传感网环境下事件驱动的林火动态观测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火灾是最经常、最普遍地威胁公众安全和社会发展的主要灾害之一。全世界每年发生大量的森林火灾,给生态环境造成严重破坏,给人民生命财产造成巨大损失。如何对森林进行全面观测,及时获取环境信息,对林火的发生进行预测预报,以求尽可能地降低火灾造成的损失,一直是人类关心的重要研究课题。传统的观测以人工和半自动化的手段为主,观测过程比较繁琐,信息处理的效率比较低,不利于火险信息的及时发现。随着对地观测技术的发展,越来越多的空、天、地传感器加入了环境观测的行列,使人类能够更快地获取森林环境信息。而自上世纪末开始的计算机、通讯、微电子等领域的快速发展和融合,催生了传感网技术。这种技术整合了环境观测所需的感知、存储、通讯、网络、计算等等资源,可以大大提高空间信息的发现、获取和处理的自动化水平,从而提高环境观测的效率。在过去的十多年中,传感网技术获得了迅速地发展,在许多领域得到了研究和应用。但是,如何将传感网技术应用于森林环境观测,提高林火观测的水平,仍然是个有待深入研究的课题。
     在地学领域,传感网技术的研究和应用大多以OGC发展的系列规范为基础。OGC为了促进地理信息的开放和互操作,发展了多个系列的服务规范,其中包括地学信息服务(OGC Web Service)系列规范和传感网服务(Sensor Web Service)系列规范。这些服务规范均针对面向服务的架构(Service Oriented Architecture, SOA)设计。SOA架构可以很好地整合现有的资源,使它们协同工作,但是本身最适合的的模式是请求-响应,这种模式缺乏反应性。而环境观测是个感知的过程,除了被动的获取环境信息以外,主动地对环境变化作出反应也很重要。为此,OGC试图为系列服务规范引入事件驱动的方法,以弥补这方面的不足。经过十多年的努力,现有的研究成果已经能够支撑一些基于事件驱动的观测应用。目前,国内外与之相关的应用研究还比较少。论文从林火动态化观测的需求出发,研究在传感网环境下使用事件驱动方法观测林火所需的一些关键技术。主要工作和研究成果如下:
     (1)针对事件驱动的林火观测方法的需求,回顾和总结了林火观测的基本原理和方法、OGC系列规范中与传感网应用有关的服务规范的研究和发展、事件驱动技术的研究和发展、以及传感网中对事件驱动技术的研究和发展,指出了在传感网环境下实现事件驱动应用的基本思路。
     (2)林火观测事件的分层、分类和建模方法。它们是事件驱动技术应用的设计基础。事件存在多种层次,但是人们在日常生活中谈论的事件并无明确的层次区分。而事件处理中这种区分是必要的,因为不同层次的事件处理方法可能会不一样。分析了观测与环境之间的层次关系,给出了观测事件的三种抽象层次。以一种林火预测模型为基础,研究了林火观测过程中的事件,并对它们进行了分类。在此基础上,建立了观测事件的概念模型。
     (3)林火观测事件的处理方法。事件处理是事件驱动的关键。论文主要研究了观测事件处理中的几项关键技术,包括观测事件的组织、观测事件的过滤、复杂观测事件的处理和观测事件处理流程的建模。分析了传感网系列规范中对这些关键技术的支持。然后以一种林火预测模型为基础,研究了前三种技术的实现方法。最后采用有限状态机对观测事件处理流程进行了建模。
     (4)适用于林火观测的事件驱动架构。事件驱动架构是设计和实现事件驱动应用的基础,大致包含四个部分:事件产生、事件通道、事件处理和事件消费。论文针对林火观测的需要,分析了这四部分中必需的构件。然后在此基础上构建并详细分析了观测事件的处理流程。接着,以该流程和现有数据服务设施为基础,设计了观测事件驱动的概念框架。最后,以概念框架为基础,采用传感网相关技术,设计了一种适用于林火观测的事件驱动架构。
     (5)观测事件和事件模式的编码。基于观测与测量(Observations and Measurements, O&M)规范对观测信息进行编码和基于事件模式描述语言(Event Pattern Markup Language, EML)对事件模式进行编码是传感网技术的研究热点和远景目标。论文采用现有的O&M规范对观测事件进行编码,采用EML规范对事件模式进行编码,并使二者配合完成了事件过滤。
     (6)针对一种林火预测方案,建立了仿真的林火观测实验平台,验证了论文提出的模型和方法的可行性。实验根据事件驱动架构划分为四个阶段,每个阶段分别测试了一些关键技术。此外,通过实验平台中各模块协同工作的时序图说明了事件驱动架构的运行过程。
The fire is one of major disaters which are the most common and general threats to public safety and social development. Each year, a large number of forest fires occur all over ther world. They cause serious damage to the ecological environment and huge losses to people's lives and property. How to conduct a comprehensive observation to forest and timely access to environmental information for forecasting the occurrence of forest fires in order to minimize the losses caused by them has been an important research topic of human being's concern. Traditional observation use manual and semi-automated observation methods, which is cumbersome and inefficient and thus is not conducive to the timely discovery of fire dangers. With the development of Earth observation technology, more and more ground, air and space sensors has joined the ranks of environmental observations, which enable human being to faster obtain the forest environment information. Since the end of the last century, the rapid development and integration of computer, communications, microelectronics and other domains gave the birth to the sensor web technology. This technology integrated resources needed by environmental observation, including perception, storage, communication, network, compution and other resource. It can gratly improve the level of automation to discovery, access and process environmental information and thus improve the efficiency of environmental observation. In the past ten years, sensor web technology has gained rapid development and has been studied and applied in many fields. However, how to apply sensor web technology in forest environmental observations to improve the level of forest fire observation is still to be in-depth study.
