铜绿假单胞菌致病因子抑制剂及喹诺酮信号分子介导的调节途径研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗生素的使用使细菌感染类疾病得到了有效的控制,但随着耐药菌株的出现限制了人们治疗细菌感染性疾病的能力,感染性疾病再次对人类健康造成严重的威胁。铜绿假单胞菌(Pseudomonas aeruginosa, PA)是一种条件致病菌,是医院获得性感染的三大致病菌之一。它能引起各种不同的急性或慢性感染,特别是对于免疫功能缺陷或是患有慢性疾病的人群。抗生素的长期使用及滥用使铜绿假单胞菌对许多抗生素产生了严重的耐药性,这导致铜绿假单胞菌感染类疾病在临床治疗中面临了极大的困难。
     细菌的致病力取决于细菌所产生的致病因子(或毒性因子)及其对宿主的损伤作用。致病菌通过释放毒性因子来破坏宿主细胞的正常生理功能,甚至导致宿主细胞的死亡。因此,通过抑制细菌感染宿主过程中所依赖的毒性因子,将可以抑制细菌的致病性,达到控制感染的目的。因此,对细菌致病途径及机理的研究,并在此基础上研发抗细菌致病性药物,已成为病原微生物和抗生素研究领域的一个全新的重要方向。
     中药在我国具有数千年的历史,其防治感染性疾病的能力被人们所熟知。本课题以中药中“清热解毒”类药材为筛选对象,利用荧光素酶(Luciferase)基因luxCDABE为报道子连接于铜绿假单胞菌毒性相关基因的启动子之后,对致病因子基因进行标记,筛选并研究中药材中抗致病成分,探索其化学本质及其作用途径与机理。并在此基础上将黄芩苷的作用靶点—喹诺酮信号分子系统(Pseudomonas quinolone signal, PQS)对其所介导的致病因子的调节途径进行了深入的研究。
     研究结果发现中药材黄芩粗提物和艾叶粗提物中存在抗铜绿假单胞菌致病性的成分,在对细菌的生长没有影响的条件下,黄芩粗提物可以明显的抑制铜绿假单胞菌毒性相关基因,其中包括群体感应系统(Quorum sensing, QS)基因lasI、lasR、rhlI和rhlR,Ⅲ型分泌系统基因exoS和运动相关基因filC的表达。而艾叶水提物可以抑制lasR、rhlI、 rhlR、exoS和filC的表达。且黄芩和艾叶粗提物均对铜绿假单胞菌丛动能力有明显的抑制作用。
     进一步的研究发现,黄芩中含有的化学成分之一黄芩苷可以明显抑制铜绿假单胞菌毒性因子如Ⅲ型分泌系统、QS相关表型如鼠李糖脂、弹性蛋白酶以及细菌的丛动能力。结果表明黄芩苷很可能是黄芩抑制铜绿假单胞菌致病性的主要成分。
     本课题以黄芩苷对Ⅲ型分泌系统中效应蛋白基因exoS的表达抑制为线索,进一步研究了黄芩苷对铜绿假单胞菌致病因子的作用途径和作用机理。在已知的致病因子全局调控系统的突变体中检测了黄芩苷对exoS表达抑制作用的变化,结果证明黄芩苷的作用依赖于PQS群体感应系统,它对致病因子的调节作用是通过这一途径来实现的。在PQS信号分子产生相关的pqsH基因突变体及调控蛋白PqsR (信号分子PQS的同源受体)突变菌株中,黄芩苷对exoS表达抑制作用消失。当PQS与PqsR蛋白共同存在的条件下,黄芩苷对Ⅲ型分泌系统的抑制作用即可恢复。但只有PQS信号分子前体HHQ与PqsR蛋白存在或者是只有PqsR蛋白本身存在的条件下,黄芩苷对Ⅲ型分泌系统的抑制作用不能恢复,这表明黄芩苷对Ⅲ型分泌系统的抑制作用是PQS与PqsR共同介导的。
     研究还发现,黄芩苷可以使铜绿假单胞菌产生一个胞外未知物质。通过高效液相及质谱分析,初步确定了此物质的一些化学性质,此物质的极性性质类似于信号分子PQS,但并不是PQS信号分子。实验还发现铜绿假单胞菌产生此物质不需要PQS系统中的调控蛋白PqsR,推测此未知物质的产生可能与黄芩苷抗致病的作用机制有关。
     利用体外小鼠细胞EMT6毒性、果蝇感染模型以及大鼠海藻包埋肺部感染模型,实验研究了黄芩苷对铜绿假单胞菌体内致病性的影响。细胞毒性实验以及果蝇感染实验,同时证明黄芩苷可以明显削弱铜绿假单胞菌PAO1的致病性。在进一步的动物肺炎模型实验中,通过大鼠肺组织病理分级、血清中炎症因子TNF-α含量以及肺组织内活菌计数等多项指标检测,结果证明黄芩苷除抑制铜绿假单胞菌致病因子外,可以减少机体炎症反应并加快大鼠对细菌的清除。这些结果表明黄芩苷是一个具有良好前景的、有效治疗铜绿假单胞菌感染的抗致病药物候选体。
     针对黄芩苷作用靶点-PQS群体感应调节系统的进一步研究结果表明,此系统信号分子PQS对铜绿假单胞菌生物被膜的形成有重要的影响,同时对其丛动能力具有明显的抑制作用。本研究证明PQS对丛动能力的抑制作用不依赖于调控蛋白PqsR的存在;也与细菌鞭毛、菌毛的形成以及表面活性剂鼠李糖脂的产量变化无关。从实验结果发现铜绿假单胞菌的蹭行运动不受到PQS的调控,但却依赖于调控蛋白PqsR的存在。这一研究结果首次揭示了铜绿假单胞菌中喹诺酮信号分子对致病因子的调节是可以通过PqsR依赖和PqsR非依赖两种途径实现。与先前文献报道有所不同,本研究还发现PQS对铜绿假单胞菌生物被膜的促进与Las和Rhl系统的调节机制无关,而是依赖于GacAS/Rsm调控途径。研究还发现,PQS在突变体gacA中对铜绿假单胞菌丛动的抑制作用仍然存在,这表明了信号分子PQS对丛动能力的抑制和对生物被膜的增强作用是通过不同的机制来调控的。
