菊花高频再生体系建立及农杆菌介导FT基因转化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊花是原产于我国的十大名花之一,但是绝大多数品种的菊花自然花期集中在11月左右,能够在夏季或早秋开花的只有少数花色单调、花型较小的品种。因此菊花的生产发展因为其花期问题受到了严重制约。FT基因是一个激酶抑制蛋白,可以通过对CO对FT的调节促进开花。本试验旨在通过对菊花高效再生体系及根癌农杆菌介导的转化体系的研究,将FT基因导入到菊花品种‘神马’中,以期获得花期提前的菊花新品种,并为广泛运用转基因技术改良菊花品种打下基础。
     本试验以菊花品种‘神马’为试验材料。研究了不同激素浓度配比对菊花直接诱导不定芽再生以及对生根诱导的影响,对菊花的再生条件进行了优化,从而获得了菊花叶片高速快效的再生体系。试验结果表明,将菊花‘神马’叶盘接种在MS+NAA 1mg/L+6-BA 1mg/L培养基上,经过20天的组织培养后,可直接再生出不定芽,而且再生率高达95.5%,再生芽在1/2MS+NAA 0.7mg/L培养基上经过10天左右可诱导出根,生根率可达100%。
     在菊花品种‘神马’高效再生体系建立的基础上,利用根癌农杆菌介导的遗传转化法对其遗传转化进行了研究。研究结果表明,叶盘预培养时间、侵染时间、共培养时间以及延迟培养时间均对菊花的遗传转化效率有较大影响。同时得出经过预培养12h的叶盘置于菌液侵染5min,黑暗共培养3d;延迟筛选3d时菊花遗传转化率最高。共培养后将叶盘接种到MS+NAA 1mg/L+6-BA 1mg/L+Km 20mg/L培养基上进行抗性芽的筛选培养。25天后可直接分化出不定芽,当不定芽长到1-2cm左右时转到1/2MS+NAA 0.7mg/L+Km 20mg/L培养基上进行生根筛选培养。
     在加km的培养基中连续筛选8周以上,将期间产生的抗性芽切下接种在含有20mg/L km的生根培养基中进行二次筛选,提取能够正常生根的抗性苗的DNA,进行PCR检测,共获得PCR阳性植株7株,转化率大约0.9%.说明目的基因FT整合到菊花的基因组中。
Chrysanthemum is one of the ten famous flower which originated in our country. but most varieties of them bloom concentrated in November or so,at the same time only a few a little kinds of colors and smaller type of flowers can bloom at summer or early autumn. Therefore, the development of chrysanthemum production is severely constrained because of its flowering time. FT gene is a kind of protein kinase inhibitors. The flowering time can be promoted by the regulation of CO to the FT genes. The objective of this study is to transfer the FT gene to‘Jinba’through the research of the efficient regeneration system and transformation system mediated by Agrobacterium tumefaciens of chrysanthemum to obtain new varieties of flowering time earlier chrysanthemums and established a foundation of wide application of improving chrysanthemum cultivars applying transgenic method.
     Chrysanthemum species 'Jinba' is used in this experiment as test material. The result showed that plant growth regulators can affect shoot regeneration and root inducement of chrysanthemum. A efficient and rapid regeneration system of chrysanthemum was established. In the study we found that shoots of cultivar‘Jinba’can regenerated directly from the leaf disc on the media MS+NAA(1mg/L)+6-BA(1mg/L), after 20 days of tissue culture.At the same time the shoot regeneration rate can reach up to 95.5%.Transferred shoots onto the medium 1/2MS+NAA(0.7mg/L),we can foud that roots were obtained 10 days later, and the rooting percentage was 100%.