     In the field of earth science, most of researches and applications on sensor web technologies are based on series of OGC specifications. In order to promote the openness and interoperability of geographic information, OGC has developed servral series of service specification, including OGC web service specifications and sensor web service specifications. These specifications all design for service-oriented architecture (SOA), which can integrate existing resources very well so that they work together. However, the most suitable mode of SOA is request-response, which is the lack of reactivity. Environmental observation is a perception process, in which active reaction to environmental changes is also very important except that passively access to environmental information. To make up for this deficiency, OGC try to apply event-driven approach in the service specifications. After10years of efforts, the existing research achievements have been able to support some event-driven application in observations. As present, related studies is still less at home and abroad. This paper aims at the needs of the dynamic observation of forest fires and studied some key technologies required for event-driven application of forest fire observation in sensor web environment. The main work and innovation points include the following aspects:
     (1) For the requirement of event-driven observation method of forest fire, the paper reviewed and summarized the basic principles and methods of forest fire observation, the research and development of service specifications related to sensor web applications, event-driven technology, event-driven technology in sensor web, and pointed out the basic idea of event-driven applications in sensor web environment.
     (2) The methods for hierarchical division, classification and modeling of forest fire observation events. They are the basis of the design of event-driven applications. There are a variety of levels in events, but there are no clear hierarchical distinctions in events that people talk about in their daily lives. This distinction is necessary in event processing because the handling methods of different level events may not be the same. The paper analysed hierarchical relationship between observations and environments, and gave three abstract leves of observation events. Based on a forest fire prediction model, the events in the process of forest fire observation was studied and classified. In the end, a conceptual model of observation events was proposed in the basis of the above studies.
     (3) The processing methods of forest fire observation events. The event handling is the key of the implementation of event-driven application. The paper mainly studied sevel key technologies of the handling of observation events, including the organization of observation events, the filtering of observation events, the handling of complex observation events and the modeling of the processing flow of observation events. The support for these key technologies in sensor web service specifications was also analysed. Then, the implementation methods of the first three techniques were studied on the basis of a forest fire predictin model. Finally, the finite state machine was used to model processing flow of observation events.
     (4) Event-driven architecture applied to forest fire observations. Event-driven architecture is the basis of the design and implementation of event-driven applications. They generally consist of four prats:event generation, event channel, event processing and event consumption. The paper focuses on the requirements of forest fire observations to analyse implementation components in four parts, and then built and analysed the processing flow of observation events in detail on the basis of the components. Next, a conceptual framework was proposed on the basis of the flow and the existing data service infrastructures. In the end, based on the framework, an event-driven framework applied to forest fire observations was designed with sensor web technologies.
     (5) Encoding observation events and their modes. Encoding observation information using O&M (Observations and Measurements) specification and encoding event patterns using EML (Event Pattern Markup Language) specification are the research hotspot and vision of sensor web technologies. The paper encoded observation events using O&M specification and encoded their models using EML specification, and matched them well in the filtering of observation events.