Conventional antibiotics target viability; such antiniotics exert as elective pressure on pathogenic bacteria and hence cause the rise of drug resistance. Antibiotic resistance in pathogens limits our abilities to treat infectious diseases and has become a serious threat to human health. Pseudomonas aeruginosa (PA) is a Gram-negative opportunistic human pathogen. It is the third most common infectious agent in hospitals, and it can cause various acute and chronic infections in patients, especially those who are immuno-compromised or suffered other chronic diseases. With decades of conventional antibiotic treatment, many P. aeruginosa stains have become a multi-drug resistant, which leads to enormous difficulties in clinical treatment.
     The ability of pathogens to cause disease depends on virulence factors, such as toxins, cytolysins or proteases which cause damage to host tissues. It is therefore plausible that bacterial infections can be treated or prevented by inhibitors of the bacterial virulence factors. Such inhibitors are a promising new kind of "antipathogenic"therapeutics.
     Chinese herbs have been effectively used to treat infectious diseases for thousands of years. They represent a rich resource for antibacterial compound exploration. In this study, we screened for P. aeruginosa virulence factor inhibitors from Chinese herbs and investigated the pathways and molecular mechanisms of a potent inhibitor baicalin isolated from Scutellariae Radix. We constructed an array of virulence factor reporters with the virulence related gene promoters fused with promoterless luxCDABE cluster. Chinese herbs that are known for the functions of Qing Re Jie Du (i.e. treating symptoms resembling infections) were screened using this reporter array. In addition, the target of baicalin, i.e. the Pseudomonas quinolone signal system (PQS), was also investigated. The regulation of virulence factors by the PQS system and the corelation between the signal molecules and the transcriptional regulator PqsR (cognate receptor of PQS) in virulence regulation were investigated.
     The results of our study revealed that the extract of medicinal plant Scutellariae Radix (the root of Scutellaria baicalensis Georgi) could inhibit the expression of Quorm sensing (QS) related genes including lasl, lasR, rhlI and rhlR, type Ⅲ secretion system (T3SS) effector gene exoS and flagella biosynthesis gene filC. We found Folium Artemisiae Argyi extract could inhibit the expression of QS lasR, rhlI, rhlR, exoS and filC in P. aeruginosa, while it had no influence on cell viability.