     Based on the present optimal efficient regeneration system which has been obtained of‘Jinba’, genetic transformation was studied by using leaf discs by co-cultivation with agrobacterium. The results showed that the efficiency of genetic transformation can be greatly affected by several factors, such as the time of preculturation、infecting、co-cultivation and delay-cultivation. We found that when infected leaf disc which has been preculturaion for 12 hours in bacterium liquid for 5min, then co-cultured for 3 days in dark and delay-cultivated for 3 days, we would obtain the highest genetic transformation rate. Transferred the leaf discs which has been co-cultured for 3 days in dark onto the media MS+NAA(1mg/L)+6-BA(1mg/L)+Km(20mg/L)for selection of the regeneration resistant buds. Shoots were tured on the selection medium 25 days later, and then transferred the shoots which were at around 1-2cm to 1/2MS+NAA(0.7mg/L) +Km 20mg/L for rooting selectin.
     After continuous selected on the medium with Km for more than 8 weeks, cut the resistant buds down and transferred them into the appropriate rooting medium with 10mg / L Km for a second screening. Extract DNA of the resistant buds which can generate roots normally, and monitored them by PCR analysis. The PCR results suggested that transgenie has 7 positive plantlets and the transformation rate is about 0.9%.It showed that the target gene of FT has been translated into genome of chrysanthemum.
引文
[1]唐岱,熊济华,王仕玉.切花菊育种问题探讨[J].云南农业大学学报,2001,16(1):46-49.
    [2]熊济华.菊花[M].上海:上海科技出版社,1999,34-35.
    [3]义鸣放,游捷.切花菊新品种栽植密度与切花质量的研究[J].中国菊花研究会论文集(二),1996.
    [4]曾群,赵仲华,赵淑清.植物开花时间调控的信号途径[J].遗传,2006,28(8): 1031-1036.
    [5]傅永福,孟凡静.植物的成花决定[J].植物性生理学通讯,1997,33(2):81-88.
    [6]魏胜林,王家保.蓝光和红光对菊花生长和开花的影响[J].园艺学报,1998,25 (2 ):203-204.
    [7]虞佩珍,白绿江.观赏植物催延花期技术的研究[J].北京园林,1991(1):17-22.
    [8]张燕.非光周期夏切菊花开花的限制因子[J].北京园林,1995(2):21-22.
    [9]陈永宁.当前开花研究中的一些前沿性工作介绍[J].植物生理学通讯,1994,30 (1).28-32
    [10]王忠敏.牡丹周年开花的基本原理与技术措施[J].中国园林,1991,7(2):48-52.
    [11]邹琦主编.植物学实验指导[M].北京:中国农业出版社,2000,37-42.
    [12]潘瑞炽主编.植物生理学[M].第四版,北京:高等教育出版社,2002,79-83.
    [13]钟晓红,罗先实,陈爱华.奈李花芽分化与体内主要代谢产物含量的关系[J].湖南农业大学学报,1999, 25(1):31-35.
    [14]Greenberg J, Goldsehmidt E, Goren R. Potential and limitations of the use of Paelobutrazol in citruso rehards in Israel [J]. Aeta Hort, 1993, 46 (3): 201-208.
    [15]中国农业百科全书(生物学卷)[M].北京:农业出版社,1991:142.
    [16]房伟民.华东地区切花菊周年供应栽培模式[J].江苏农业科学,1997(1): 26-27.
    [17]吴文新.菊花花期调控技术的研究概况及展望[J].福建农业科技,2001(3):21-23.
    [18]Garner W W, Allard H A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants [J]. Agric. Res., 1920, 18: 553-606.
    [19]Yanovsky M J, Kay S A. Molecular basis of seasonal time measurement [J]. Nature, 2002, 419: 308-312.
    [20]彭凌涛.控制拟南芥和水稻开花时间光周期途径的分子机制[J].植物生理学通讯, 2006,42:1021-1031.
    [21]Sen Gupta D N, Ghosh J K, Sen S P. RNA synthesis in leaves during initiation of the reproductive phase in rice the-short-day cultivar Rupsil [J]. Plant Cell Physiol, 1981, 21: 255-266.