     (6) Based on a forest fire predition application, a simulating testbed of forest fire observations was established to verify the feasibility of the models and methods proposed by the paper. The experiment was divided into four phases according to the event-driven architecture. Several key technologies were tested in each phase. Additionally, the paper illustrated the running of the event-driven architecture using the sequence diagram of the experimental task.
引文
[1]火灾[EB/OL].http://baike.baidu.com/view/76453.htm,2012-08-23.
    [2]田晓瑞,舒立福,王明玉,等.林火与气候变化研究进展[J].世界林业研究,2006(05):38-42.
    [3]历数全球森林大火重灾国俄罗斯1年烧掉1个英国[EB/OL].http://world.people.com.cn/GB/1030/6462656.html,2012-8-23.
    [4]赵凤君,王明玉,舒立福,等.气候变化对林火动态的影响研究进展[J].气候变化研究进展,2009(01):50-55.
    [5]Brown T. J., Hall B. L., Westerling A. L. The impact of twenty-first century climate change on wildland fire danger in the western United States:An applications perspective[J]. Climatic Change,2004,62(1-3):365-388.
    [6]Flannigan M. D., Amiro B. D., Logan K. A., et al. Forest Fires and Climate Change in the 21ST Century [J]. Mitigation And Adaptation Strategies For Global Change,2006, 11(4):847-859.
    [7]Pitman A. J., Narisma G. T., Mcaneney J. The impact of climate change on the risk of forest and grassland fires in Australia[J]. Climatic Change,2007,84(3-4):383-401.
    [8]Lindner M., Maroschek M., Netherer S., et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems[J]. Forest Ecology and Management, 2010,259(4):698-709.
    [9]John J. Q., Wang W. T., Swarvanu D., et al. Active fire monitoring and fire danger potential detection from space:A review[J]. Frontiers of Earth Science in China, 2008,2(4):479-486.
    [10]Boyd D. S., Danson F. M. Satellite remote sensing of forest resources: three decades of research development[J]. Progress in Physical Geography,2005,29(1):1-26.
    [11]Justice C. O., Giglio L., Korontzi S., et al. The MODIS fire products[J]. Remote Sensing of Environment,2002,83(1-2):244-262.
    [12]MODIS Thermal Anomalies Fires (MOD 14); MODIS Burn Scars (MOD 40)[EB/OL].http://modis.gsfc.nasa.gov/data/dataprod/pdf/MOD_14_40.pdf,2012-1-15.
    [13]Giglio L., Descloitres J., Justice C. O., et al. An enhanced contextual fire detection algorithm for MODIS[J]. Remote Sensing of Environment,2003,87(2-3):273-282.
    [14]French N. H. F., Kasischke E. S., Hall R. J., et al. Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results[J]. International Journal of Wildland Fire,2008,17(4):443-462.
    [15]国家森林火灾应急预案[S].2012.
    [16]The Earth Will Don an Electronic Skin[EB/OL].http://www.businessweek.com/1999/99_35/b3644024.htm,2012-8-24.
    [17]Butler D.2020 computing:Everything, everywhere[J]. Nature,2006,440(7083):402-405.
    [18]Broring A., Echterhoff J., Jirka S., et al. New Generation Sensor Web Enablement[J]. Sensors,2011,11(3):2652-2699.
    [19]Akyildiz I. F., Weilian S., Sankarasubramaniam Y., et al. A survey on sensor networks[J]. Communications Magazine, IEEE,2002,40(8):102-114.
    [20]Tilak S., Abu-Ghazaleh N. B., Heinzelman W. A taxonomy of wireless micro-sensor network models[J]. SIGMOBILE Mob. Comput. Commun. Rev.,2002,6(2):28-36.
    [21]Delin K. A., Jackson S. P., Some R. R.Sensor Webs[EB/OL].http://www.nasatech.com/Briefs//Oct99/NPO20616.html,1999.
    [22]Delin K. A., Jackson S. P. The Sensor Web:A new instrument concept[C].2001:1-9.
    [23]Liang S. H. L., Croitoru A., Tao C. V. A distributed geospatial infrastructure for Sensor Web[J]. Computers & Geosciences,2005,31(2):221-231.
    [24]ROSES-05 Advanced Information Systems Technology Program[EB/OL].http://esto.nasa.gov/sensorwebmeeting/files/ROSES-05 AIST NRA Section l.doc,2013-5-5.