     Further investigation indicate that baicalin, an flavonoid isolated from Scutellariae Radix significantly inhibited a range of important virulence factors in P. aeruginosa such as the Type III secretion system (T3SS), swarming motility and the production of rhamnolipid and elastase, suggesting that baicalin was the active anti-virulence component in the medicinal plant Scutellariae Radix.
     Based on the observation that baicalin repressed the expression of T3SS effector gene exoS, we investigated the mechanism of baicalin inhibition on virulence exoS as a reporter. The exoS inhibition by baicalin was examined in the mutants of global regulatory system which are known controlling virulence factors in P. aeruginosa. The results demonstrated that PQS system is the target regulatory pathway through which baicalin excerted its inhibitory activity against virulence factors. Baicalin had no impact on exoS expression in the pqsH and pqsR mutants which are deficient in the PQS production and lack of regulatory protein PqsR (cognate receptor of PQS) respectively. The inhibition of exoS expression by baicalin was restored in the presence of PQS and PqsR, but not by the PQS precursor HHQ and PqsR or PqsR alone. The results demonstrated that the inhibition activity on the T3SS by baicalin is dependent on the PQS and its cognate receptor PqsR.
     The activity of baicalin on the pathogenicity of P. aeruginosa was further tested using in vitro EMT6cells, fruit fly infection model, and the rat lung alginate-bead infection model. The result demonstrated that baicalin reduced the cellular toxicity of PAO1on the mammalian cell and attenuated its in vivo pathogenicity in the fly infection model. Moreover, the results using the rat pulmonary infection model demonstrated that baicalin reduced the inflammatory response and enhanced bacterial clearance by the host. These results suggest that baicalin is apromissing antipathogenic drug candidate for treating P. aeruginosa infections.
     Study of the baicalin target-the PQS system showed that PQS stsyem is an important for P. aeruginosa motility and biofilm formation. We demonstrated that PQS molecules repressed the swarming motility of P. aeruginosa PAO1, and such regulation was independent on its cognate receptor PqsR but was not related to changes of the flagella, type IV pili or the production of the surface-wetting agent rhamnolipid surfactants. While PQS molecules did not affect twitching motility in PAO1, a pqsR deletion abolished twitching motility, indicating pqsR is required for twitching motility. The result for the first time revealed the distinct PqsR-dependent and PqsR-independent functions of PQS molecules. Our results also indicated that the enhancement of biofilm formation by PQS, at least partially, depended on the GacAS/Rsm regulatory pathway whereas without affecting the Las or Rhl QS systems. However, PQS still inhibited swarming motility in gacA mutant. It is likely that the effect of PQS on swarming motility and biofilm formation were exerted through different pathways.
引文
[1]Kerr K.GSnelling A.M. Pseudomonas aeruginosa:a formidable and ever-present adversary [J]. Journal of Hospital Infection,2009,73(4):338-344
    [2]Trautmann M., Lepper P.M.Haller M. Ecology of Pseudomonas aeruginosa in the intensive care unit and the evolving role of water outlets as a reservoir of the organism [J]. American journal of infection control,2005,33(5):S41-S49
    [3]Richards M.J., Edwards J.R., Culver D.H., et al. Nosocomial infections in combined medical-surgical intensive care units in the United States [J]. Infection control and hospital epidemiology,2000,21(8): 510-515
    [4]Rosenfeld M., Ramsey B.W.Gibson R.L. Pseudomonas acquisition in young patients with cystic fibrosis:pathophysiology, diagnosis, and management [J]. Current opinion in pulmonary medicine, 2003,9(6):492-497
    [5]Talbot GH., Bradley J., Edwards J.E., et al. Bad bugs need drugs:an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America [J]. Clinical Infectious Diseases,2006,42(5):657-668