    [22]Lay-Yee M, Saches R M, Reid M S. Changes in cotyledon mRNA during floral inducation Pharbitis nil stain Violet [J]. Plants, 1987, 171: 104-109.
    [23]李立武,谭克辉.牵牛光周期诱导过程中相关特异蛋白出现时期的研究[J].中国科学(B辑),1990, (11):1153-1156.
    [24]Kannangara T, Durkin J P, Ap Simon J, et al. Changes of polypeptides profiles during photo induction of Xanthium strumarium [J]. Physiol Plant, 1990, 78: 519-525.
    [25]北京园林局、中国菊花研究汇编.中国菊花研究论文集(1993-1996).
    [26]张燕.日本切花菊生产[J].北京园林,1995(1):37-38.
    [27]刘宏伟.地被菊的快速繁殖[J].东北林业大学学报,1994,22(1):31-34.
    [28]胡新芒.南京地区切花百合的促成栽培[J].江苏绿化,1998(1):32-33.
    [29]李秀娟.唐营蒲周年供花研究初报[J].广西植物,1997,17(2 ):181-183.
    [30]陈封怀,王秋圃.菊花探源[J].自然杂志,1979,2(10 ):652-653.
    [31]湛愉美.唐营蒲鲜切花周年栽培技术研究[J].北方园艺,1994 (1):24-26.
    [32]彭桂群,王力华.平阴玫瑰花芽分化期叶片内源激素的变化[J].植物研究,2006,36(2):206-210.
    [33]田育天,陈善娜,郑焕娣等.香荚兰花芽分化至萌发期内源激素的变化[J].云南植物研究,2004,6(2):213-220.
    [34]张万萍,史继孔.银杏雄花芽分化期间内源激素、碳水化合物和矿质营养含量的变化[J].林业科学,2003,40(2):51-54.
    [35]Aribaud M, Martin-Tanguy J. Polymine metabolism floral initiation and floral development in chrysanthemum [J]. Plant Growth Regulation, 1994, 15: 123-125.
    [36]马月萍,戴思兰.植物花芽分化机理研究进展[J],分子植物育种,2003,1(4):539-545.
    [37]杨秀坚,窦萍.B9对菊花观赏性状及其有关特性的影响[J].湛江师范学院学报,2000,21(1):30-32.
    [38]郑成淑,石铁源,全雪丽.B9对菊花生长与开花的影响[J].延边大学农学学报,2000,22(3):38-47.
    [39]石兰蓉,吴岚芳,徐立等.乙烯利促进观赏凤梨花芽分化的生理机制初探[J].热带农业科学,2005,25(1):13-17.
    [40]乔松,杨伟儿.中国水仙花芽分化及贮藏期外界因子对花序数的影响[J].园艺学报,1987,14(2):139-142.
    [41]张华峰,孟庆忠,张立军.环境因子在植物成花诱导中的作用及其机理[J].生物学通报,2000(7):16-18.
    [42]Yeung K, Seitz T, Li S. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP [J]. Nature, 1999, 401: 173-177.
    [43]Yu H, Xu Y F, Tan E L, et al. AGAMOUS L1KE 24, a dosage-dependent mediator of the flowering signals, Proc. Natl. Acad.Sci., USA, 2002, 99: 16336-16341.
    [44]A.Yamaguchi, Y. Kobayashi, K.Goto, et al. TWIN SISTER OF FT (TSF) Acts as a Floral Pathway Integrator Redundantly with FT [J]. Plant and Cell Physiology, 2005, 46(8): 1175-1189.
    [45]Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3a, a rice ortholog of the A rabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions [J]. Plant Cell Physiol, 2002, 43(10): 1096-1105.
    [46]Stadler R, Wright K M, Lauterbach C, et al. Expression of GFP-fusions in companion cells reveals nonspecific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots[J]. Plant J, 2005, 41: 319-331.