    [25]Di L. Geospatial sensor web and self-adaptive Earth predictive systems (SEPS)[C]. San Diego, USA:2007:1-4.
    [26]Botts M., Percivall G., Reed C, et al.OGC(?) Sensor Web Enablement:Overview And High Level Architecture[EB/OL].http://portal.opengeospatial.org/files/?artifact_id=25562 , 2007/2012-9-9.
    [27]Nittel S. A Survey of Geosensor Networks:Advances in Dynamic Environmental Monitoring[J]. Sensors,2009,9(7):5664-5678.
    [28]Advanced Information Systems Technology (AIST) Program[EB/OL].http://esto.nasa.gov/info_technologies_aist.html,2013-5-6.
    [29]Grothe M., Kooijman J.Sensor Web Enablement[EB/OL].http://www.ncg.knaw.nl/Publicaties/Groen/pdf/45Grothe.pdf 2008/2012-9-20.
    [30]New Implementations of OGC Sensor Web Enablement Standards[EB/OL].http://www.sensorsmag.com/networking-communications/government-military/new-implementations-ogc-sensor-web-enablement-standards-1437,2013-5-6.
    [31]Event-driven[EB/OL].http://en.wikipedia.org/wiki/Event-driven,2013-1-6.
    [32]Event[EB/OL].http://en.wikipedia.org/wiki/Event,2013-1-6.
    [33]An Introduction to Event Processing[EB/OL].http://www.cnetdirectintl.com/direct/fr/2009/progress/0907_centre_res sources/ressources/1-1_LB_UK_introduction_CEP.pdf,2012-9-27.
    [34]Etzion O., Niblett P. Event Processing in Action[M].1st. Greenwich, CT, USA:Manning Publications Co.,2010.
    [35]SOA概念与基础[EB/OL].http://www2.ccw.com.cn/05/0523/b/0523b14_1.asp,2013-1-7.
    [36]Natis Y. V. Service-Oriented Architecture Scenario[EB/OL].http://info.lnpu.edu.cn/website/jpkc/rjgc/ywzl/Service-Oriented%20Archi tecture%20Scenario.pdf,2003/2012-9-26.
    [37]Pilawski B.Event-driven Architecture and SOA-Allies or Enemies?[EB/OL].http://formular-ekf.vsb.cz/formulare/F01/tsw/getfile.php?prispevekid=9 35,/2012-9-20.
    [38]Epts.Event Processing Architectures[EB/OL]. http://www.slideshare.net/isvana/debs2010-tutorial-on-epts-referenc e-architecture-vlle,2010/2012-9-25.
    [39]Paschke A., Kozlenkov A. Rule Interchange and Applications[M]. Springer Berlin Heidelberg,2009:53-66.
    [40]Schema Specification of Deliberation RuleML Version 1.0[EB/OL].http://ruleml.org/1.0/, 2013-1-7.
    [41]包琳.基于事件驱动的动态调度研究[D].山东大学,2010.
    [42]焦毅,罗晖,国成林,等.基于事件驱动的软硬件混合监测系统——嵌入式系统辅助设计新技术[J].计算机工程与应用,2006(13):112-115.
    [43]匡芳君.基于Web服务的事件驱动集成模型及应用[D].长沙理工大学,2006.
    [44]苏典芳.事件驱动技术在银行业务活动监控中的应用[J].金融电子化,2009(07):37-39.
    [45]周蜀秦.大事件驱动城市增长机器的中外比较[J].中国名城,2010(11):22-28.
    [46]舒立福,张小罗,戴兴安,等.林火研究综述(Ⅱ)——林火预测预报[J].世界林业研究,2003(04):34-37.
    [47]居恩德.第五讲火险天气[J].森林防火,1986(1):34-37.
    [48]居恩德.第六讲林火蔓延[J].森林防火,1986(2):31-33.
    [49]居恩德.第七讲林火行为[J].森林防火,1986(3):41-44.
    [50]李兆明,高兆蔚.福建森林火险天气预报方法的研究[J].森林防火,1989(1):29-30.
    [51]何忠秋,张成钢,牛永杰.森林可燃物湿度研究综述[J].世界林业研究,1996(5):27-31.
    [52]高国平,周志权,王忠友.森林可燃物研究综述[J].辽宁林业科技,1998(4):35-38.