    [6]Stover C., Pham X., Erwin A., et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen [J]. Nature,2000,406(6799):959-964
    [7]于柏峰,张慧云,刘冰,et al.铜绿假单胞菌致病力和致病机理研究进展[J].微生物学杂志,2004,24(1):52-53
    [8]Corboy M.J.Draper R.K. Elevation of vacuolar pH inhibits the cytotoxic activity of furin-cleaved exotoxin A [J]. Infection and Immunity,1997,65(6):2240-2242
    [9]Kipnis E., Sawa T.Wiener-Kronish J. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis [J]. Medecine et maladies infectieuses,2006,36(2):78-91
    [10]Usher L.R., Lawson R.A., Geary I., et al. Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin:a potential mechanism of persistent infection [J]. The Journal of Immunology,2002,168(4):1861-1868
    [11]Schmidtchen A., Frick I.M., Andersson E., et al. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37 [J]. Molecular Microbiology,2002,46(1):157-168
    [12]Mariencheck W.I., Alcorn J.F., Palmer S.M., et al. Pseudomonas aeruginosa elastase degrades surfactant proteins A and D [J]. American Journal of Respiratory Cell and Molecular Biology,2003, 28(4):528
    [13]Engel J.Balachandran P. Role of Pseudomonas aeruginosa type Ⅲ effectors in disease [J]. Current opinion in microbiology,2009,12(1):61-66
    [14]Hauser A.R. The type Ⅲ secretion system of Pseudomonas aeruginosa:infection by injection [J]. Nature Reviews Microbiology,2009,7(9):654-665
    [15]Yahr T.L.Wolfgang M.C. Transcriptional regulation of the Pseudomonas aeruginosa type Ⅲ secretion system [J]. Molecular microbiology,2006,62(3):631-640
    [16]Schulert G.S., Feltman H., Rabin S.D.P., et al. Secretion of the toxin ExoU is a marker for highly virulent Pseudomonas aeruginosa isolates obtained from patients with hospital-acquired pneumonia [J]. Journal of Infectious Diseases,2003,188(11):1695-1706
    [17]Fleiszig S.M., Wiener-Kronish J.P., Miyazaki H., et al. Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S [J]. Infection and immunity,1997,65(2):579-586
    [18]Feltman H., Schulert G., Khan S., et al. Prevalence of type Ⅲ secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa [J]. Microbiology,2001,147(10):2659-2669
    [19]Knight D.A., Finck-Barbancon V., Kulich S.M., et al. Functional domains of Pseudomonas aeruginosa exoenzyme S [J]. Infection and immunity,1995,63(8):3182-3186
    [20]Rocha C.L., Coburn J., Rucks E.A., et al. Characterization of Pseudomonas aeruginosa exoenzyme S as a bifunctional enzyme in J774A.1 macrophages [J]. Infection and immunity,2003,71(9): 5296-5305
    [21]Wurtele M., Renault L., Barbieri J.T., et al. Structure of the ExoS GTPase activating domain [J]. FEBS letters,2001,491(1):26-29
    [22]Pederson K.J., Vallis A.J., Aktories K., et al. The amino-terminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular-weight GTP-binding proteins [J]. Molecular microbiology,1999,32(2):393-401
    [23]Goehring U.M., Schmidt G., Pederson K.J., et al. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases [J]. Journal of Biological Chemistry, 1999,274(51):36369-36372
    [24]Wurtele M., Wolf E., Pederson K.J., et al. How the Pseudomonas aeruginosa ExoS toxin downregulates Rac [J]. Nature Structural & Molecular Biology,2001,8(1):23-26
    [25]Pederson K.J.Barbieri J.T. Intracellular expression of the ADP-ribosyltransferase domain of Pseudomonas exoenzyme S is cytotoxic to eukaryotic cells [J]. Molecular microbiology,1998,30(4): 751-759
    [26]Barbieri A.M., Sha Q., Bette-Bobillo P., et al. ADP-ribosylation of Rab5 by ExoS of Pseudomonas aeruginosa affects endocytosis [J]. Infection and immunity,2001,69(9):5329-5334
    [27]Kaufman M.R., Jia J., Zeng L., et al. Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of ExoS [J]. Microbiology,2000,146(10):2531-2541
    [28]Ganesan A.K., Frank D.W., Misra R.P., et al. Pseudomonas aeruginosa exoenzyme S ADP-ribosylates Ras at multiple sites [J]. Journal of Biological Chemistry,1998,273(13):7332-7337