    [47]Colasanti J, Coneva V. Mechanisms of floral induc-grasses:something borrowed, something new [J]. Plant Physiol, 2009, 149: 56-62.
    [48]Takada S, Goto K. TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEINI, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time [J]. Plant Cell, 2003, 15: 2856-2865.
    [49]Ayre K, Turgeon R. Graft transmission of a floral stimulant derived from CONSTANS [J]. Plant Physiol, 2004, 135: 2271-2278.
    [50]Martinez-Zapater J M, Coupland G, Dean C, et al. The transition to flowering inArabidopsis.In:Meyerowis E M,Somervill C R, eds.Arabidopsis [J]. New York: Cold Spring Harbor Laboratory Press, 1994, 403-433.
    [51]Mathieu J, Warthmann N, Kuttner F, et al. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis [J]. Current Biology, 2007, 17: 1055-1060.
    [52]Tamaki S, Matsuo S, Wong H, et al. Hd3a protein is a mobile flowering signal in rice [J]. Science, 2007, 316: 1033-1036.
    [53]Wigge P A, Kim M C, Jaeger K E, et al. Integration of spatial and temporal information during floral induction in Arabidopsis [J]. Science, 2005, 309: 1056-1059.
    [54]Bastow R J S, Mylne C, Lister Z, et al. Vernalization requires epigenetic silencing of FLC by histone methylation [J]. Nature, 2004, 427(6970): 164-167.
    [55]Michaels S D, Amasino RM. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization [J]. Plant Cell, 2001, 13(4): 935-941.
    [56]Searle I, He Y H, Turck F, et al. The transcription factor FLC confers a vernalization by repressing meristem competence and systemic signaling in Arabidopsis [J]. Genes &Development, 2006, 20: 898-912.
    [57]Sheldon C C, Burn P P, Perez J, et al. The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation [J].Plant Cell, 1999, 11(3): 445-458.
    [58]Sheldon C C, Rouse D T, Finnegan E J, et al. The molecular basisof vernalization: the central role of FLOWERING LOCUS C(FLC) [J]. Proc Natl Acad Sci USA, 2000, 97 (7): 3753-3758.
    [59]Sheldon C C, Conn A B, Dennis E S, et al. Different regulatory regions are required for the vernalization~induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression [J]. Plant Cell, 2002, 14(10): 2527-2537.
    [60]Stadler R, Wright K.M, Lauterbach C, et al. Expression of GFP-fusions in companion cells reveals nonspecific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots [J]. Plant J, 2005, 41: 319-331.
    [61]Mitsutomo A, Yasushi K, Surniko Y, et al. A bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex [J]. Science, 2005, 309(5737): 1052- 1056.
    [62]Lifschitz E, Eshed Y. Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato [J]. J Exp Bot 2006, 57: 3405-3414.
    [63]Laurent C, Coral V, Seonghof J, et al. FT protein rnovernent contributes to long-distance signaling in floral induction of Arabidopsis [J]. Science, 2007, 316( 5827): 1030-1033.
    [64]Lin M K, Belanger H, Lee Y J, et al. FLOWERING LOCUS T protein may act as the long-distance florigenie signal in the cucurbits [J]. The Plant Cell, 2007, 19: 1488-1506.
    [65]Yasushi K, Weigel D. Move on up, it's time for change-mobile signals controlling photoperiod-dependent flowering [J]. Genes Dev, 2007, 21: 2371-2384.
    [66]Chailakhyan M K. On the hormonal theory of plant development, Dokl [J]. Acad. Scr. USSR, 1936,12: 443-447.
    [67]Koorneef M, Hanhart C J, Van der Veen J H. Agenetic and physiological analysis of late-flowering mutants in Arabidopsis thaliana[J]. Mol Gen Genet, 1991, 229: 57-66.