    [53]舒立福.森林可燃物可持续管理技术研究[J].火灾科学,2000,9(2):23-41.
    [54]许东蓓.甘肃省森林火灾特征及火险预报方法研究[D].南京:南京信息工程大学,2006.
    [55]覃先林,张子辉,李增元,等.国家级森林火险等级预报方法研究[J].遥感技术与应用,2008,23(5):500-504.
    [56]刘星光.黑龙江省森林火险等级及天气形势预报方法研究[D].兰州大学,2011.
    [57]郑焕能,居恩德.林火管理[M].哈尔滨:东北林业大学出版社,1988.
    [58]舒立福,田晓瑞.国外林火现状与展望[J].世界林业研究,1997,10(2):28-36.
    [59]王正非.加拿大森林火险系统概述[M].北京:林业出版社,1990.
    [60]Andrews P. L. BEHAVE:fire behavior prediction & fuel modeling systems BURN subsystem[J]. USDA Forest Service technical report,1982,15(3):18-23.
    [61]舒立福,田晓瑞.近10年来世界森林火灾状况[J].世界林业研究,1998,11(6).
    [62]Carlson J. D., Burga R. E. The Oklahoma Fire Danger Model:An operational tool for mesoseale fire danger rating in Oklahoma[J]. International Journal of Wildland Fire,2002, 121(11):183-191.
    [63]舒立福,田晓瑞,寇晓军.林火研究综述(Ⅰ)——研究热点与进展[J].世界林业研究,2003(03):37-40.
    [64]寇文正.林火管理信息系统[M].北京:中国林业出版社,1993.
    [65]Conard S. G., Hartzell T., Hilbruner M. W., et al. Changing fuel management strategies-The challenge of meeting new information and analysis needs[J]. International Journal of Wildland Fire,2001,10(4):267-275.
    [66]Hardy C. C, Schmidt K. M., Menakis J. P., et al. Spatial data for national fire planning and fuel management[J]. International Journal of Wildland Fire,2001,10(4):353-372.
    [67]邸雪颖,宏良.林火预测预报[M].哈尔滨:东北林业大学出版社,1993.
    [68]宋志杰.林火原理和林火预报[M].北京:气象出版社,1991.
    [69]王瑞君,于建军,郑春艳.森林可燃物含水率预测及燃烧性等级划分[J].森林防火,1997,32(2):16-18.
    [70]段秀美.801森林火险天气预报方法讨论[J].气象,1988(1).
    [71]李兆明.福建省森林火险天气等级预报方法[J].福建省林学院学报,1989(2):9.
    [72]甘孜州气象局.甘孜州森林着火蔓延危险等级预防系统[J].森林防火,1989(3):30.
    [73]文定元,舒立福.林火理论知识[M].哈尔滨:东北林业大学出版社,1999.
    [74]董斌兴,满秀玲.森林火灾扑救[M].哈尔滨:东北林业大学出版社,1999.
    [75]王正非.用现代化新技术科学管理林火[J].森林防火,1990(2):9-11.
    [76]朱月秋,莫光远.森林火灾的模型及扑灭问题[J].系统工程与理论,1988(2):5-7.
    [77]胡振武,郭亚民,石首.森林防火学[M].哈尔滨:黑龙江科学技术出版社,1990.
    [78]舒立福.提高气象卫星监测林火准确度及软件包的开发[J].森林防火,1995,3(1):32-34.
    [79]舒立福,田晓瑞,向安民.3S集成技术在林火管理中的应用研究[J].火灾科学,1999,8(1):46-51.
    [80]无名.中日信息化合作项目《森林防火信息系统》日前正式开通运行[J].林业资源管理,2002:1.
    [81]Di L., Moe K., Zyl T. L. V. Earth Observation Sensor Web:An Overview[J]. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2010,3(4):415-417.
    [82]Moe K. Nasa technology for the earth observation sensor web[C]. Boston, MA, United states:Institute of Electrical and Electronics Engineers Inc.,2008:V128-V131.
    [83]Simonis I.OGC(?) Sensor Web Enablement Architecture (Version: 0.4.0)[EB/OL].2008.
    [84]Botts M.OpenGIS(?) Sensor Model Language (SensorML) Implementation Specification (Version 1.0.0)[EB/OL].2007.
    [85]Havens S.OpenGIS(?) Transducer Markup Language (TML) Implementation Specification (Version 1.0.0)[EB/OL].2007.