    [29]Barbieri J.T.Sun J. Pseudomonas aeruginosa ExoS and ExoT [J]. Reviews of physiology, biochemistry and pharmacology,2005,152:79-92
    [30]Liu S., Yahr T.L., Frank D.W., et al. Biochemical relationships between the 53-kilodalton (Exo53) and 49-kilodalton (ExoS) forms of exoenzyme S of Pseudomonas aeruginosa [J]. Journal of bacteriology, 1997,179(5):1609-1613
    [31]Shafikhani S.H.Engel J. Pseudomonas aeruginosa type Ⅲ-secreted toxin ExoT inhibits host-cell division by targeting cytokinesis at multiple steps [J]. Proceedings of the National Academy of Sciences,2006,103(42):15605-15610
    [32]Shaver C.M.Hauser A.R. Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung [J]. Infection and immunity,2004,72(12):6969-6977
    [33]Krall R., Schmidt G., Aktories K., et al. Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein [J]. Infection and immunity,2000,68(10):6066-6068
    [34]Kazmierczak B.I.Engel J.N. Pseudomonas aeruginosa ExoT acts in vivo as a GTPase-activating protein for RhoA, Racl, and Cdc42 [J]. Infection and immunity,2002,70(4):2198-2205
    [35]Deng Q., Sun J.Barbieri J.T. Uncoupling Crk signal transduction by Pseudomonas exoenzyme T [J]. Journal of Biological Chemistry,2005,280(43):35953-35960
    [36]Sun J.Barbieri J.T. Pseudomonas aeruginosa ExoT ADP-ribosylates CT10 regulator of kinase (Crk) proteins [J]. Journal of Biological Chemistry,2003,278(35):32794-32800
    [37]Yahr T.L., Vallis A.J., Hancock M.K., et al. ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type Ⅲ system [J]. Proceedings of the National Academy of Sciences,1998,95(23): 13899-13904
    [38]Sayner S.L., Frank D.W., King J., et al. Paradoxical cAMP-induced lung endothelial hyperpermeability revealed by Pseudomonas aeruginosa ExoY [J]. Circulation research,2004,95(2): 196-203
    [39]Cowell B.A., Evans D.J.Fleiszig S.M.J. Actin cytoskeleton disruption by ExoY and its effects on Pseudomonas aeruginosa invasion [J]. FEMS microbiology letters,2005,250(1):71-76
    [40]Sato H., Feix J.B., Hillard C.J., et al. Characterization of phospholipase activity of the Pseudomonas aeruginosa type Ⅲ cytotoxin, ExoU [J]. Journal of bacteriology,2005,187(3):1192-1195
    [41]Tamura M., Ajayi T., Allmond L.R., et al. Lysophospholipase A activity of Pseudomonas aeruginosa type Ⅲ secretory toxin ExoU [J]. Biochemical and biophysical research communications,2004, 316(2):323-331
    [42]Sato H., Feix J.B.Frank D.W. Identification of superoxide dismutase as a cofactor for the Pseudomonas type Ⅲ toxin, ExoU [J]. Biochemistry,2006,45(34):10368-10375
    [43]Sato H., Frank D.W., Hillard C.J., et al. The mechanism of action of the Pseudomonas aeruginosa-encoded type Ⅲ cytotoxin, ExoU [J]. The EMBO journal,2003,22(12):2959-2969
    [44]Frank D.W. The exoenzyme S regulon of Pseudomonas aeruginosa [J]. Molecular microbiology,1997, 26(4):621-629
    [45]Vallis A.J., Yahr T.L., Barbieri J.T., et al. Regulation of ExoS production and secretion by Pseudomonas aeruginosa in response to tissue culture conditions [J]. Infection and immunity,1999, 67(2):914-920
    [46]Hovey A.K.Frank D.W. Analyses of the DNA-binding and transcriptional activation properties of ExsA, the transcriptional activator of the Pseudomonas aeruginosa exoenzyme S regulon [J]. Journal of bacteriology,1995,177(15):4427-4436
    [47]McCaw M.L., Lykken G.L., Singh P.K., et al. ExsD is a negative regulator of the Pseudomonas aeruginosa type Ⅲ secretion regulon [J]. Molecular microbiology,2002,46(4):1123-1133
    [48]Dasgupta N., Lykken G.L., Wolfgang M.C., et al. A novel anti-anti-activator mechanism regulates expression of the Pseudomonas aeruginosa type Ⅲ secretion system [J]. Molecular microbiology, 2004,53(1):297-308
    [49]Urbanowski M.L., Brutinel E.D.Yahr T.L. Translocation of ExsE into Chinese hamster ovary cells is required for transcriptional induction of the Pseudomonas aeruginosa type Ⅲ secretion system [J]. Infection and immunity,2007,75(9):4432-4439