    [68]Yan L, Fu D, Li C, et al. The wheat and barley vernalization gene VRN3 is an orthologue of FT [J]. Proc Natl AcadSci U S A, 2006, 103: 19581-19586.
    [69]Lifschitz E, Eviatar T, Rozman A, et al. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli [J]. Proc.NatlAcad.Sci, USA, 2006, 103: 6398-6403.
    [70]Hsu C Y, Liu Y, Luthe D S, et al. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering [J]. Plant Cell, 2006, 18: 1846-1861.
    [71]Igasaki T, Watanabe Y, Nishiguchi M, et al. The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar [J]. Plant and Cell Physiology, 2008, 49: 291-300.
    [72]Endo T, Shimada T, Fujii H, et a1. Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.) [J]. Transgenic Research, 14(5): 703-712
    [73]Abe M, Kobayashi Y, Daimon Y, et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex [J]. Science, 2005, 309: 1052-1056.
    [74] Hayama R, Agashe B, Luley E, et al. A circadian rhythm set by dusk determines the expres-lion of FT homologs and the short-day photoperiodic flow-Bring response in Pharbiti [J]. The Plant Cell, 2007, 19: 2988-3000.
    [75] Searle 1, He Y, Turck F, et al. The transcription fac-for FLC confers a flowering response to vernalization by re- pressing meristem competence and systemic signaling in [J]. Genes Dev, 2006, 20: 898-912
    [76]Yanovsky M J, Kay S A. Living by the calendar: How plants know when to flower [J]. Nat Rev Mol Cell Biol, 2003, 4: 265-275.
    [77]Komeda Y. Genetic regulation of time to flower in Arabidopsis thaliana [J]. Annu Rev PlantPhysiol PlantMol Biol, 2004, 55: 521-535.
    [78]Searle I, Coupland G. Induction of flowering by seasonal changes in photoperiod [J]. EMBO J , 2004, 23: 1217-1222.
    [79]Putterill J, Robson F, Lee K, et al. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors [J]. Cell, 1995, 80: 847-857.
    [80]Gocal G F W, King R W, Blundell C A, et al. Evolution of floral meristem identity genes: analysis of Lolium temulentum genes related to APETALA1 and LFY of Arabidopsis [J]. Plant Physiology, 2001, 125: 1788-1801.
    [81]Laurie D A. Comparative genetics of flowering time [J]. Plant Mol Biol, 1997, 35: 167-177.
    [82]王瑞琲 .2008.高等植物基因特异性启动子的研究进展.http://qkzz.net/article/24cb04cf-ac70-48e9-9a3c-dfeba567148d.htm[2009-09-18].
    [83]路静,赵华燕,何奕昆,等.高等植物启动子及其应用研究进展[J].自然科学进展,2004,14(8):856-862.
    [84]Kobayashi Y, Kaya H, Goto K, et al. A pair of related genes with antagonistic roles in mediating flowering signals [J]. Science, 1999, 286: 1960-1962.
    [85]Kardailsky I, Shukla VK, Ahn J H, et a1. Activation tagging of the floral inducer FT [J]. Science, 1999, 286: 1962-1965.
    [86]Bohlenius H, Huang T, Charbonnel-Campaa L, et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees [J].Science, 2006, 312(5776): 1040-1043.
    [87]Huang T, Bohlenius H, Eriksson S, et al. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering [J]. Science, 2005, 309: 1694-1696.
    [88]Nagao R T, Czarnecka E, Gurley W B, et al. Genes for LOW~MOLECULAR-WEIGHT HEAT-SHOCK proteins of SOYBEANS-SEQUENCE-ANALYSIS of a multigene family[J].Molecular and Cellular Biology, 1985, 5: 3417-3428.
    [89]Schoffl F, Kev JL. An analysis of mRNAs for a group of heat shock proteins of soybean using cloned cDNAs [J]. J. Mol. Appl. Genet 1, 1982, (4):301-314.