    [86]Cox S.Observations and Measurements - Part 1 - Observation schema (Version 1.0)[EB/OL].2007.
    [87]Cox S.Observations and Measurements - Part 2 - Sampling Features (Version 1.0)[EB/OL].2007.
    [88]Simonis I.OpenGIS(?) Sensor Planning Service Implementation Specification (Version 1.0)[EB/OL].2007.
    [89]Na A., Priest M.Sensor Observation Service (Version 1.0)[EB/OL].2007.
    [90]Simonis I.OpenGIS(?) Sensor Alert Service Implementation Specification (Version 0.9)[EB/OL].2006.
    [91]Simonis I., Echterhoff J.Draft OpenGIS(?) Web Notification Service Implementation Specification (Version 0.0.9)[EB/OL].2006.
    [92]Echterhoff J., Everding T.OpenGIS(?) Sensor Event Service Interface Specification (proposed) (Version 0.3.0)[EB/OL].2008.
    [93]Everding T., Echterhoff J.Event Pattern Markup Language (EML) (Version 0.3.0)[EB/OL].2008.
    [94]Schut P.OpenGIS(?) Web Processing Service (Version 1.0.0)[EB/OL].2007.
    [95]Whiteside A., Evans J. D.Web Coverage Service (WCS) Implementation Standard (Version 1.1.2)[EB/OL].2008.
    [96]Beaujardiere J. D. L.OpenGIS(?) Web Map Server Implementation Specification (Version 1.3.0)[EB/OL].2006.
    [97]Everding T., Echterhoff J.OGC(?) OWS-6 SWE Event Architecture Engineering Report (Version: 0.3.0)[EB/OL].2009.
    [98]Huang C. Y., Liang S. A Hybrid Pull-Push System for Near Real-Time Notifications on Sensor Web[C]. Melbourne, Australia:2012:421-425.
    [99]Resch B., Mittlboeck M., Lippautz M. Pervasive Monitoring-An Intelligent Sensor Pod Approach for Standardised Measurement Infrastructures[J]. Sensors,2010, 10(12):11440-11467.
    [100]Llaves A. A Theory for Event Processing of Geosensor Data[C]. Utrecht, The Netherlands.-2011.
    [101]Llaves A., Renschler C. S. Observing Changes in Real-Time Sensor Observations[C]. Avignon:2012:24-27.
    [102]Llaves A., Michels H., Mau P., et al. Semantic event processing in ENVISION[C]. Craiova, Romania:ACM,2012:1-9.
    [103]Brinkhoff T., Jansen S. Sensor Web Services for Early Flood Warnings Based on Soil Moisture Profiles[C]. Melbourne, Australia:2012.
    [104]Churcher G. E., Foley J. Applying and extending sensor web enablement to a telecare sensor network architecture[C]. Dublin, Ireland:ACM,2009:1-6.
    [105]Everding T., Foerster T.Challenges of Processing Temporal Events in the Sensor Web[EB/OL].http://www.geo-informatie.nl/workshops/scw2/papers/Everding.pdf 2012/2012-9-20.
    [106]郑焕能.森林防火[M].哈尔滨:东北林业大学出版社,1994.
    [107]林辉.遥感技术基础教程[M].福州:中南大学出版社,2000.
    [108]仇肇悦,李军,郭宏俊.遥感应用技术[M].武汉:武汉测绘科技大学出版社,1998.
    [109]Dendron Resource Surveys Inc. Bioindicators of Forest Health:Review report[R].Sauit Ste Marie:Ontario Forest Research Institute,1997.
    [110]Hong F., Liping D., Wenli Y., et al. Use of binary logistic regression technique with Modis data to estimate Wild Fire Risk[C]. Wuhan, China:SPIE,2007: State Key Lab. Multi-spectral Information Processing Technologies; Chinese Educ. Ministry Key Lab. Image Process. Intell. Control; Huazhong University of Science and Technology; The International Society for Optical Engineering (SPIE).
    [111]Leblon B. Monitoring Forest Fire Danger with Remote Sensing[J]. Natural Hazards,2005, 35(3):343-359.
    [112]Calle A., Casanova J. L. Integration Of Information For Environmental Security[M].2008: 247-290.
    [113]Keeley J. E. Fire intensity, fire severity and bum severity: a brief review and suggested usage[J]. International Journal of Wildland Fire,2009,18(1):116-126.
