. Antioxidant activity of a peptide isolated from Alaska pollack(Theragra chalcogramma) frame protein hydrolysate [J]. Food Research International,2005,38:45-50
    [119]谢正军.苜蓿叶蛋白和酶法制备抗氧化肽的研究[D].无锡:江南大学.2009
    [120]张养军,王京兰,李蕾,等.用反相液相色谱分离多肽时峰容量与色谱柱长度关系的研究[J].色谱,2004,1:24-26
    [121]孙自勇,吴盛,王石泉,等.液相色谱与串联质谱偶联在蛋白质序列分析中的应用[J].基础医学与临床,2003,23(2):126-131
    [122]吴金鸿.丝胶肽的制备及其生物活性功能和结构的研究[D].无锡:江南大学.2008
    [123]PaPayannopoulos I. A. The interpretation of collision-induced dissociation tandem mass spectra of peptides [J]. Mass Spectrometry Reviews,1995,14:49-73
    [124]Fenn J. B., Mann M., Meng C. K., et al. Electrospray ionization-principles and practice [J]. Mass Spectrometry Reviews,1990,9(1):37-40
    [125]Ani V., Varadaraj M. C, Naidu K. A. Antioxidant and antiradical activities of polyphenolic compounds from bitter cumin (Cuminum nigrum L.) [J]. European Food Research and Technology,2006,224:109-115
    [126]Ayse K., Beraat O., Samim S. Review of methods to determine antioxidant capacities [J]. Food Analytical Methods,2009,2:41-60
    [127]Ozcelik B., Lee J. H., Min D. B. Effects of light, oxygen, and pH on the absorbance of 2,2-diphenyl-l-picrylhydrazyl [J]. Journal of Food Science,2003,68:487-490
    [128]Huang D., Ou B., Prior R. L. The chemistry behind antioxidant capacity assays [J]. Journal of Agricultural and Food Chemistry,2005,53:1841-1856
    [129]Murase H., Nagao A., Terao J. Antioxidant and emulsifying activity of N-(long-chain-acyl) histidine and N-(long-chain-acyl) carnosine [J]. Journal of Agricultural and Food Chemistry,1993,41:1601-1604
    [130]Saito K., Jin D. H., Ogawa T., et al. Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry [J]. Journal of Agricultural and Food Chemistry, 2003,51:3668-3674
    [131]Garrison W. M. Reaction mechanisms in radiolysis of peptides, polypeptides, and proteins [J]. Chemical Reviews,1987,87:381-398
    [132]Li Y. W., Li B., He J., et al. Structure-activity relationship study of antioxidative peptides by QSAR modeling:the amino acid next to C-terminus affects the activity [J]. Journal of Peptide Science,2010,17:454-462
    [133]Di Bernardini R., Rai D. K., Bolton D., et al. Isolation, purification and characterization of antioxidant peptidic fractions from a bovine liver sarcoplasmic protein thermolysin hydrolyzate [J]. Peptides,2011,32:388-400
    [134]Suetsuna K., Ukeda H., Ochi H. Isolation and characterization of free radical scavenging activities peptides derived from casein [J]. Journal of Nutritional Biochemistry,2000,11(3):128-131
    [135]Fennema O. R. Food Chemistry (Third Edition) [M]. Marcel Dekker, Inc. press, New York,1996
    [136]Sacchetti G, Di Mattia C., Pittia P., et al. Application of a radical scavenging activity test to measure the total antioxidant activity of poultry meat [J]. Meat Science,2008,80: 1081-1085
    [137]Blois M. S. Antioxidant determinations by the use of a stable free radical [J]. Nature, 1958,181:1199-1200
    [138]Bonder V., Brand-Williams W., Berset C. Kinetics and mechanisms of antioxidant activity using the DPPH radical method [J]. LWT,1997,30:609-615
    [139]Goupy P., Dufour C., Loonis M., et al. Quantitative kinetic analysis of hydrogen transfer reactions from dietery polyphenols to the DPPH radical [J]. Journal of Agricultural and Food chemistry,2003,51:615-622
    [140]Cevallos-Casals B. A., Cisneros-Zevallos L. Stoichimetric and kinetic studies of phenolic antioxidants from andean corn and red-fleshed sweetpotato[J]. Journal of Agricultural and Food Chemistry,2003,51:3313-3319
    [141]Sendra J. M., Sentandreu E., Navarro J. L. Reduction kinetics of the free stable radical 2,2-diphenyl-l-picryhydrazyl (DPPH) for determination of the antiradical activity of citrus juices [J]. Food Research Technology,2006,223:615-624
    [142]Mishra K., Ojha H., Chaudhury N. K. Estimation of antiradical properties of antioxidants using DPPH-assay:A critical review and results [J]. Food Chemistry,2012, 130:1036-1043
    [143]Suja K. P., Jayalekshmy A., Arumughan C. Free radical scavenging behavior of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH-system [J]. Journal of Agricultural and Food Chemistry,2004,52:912-915
    [144]周雪松.水解蛋白来源的抗氧化肽研究进展[J].中国食品添加剂,2005,6:84-87
    [145]Geigert J. Overview of the stability and handling of recombinant protein drugs [J]. Journal of Pharmaceutical Science and Technology,1989,43(5):220-224
    [146]Powell M. F. Peptide stability in aqueous parenteral formulations:Prediction of chemical stability based on primary sequence In formulation and delivery of proteins and peptides; Cleland J. L., Langer R., Eds., American Chemical Society:Washington, D. C. 1994,100-117
    [147]Vermeirssen V., Camp J V., Devos L., et al. Release of Angiotensin I Converting Enzyme (ACE) Inhibitory Activity during in Vitro Gastrointestinal Digestion:from Batch Experiment to Semi continuous Model [J]. Journal of Agricultural and Food Chemistry,2003,51:5680-5687
    [148]Quiros A., del Mar Contreras M., Ramos M., et al. Stability to gastrointestinal enzymes and structure-activity relationship of β-casein-peptides with antihypertensive properties [J]. Peptides,2009,30:1848-1853
    [149]Dziedzic S. Z., Hudson B. J. F. PhosPhatidyl ethanolamine as a synergist for Primary antioxidants in edible oils [J]. Journal of the American oil Chemists'Society,1984,61: 1042-1045
    [150]Saito H., Ishihara K. Antioxidant activity and active sites of phospholipids as antioxidants [J]. Journal of the American Oil Chemists'Society,1997,74:1531-1536
    [151]沈同.生物化学(第二版)[M].北京:高等教育出版社.1991:163-175
    [152]Cedrie T. S., Andrew L. W. Synergetic activity of catechin and other antioxidants [J]. Journal of Agricultural and Food Chemistry,1999,47(11):4491-4494
    [153]Liu R. H. Health benefits of fruit and vegetables are from additive and synergistic combinations of Phytochemicals [J]. The American Journal of Clinical Nutrition,2003, 78(3):517S-520S
    [154]Hernandez-Ledesma B., Amigo L., Recio I., et al. ACE-inhibitory and radical-scavenging activity of peptides derived from β-lactoglobulin f(19-25). Interactions with ascorbic acid [J]. Journal of Agricultural and Food Chemistry,2007,55:3392-3397

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700