    [90]Berthomieu P, Jouanin L. Transformation of rapid cycling cabbage (Brassicaoleracea) with Agrobacterium rhizogenes [J]. Plant Cell Rep, 1992, 11: 334-338.
    [91]Aukerman M J, Lxe Weigel, Weigel D, et a1. The Arabdopsis flowering-time gene,LUMINIDEPENDENS, is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFYexpression [J]. Plant, 1999, 18: 195 - 203.
    [92]Giddings L V. Transgenic plants on trail in the USA.Current Opinion in Gubler F, Chandler P, Jacobsen V J, et al.GA signaling in barley aleurone cells: control of SLNI and GAMYB expression [J]. Plantphysiol, 2002, 129: 191-200.
    [93]Lowe J M, Davey M R, Power J B, et al. A study of some factors affecting Agrobacterium transformation and plant regeneration of Dendranthema grandiflora [J].Plant Cell Tiss Org Cult, 1993, 33: 171-180.
    [94]王关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社,1998.
    [95]Bundock P, Den D R, Bei jersbergen A, et al. Trans-kingdom T-DNA transfer from Agrobacterium to Saccharomyces Ceresisiae [J]. EMBOJ, 1995, 14(3): 3206-3214.
    [96]Chan M T, Chang HH, Ho S L, et al. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric a-amylase promoter/β-glucuroaidase gene [J]. Plant Mol Biol, 1993, 22:491-506.
    [97]Hamilton C M, Frary A, Lewis C, et al. Stable transfer of intact highmolecular weight DNA into plant chromosomes [J]. Proc Natl Acad Sci USA, 1996, 93: 9975-9979.
    [98]Liu Y G, Shirano Y, Fukmki H, et al. Complementation of mutants with large genomic DNA fragments by a transformantion-competent artificial chromosome vector accelerates positional cloning [J]. Proc Natl Acad Sci USA, 1999, 96: 6535- 6540
    [99]叶健明,唐克轩,沈大棱.植物转基因方法概述[J].生命科学,1999,11(2):58-60.
    [100]李卫,陈亮,蔡得田等.柑橘基因转化的新方法[J].植物学报,1997,39(8):782-784.
    [101]Michelmore R, Marsh E, Seely S, et al. Transformation of lettuce Lactuca sativa mediated by Agrobacterium tumefaciens [J]. Plant Cell Rep, 1987, 6: 439-442.
    [102]Schidt R, Willmitzer L. High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis tumefaciens leaf and cotyledon explants [J]. Plant Cell Rep, 1988, 7: 583-586.
    [103]Sheerman S, Bevan MW. A rapid transformation method for Solanum tuberosum using binery Agrobacterium tumefaciens vectors [J]. Plant Cell Rep, 1988, 8: 291-298.
    [104]Pang S Z, Sanford JC. Agrobacterium mediated gene transfer in papaya [J]. Amer Soc Hort Sci, 1988, 113: 287-291.
    [105]Stachel S E, Messens E, Van Montagu M, et al. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens [J]. Nature, 1986, 318: 624-629.
    [106]Cheng M, Joyce E, Fry, et al. Genetic transformation of wheat mediated by Agrobacterium tumefaciens [J]. Plant Physiol, 1997, 115: 971-980.
    [107]Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA [J]. Plant J, 1994, 6: 271-282.
    [108]Jacq B, Lesobre O, Sangwan RS, et al. Factors influencing T-DNA transfer in Agrobacteriumtumefacie-mediated transformation of Agrobacterium-mediated transformation of sugarbeet [J]. Plant Cell Rep, 1993, 12: 621-624.
    [109]Ashby A M, Watson M D, Loake G J, et al. Ti-plasmid specified chemotaxis of Agrobacterium tumefaciens toward vir-induction phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants [J]. Bacteriol, 1988, 170: 4181-4187.