    [114]Flannigan M. D. Forest fire monitoring using the NOAA satellite series[D]. Fort Collins: Colorado State University,1985.
    [115]Box E. O., Holben B. N., Kalb V. Accuracy of the AVHRR vegetation index as a predictor of biomass, primary productivity and net CO2 flux[J]. Plant Ecology,1989,80(2):71-89.
    [116]Anderson G. L., Hanson J. D., Haas R. H. Evaluating Landsat Thematic Mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands[J]. Remote Sensing of Environment,1993,45(2):165-175.
    [117]Harrell P. A., Kasischke E. S., Bourgeau-Chavez L. L., et al. Evaluation of approaches to estimating aboveground biomass in southern pine forests using Sir-C data[J]. Remote Sensing of Environment,1997,59(2):223-233.
    [118]Palacios-Orueta A., Chuvieco E., Parra A., et al. Biomass burning emissions:A review of models using remote-sensing data[J]. Environmental Monitoring and Assessment,2005, 104(1-3):189-209.
    [119]王振会TRMM卫星测雨雷达及其应用研究综述[J].气象科学,2001(4):491-500.
    [120]Sorooshian S., Gao X., Hsu K., et al. Diurnal Variability of Tropical Rainfall Retrieved from Combined GOES and TRMM Satellite Information[J]. Journal of Climate,2002, 15(9):983-1001.
    [121]何会中,崔哲虎,程明虎,等TRMM卫星及其数据产品应用[J].气象科技,2004(1):13-18.
    [122]Justice C. O., Townshend J. R. G., Vermote E. F., et al. An overview of MODIS Land data processing and product status[J]. Remote Sensing of Environment,2002,83(1-2):3-15.
    [123]杨国福.利用MODIS遥感技术监测浙江省森林火燃料湿度的时空动态[D].临安:浙江林学院,2009.
    [124]丁一.基于MODIS数据和气象数据的植被水监测研究[D].北京:首都师范大学,2011.
    [125]李福堂.基于EOS/MODIS的森林火灾监测模型及应用研究[D].武汉:华中科技大学,2005.
    [126]李勇.基于MODIS数据的林火蔓延模型的研建[D].北京林业大学,2007.
    [127]Percivall G.OGC Reference Model[EB/OL].https://portal.opengeospatial.org/files/?artifact_id=3836,2003.
    [128]张霞.地理信息服务组合与空间分析服务研究[D].武汉大学,2004.
    [129]Consortium O. G.OpenGIS(?) Catalogue Services Specification[EB/OL].http://portal.opengeospatial.org/files/?artifact_id=20555,2007.
    [130]Kottman C., Reed C.The OpenGIS(?) Abstract Specification Topic 5:Features (Version: 5.0)[EB/OL].http://portal.opengeospatial.org/files/?artifact_id=29536,2009.
    [131]Chandy K. M., Caltech, Schulte R., et al.What is Event Driven Architecture (EDA) and Why Does it Matter?[EB/OL].http://complexevents.com/?p=212,2007/2012-10-5.
    [132]Chandy K. M., Schulte W. R.How Event Processing Improves Business Decision Making[EB/OL].http://complexevents.com/wp-content/uploads/2007/07/CEP article long Chandy and Schulte final 17 july 2007.pdf,2007/2012-10-15.
    [133]Michelson B. Event-Driven Architecture Overview - Event-Driven SOA Is Just Part of the EDA Story[R].Patricia Seybold Group,2006.
    [134]事件驱动架构概论[EB/OL].http://www.orientware.net/view Articles.do?action=browse&columnld=27&id=85 &flag=home,2013-2-25.
    [135]Web Services Addressing 1.0 - Core[EB/OL].http://www.w3.org/TR/ws-addr-core/, 2013-4-26.
    [136]Dunkel J. On complex event processing for sensor networks[C]. Athens, Greece:IEEE Computer Society,2009:249-254.
    [137]李明树,杨秋松,翟健.软件过程建模方法研究[J].软件学报,2009(03):524-545.
    [138]Simonis I., Echterhoff J.OGC(?) Sensor Planning Service Implementation Standard (Version 2.0)[EB/OL].2011.
    [139]GeoServer Welcome[EB/OL],http://geoserver.org/display/GEOS/Welcome,2013-3-28.
    [140]52north exploring horizons[EB/OL].http://52north.org/,2013-3-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700