    [50]Wolfgang M.C., Lee V.T., Gilmore M.E., et al. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway [J]. Developmental Cell,2003,4(2):253-263
    [51]Shen D.K., Filopon D., Kuhn L., et al. PsrA is a positive transcriptional regulator of the type Ⅲ secretion system in Pseudomonas aeruginosa [J]. Infection and immunity,2006,74(2):1121-1129
    [52]Kay E., Humair B., Denervaud V., et al. Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa [J]. Journal of Bacteriology,2006,188(16): 6026-6033
    [53]Brencic A., McFarland K.A., McManus H.R., et al. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs [J]. Molecular microbiology,2009,73(3):434-445
    [54]Brencic A.Lory S. Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA [J]. Molecular Microbiology,2009,72(3):612-632
    [55]Burrowes E., Baysse C., Adams C., et al. Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis [J]. Microbiology, 2006,152(2):405-418
    [56]Hogardt M., Roeder M., Schreff A.M., et al. Expression of Pseudomonas aeruginosa exoS is controlled by quorum sensing and RpoS [J]. Microbiology,2004,150(4):843-851
    [57]Bleves S., Soscia C., Nogueira-Orlandi P., et al. Quorum sensing negatively controls type Ⅲ secretion regulon expression in Pseudomonas aeruginosa PAO1 [J]. Journal of bacteriology,2005,187(11): 3898-3902
    [58]孔伟娜,梁海华,沈立新,et a1.铜绿假单胞菌中Ⅲ型分泌系统受Rhl和PQS群体感应系统调节[J].微生物学报,2009,49(9):1158-1164
    [59]Singh G., Wu B., Baek M.S., et al. Secretion of Pseudomonas aeruginosa type Ⅲ cytotoxins is dependent on Pseudomonas quinolone signal concentration [J]. Microbial pathogenesis,2010,49(4): 196-203
    [60]Liang H., Li L., Dong Z., et al. The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production [J]. Journal of bacteriology,2008,190(18):6217-6227
    [61]Liang H., Kong W., Shen T., et al. The effect ofpmpR on the type Ⅲ secretion system in Pseudomonas aeruginosa [J]. Chinese Science Bulletin,2012:
    [62]Whiteley M., Parsek M.R.Greenberg E.P. Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa [J]. Journal of bacteriology,2000,182(15):4356-4360
    [63]Kang Y., Lunin V.V., Skarina T., et al. The long-chain fatty acid sensor, PsrA, modulates the expression of rpoS and the type Ⅲ secretion exsCEBA operon in Pseudomonas aeruginosa [J]. Molecular microbiology,2009,73(1):120-136
    [64]Diaz M.R., King J.M.Yahr T.L. Intrinsic and extrinsic regulation of type Ⅲ secretion gene expression in Pseudomonas aeruginosa [J]. Frontiers in microbiology,2011,2(89):1-10
    [65]Sawa T., Ohara M., Kurahashi K., et al. In vitro cellular toxicity predicts Pseudomonas aeruginosa virulence in lung infections [J]. Infection and immunity,1998,66(7):3242-3249
    [66]Lee E.J., Evans D.J.Fleiszig S.M.J. Role of Pseudomonas aeruginosa ExsA in penetration through corneal epithelium in a novel in vivo model [J]. Investigative ophthalmology & visual science,2003, 44(12):5220-5227
    [67]Vance R.E., Rietsch A.Mekalanos J.J. Role of the type Ⅲ secreted exoenzymes S, T, and Y in systemic spread of Pseudomonas aeruginosa PAO1 in vivo [J]. Infection and immunity,2005,73(3):1706-1713
    [68]Holder LA., Neely A.N.Frank D.W. Type Ⅲ secretion/intoxication system important in virulence of Pseudomonas aeruginosa infections in burns [J]. Burns,2001,27(2):129-130
    [69]Hauser A.R., Cobb E., Bodi M., et al. Type Ⅲ protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa [J]. Critical care medicine,2002,30(3):521-528
    [70]Zhuo H., Yang K., Lynch S.V., et al. Increased mortality of ventilated patients with endotracheal Pseudomonas aeruginosa without clinical signs of infection [J]. Critical care medicine,2008,36(9): 2495-2503
    [71]El Solh A.A., Akinnusi M.E., Wiener-Kronish J.P., et al. Persistent infection with Pseudomonas aeruginosa in ventilator-associated pneumonia [J]. American journal of respiratory and critical care medicine,2008,178(5):513-519
    [72]Tsang K.W., Rutman A., Tanaka E., et al. Interaction of Pseudomonas aeruginosa with human respiratory mucosa in vitro [J]. European Respiratory Journal,1994,7(10):1746-1753