    [110]方宏筠,王关林,王火旭,等.抗菌肽基因转化樱桃矮化砧木获得抗根瘤病的转基因植株[J].植物学报,1999,41(11).
    [111]Song Y N, Shibuya M, Ebizuka Y, et al. Synergistic action of phenolic signal compounds and carbohydrates in the induction of virukence gene expression in Agrobacterium tumefaciens [J]. Chem Pharm Bull, 1991, 39: 2347-2350.
    [112]Shimoda N, Toyoda-Yamamoto A, Nagamine J, et al. Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monsaccharides [J]. Pros Natl Acad Sci USA, 1990, 87: 6684-6688.
    [113]Godwin I, Todd G, Ford LB, et al. The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species [J]. Plant Cell Rep, 1991, 9: 671-675.
    [114]Perl A, Lotan O, Abu-Abied M, et al. Establishment of an Agrobacterium tumefaciens-mediated transformation system for grape:The role of antioxidants during grape-Agrobacterium interactions [J]. Nature Biotechnol, 1996, 14: 624-628.
    [115]Tosca A, Delledonne M, Furini A, et al. Transformation of Ko-rean chrysanthemum and insertion of the maize autonomous element As using Agrobacterium tumefaclens [J]. Journal of Genetics and Breeding, 2000, 54(1): 19-24.
    [116]Mchughen A, J ordan M, Feint G. A preculture period prior to Agrobacterium inoculation increase production of transgenic plants [J]. Plant Physiol, 1989, 135: 245-248.
    [117]郑琰焱.我国花卉产业中育种工作的现状和分析[J].江苏林业科技,2002,29(1):40-42.
    [118]李鸿渐编著,中国菊花[M],江苏科学技术出版社,1992.
    [119]Nagatomi S, Miyahira E. Induction of flower mutation comparing with chronic and acute gamma irradiation using tissue culture techniques in Chrysanthemum moriflolium Ramat.Acta Horticulture,Proceedings of theNineteenth International Symposium on Improvement of Ornamental Plants [J]. Breeding ornamental in the future, 2000, 508: 69-74.
    [120]范家霖.组织培养在菊花发射育种中的应用研究[J].河南科技,1996,14(4):455-459.
    [121]林容.中国植物志[M].76卷第一册,北京:科学出版社,1983,29-42.
    [122]陈俊愉,梁振强.菊花探源——关于菊花起源的科学实验[J].科学画报,1964,9:353-354.
    [123]Watanabe K. Successful ovary culture and production of F1 hybrids and androgenic haploids in Japanese Chrysanthemum species [J]. The Journal of Heredity, 1977, 68: 317-320.
    [124]薛淮,刘敏,张纯花,等.花卉分子育种研究进展[J].生物工程进展,2002,22(2):81-84.
    [125]Negiss. New cultivars of Chrysanthemum [J]. Indian Horticulture, 1984, (19): 19-20.
    [126]Fukai S, Nagira T. Cross compatibility between chrysanthemum Dendranthema grandiflorum) and Dendranthema species native to Japan [J]. Acta Horticulturae, 1998, 27: 323-325.
    [127]何启谦,何基娜.俞洋.园林植物育种学[J].中国林业出版社.北京,1992.
    [128]梁一池.植物组织培养的研究进展[J].福建林学院学报,2002,22(1):1-3.
    [129]高亦珂.菊花茎叶外植体再生体系的研究[J].北京林业大学学报,2001,23(1):32-33.
    [130]Tanaka Y, Tsuda S, Kusumi T. Metabolic engineering to modify flowers color [J]. Plant Cell Physiology, 1998, (11): 1119-112.
    [131]Mitiouehkina T Yu. Chaleone synthase gene Antirrhinum majus in antisence orientation sueeessfully suppressed the petals pigmentation of Chrysanthemum [J]. Acta Horticuture, 2000b, 508: 215-217.