    [73]Sutterwala F.S., Mijares L.A., Li L., et al. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome [J]. The Journal of experimental medicine,2007,204(13): 3235-3245
    [74]Galle M., Schotte P., Haegman M., et al. The Pseudomonas aeruginosa Type Ⅲ secretion system plays a dual role in the regulation of caspase-1 mediated IL-1β maturation [J]. Journal of cellular and molecular medicine,2008,12(5a):1767-1776
    [75]Lee V.T., Smith R.S., Tummler B., et al. Activities of Pseudomonas aeruginosa effectors secreted by the type Ⅲ secretion system in vitro and during infection [J]. Infection and immunity,2005,73(3): 1695-1705
    [76]Diaz M.H., Shaver C.M., King J.D., et al. Pseudomonas aeruginosa induces localized immunosuppression during pneumonia [J]. Infection and immunity,2008,76(10):4414-4421
    [77]Ader F., Le Berre R., Faure K., et al. Alveolar response to Pseudomonas aeruginosa:role of the type III secretion system [J]. Infection and immunity,2005,73(7):4263-4271
    [78]Rello J., Ausina V., Ricart M., et al. Impact of previous antimicrobial therapy on the etiology and outcome of ventilator-associated pneumonia [J]. Chest,1993,104(4):1230-1235
    [79]Finck-Barbancon V., Goranson J., Zhu L., et al. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury [J]. Molecular microbiology,1997,25(3): 547-557
    [80]Kurahashi K., Kajikawa O., Sawa T., et al. Pathogenesis of septic shock in Pseudomonas aeruginosa pneumonia [J]. Journal of Clinical Investigation,1999,104(6):743-750
    [81]Roy-Burman A., Savel R.H., Racine S., et al. Type Ⅲ protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections [J]. Journal of Infectious Diseases, 2001,183(12):1767-1774
    [82]Lee V.T., Pukatzki S., Sato H., et al. Pseudolipasin A is a specific inhibitor for phospholipase A2 activity of Pseudomonas aeruginosa cytotoxin ExoU [J]. Infection and immunity,2007,75(3): 1089-1098
    [83]Arnoldo A., Curak J., Kittanakom S., et al. Identification of small molecule inhibitors of Pseudomonas aeruginosa exoenzyme S using a yeast phenotypic screen [J]. PLoS genetics,2008,4(2):e1000005
    [84]Aiello D., Williams J.D., Majgier-Baranowska H., et al. Discovery and characterization of inhibitors of Pseudomonas aeruginosa type Ⅲ secretion [J]. Antimicrobial agents and chemotherapy,2010,54(5): 1988-1999
    [85]Yamazaki A., Li J., Zeng Q., et al. Derivatives of plant phenolic compound effect the type Ⅲ secretion system of Pseudomonas aeruginosa via a GacS/GacA two-component signal transduction system [J]. Antimicrobial Agents and Chemotherapy,2012,56(1):36-43
    [86]Branda S.S., Vik S., Friedman L., et al. Biofilms:the matrix revisited [J]. Trends in microbiology, 2005,13(1):20-26
    [87]Lyczak J.B., Cannon C.L.Pier G.B. Establishment of Pseudomonas aeruginosa infection:lessons from a versatile opportunist [J]. Microbes and Infection,2000,2(9):1051-1060
    [88]Davies D. Understanding biofilm resistance to antibacterial agents [J]. Nature Reviews Drug Discovery,2003.2(2):114-122
    [89]Ryder C., Byrd M.Wozniak D.J. Role of polysaccharides in Pseudomonas aeruginosa biofilm development [J]. Current opinion in microbiology,2007,10(6):644-648
    [90]Govan J.R.Deretic V. Microbial pathogenesis in cystic fibrosis:mucoid Pseudomonas aeruginosa and Burkholderia cepacia [J]. Microbiological Reviews,1996,60(3):539-574
    [91]Pier G.B. Pseudomonas aeruginosa:a key problem in cystic fibrosis [J]. ASM News-American Society for Microbiology,1998,64(6):339-347
    [92]Friedman L.Kolter R. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix [J]. Journal of Bacteriology,2004,186(14):4457-4465
    [93]Matsukawa M.Greenberg E. Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development [J]. Journal of Bacteriology,2004,186(14):4449-4456
    [94]Ma L., Lu H., Sprinkle A., et al. Pseudomonas aeruginosa Psl is a galactose-and mannose-rich exopolysaccharide [J]. Journal of Bacteriology,2007,189(22):8353-8356