    [132]Courtney-Gutterson N, NaPoli C, Lemieux C. Modification of flower color in florist’s Chrysanthemum:Production of a white-flowering variety throuth molecular genetics [J]. Bio-Tech, 1994, 12(3): 268-271.
    [133]任永霞,季静,王萍,等.农杆菌介导的类胡萝卜素合成酶LycB基因转化菊花的研究[J].吉林农业大学学报,2005,27(3):6-9.
    [134]龚学巨,季静,王罡,等.应用农杆菌介导法进行菊花的遗传转化[J].北方园艺,2005,(2):66-67.
    [135]T.Yu.Mitiouchkina, S.V.Dolgov. Modification of chrysanthemum plant and flowe architecture by ro1C gene from Agrobacterium Rhzogenes introduction. Proc 19Th Int'1 Symposium Imprivement Ornamental Plant Ed. A. Cadic [J], Acta Hort, 2000, 508, ISHS 2000.
    [136]Petty L M, Harberd N P, CarréI A. Expression of the Arabidopsis gai gene under its own promoter causes a reduction in plant height in Chrysanthemum by attenuation of the gibberellin response[J]. Plant Science, 2003, 164: 175-182.
    [137]邵寒霜.拟南芥LFYcDNA的克隆及转化菊花的研究[J].植物学报,1999,41(3):268-271.
    [138]Zheng Z L, Yang Z, Jang J C, et al. Modification of plant architecture in chrysanthemum by ectopic expression of tobacco phytochrome B1 gene [J]. J. Amer. Soc. Hort. Sci, 2001, 126: 19-26.
    [139]吕晋慧.根癌农杆菌介导的AP1基因转化菊花的研究[D].北京林业大学,2005.12.
    [140]Takatsu Y, Nishizawa Y. Transgenic chrysanthemum (Dendranthema grandiflorum(ramat.)kitamura)expressing a rice chitinase gene shows enhanced resistance to fungal diseases [J]. Scientia Horticulture, 1999, 82(1-2): 113-123.
    [141]Yepes L M, Veronica M, Pang SZ, et al. Biolistic transformation of Chrysanthemum with the nucleocapsid gene of tomato spotted wilt virus [J]. Plant Cell Reports, 1995, 14: 694-698.
    [142]蒋细旺,包满珠,吴家和,等.农杆菌介导CrylAC基因转化菊花[J].园艺学报,2005,32(1):65-69.
    [143]陈俊愉.中国花经[M].上海文化出版社,1990.
    [144]陈俊愉.中国农业百科全书观赏园艺卷[M].北京:农业出版社,1996:238-239.
    [145]陈俊愉.中国花卉品种分类学[M].北京:中国林业出版社,2001:224-225.
    [146]刘彦泓.雪花莲凝集素基因转化菊花及转基因植株抗蚜性研究[D].辽宁师范大学,2000.
    [147]Abe M, Kobayashi Y, Yamamoto S, et al. FD, a bZ1P protein mediating signals from the floral path-way integrator FT at the shoot apex [J], Sience, 2005, 309(5737): 1052-1056
    [148]Aki T, Shigyo M, Nakano R, et al. Nano scale proteomics revealed the presence of regulatory proteins including three FT-like proteins in phloem and xylem saps from rice [J]. Plant Cell Physiol, 2008, 49(5): 767-790.
    [149]Hoffmann-Benning S, Gage D A, Mcintosh L, et al. Comparison of peptides in the phloem sap offlowering and non-flowering perilla and lupine plants using microbore HPLC followed by matrix-as-sisted laser desorption/ionization time-of-flight mass spec-trometry [J]. Planta, 2004, 19: 140-147.
    [150]贾世荣,曹冬孙.转基因植物[J].植物学通报,1992 ,9(2) :3– 15.
    [151]刘军,赵兰勇,丰震,等.菊花叶片离体高效再生体系的建立[J].山东农业大学学报(自然科学版),2004,35 (2):177-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700