    [95]Ma L., Jackson K.D., Landry R.M., et al. Analysis of Pseudomonas aeruginosa conditional Psl variants reveals roles for the Psl polysaccharide in adhesion and maintaining biofilm structure postattachment [J]. Journal of Bacteriology,2006,188(23):8213-8221
    [96]Overhage J., Schemionek M., Webb J.S., et al. Expression of the psl operon in Pseudomonas aeruginosa PAO1 biofilms:PslA performs an essential function in biofilm formation [J]. Applied and Environmental Microbiology,2005,71(8):4407-4413
    [97]Friedman L.Kolter R. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms [J]. Molecular Microbiology,2004,51(3):675-690
    [98]Vasseur P., Vallet-Gely I., Soscia C., et al. The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation [J]. Microbiology,2005,151(3):985-997
    [99]Davey M.E., Caiazza N.C.O'Toole G.A. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1 [J]. Journal of bacteriology,2003,185(3):1027-1036
    [100]Diggle S.P., Stacey R.E., Dodd C., et al. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa [J]. Environmental Microbiology,2006,8(6):1095-1104
    [101]Goodman A.L., Kulasekara B., Rietsch A., et al. A Signaling Network Reciprocally Regulates Genes Associated with Acute Infection and Chronic Persistence in Pseudomonas aeruginosa [J]. Developmental Cell,2004,7(5):745-754
    [102]Ventre I., Goodman A.L., Vallet-Gely I., et al. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes [J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(1):171-176
    [103]Goodman A.L., Merighi M., Hyodo M., et al. Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen [J]. Genes & development, 2009,23(2):249-259
    [104]Sakuragi Y.Kolter R. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa [J]. Journal of bacteriology,2007,189(14):5383-5386
    [105]Schaber J.A., Carty N.L., McDonald N.A., et al. Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa [J]. Journal of Medical Microbiology,2004,53(9):841-853
    [106]Winzer K., Falconer C., Garber N.C., et al. The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS [J]. Journal of Bacteriology,2000,182(22):6401-6411
    [107]Diggle S.P., Winzer K., Lazdunski A., et al. Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression [J]. Journal of Bacteriology,2002,184(10):2576-2586
    [108]Pessi G., Williams F., Hindle Z., et al. The Global Posttranscriptional Regulator RsmA Modulates Production of Virulence Determinants andN-Acylhomoserine Lactones in Pseudomonas aeruginosa [J]. Journal of Bacteriology,2001,183(22):6676-6683
    [109]Diggle S.P., Winzer K., Chhabra S.R., et al. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR [J]. Molecular microbiology,2003,50(1):29-43
    [110]Reen F.J., Mooij M.J., Holcombe L.J., et al. The Pseudomonas quinolone signal (PQS), and its precursor HHQ, modulate interspecies and interkingdom behaviour [J]. FEMS microbiology ecology, 2011,77(2):413-428
    [111]Berlutti F., Morea C., Battistoni A., et al. Iron availability influences aggregation, biofilm, adhesion and invasion of Pseudomonas aeruginosa and Burkholderia cenocepacia [J]. International Journal of Immunopathology and Pharmacology,2005,18(4):661
    [112]Musk D.J., Banko D.A.Hergenrother P.J. Iron Salts Perturb Biofilm Formation and Disrupt Existing Biofilms of Pseudomonas aeruginosa [J]. Chemistry & Biology,2005,12(7):789-796
    [113]Sriramulu D.D., Lunsdorf H., Lam J.S., et al. Microcolony formation:a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung [J]. Journal of Medical Microbiology,2005, 54(7):667-676
    [114]Chen X.Stewart P. Role of electrostatic interactions in cohesion of bacterial biofilms [J]. Applied Microbiology and Biotechnology,2002,59(6):718-720
    [115]Yang L., Barken K.B., Skindersoe M.E., et al. Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa [J]. Microbiology,2007,153(5):1318-1328
    [116]Singh P.K., Parsek M.R., Greenberg E.P., et al. A component of innate immunity prevents bacterial biofilm development [J]. Nature,2002,417(6888):552-555
    [117]Banin E., Vasil M.L.Greenberg E.P. Iron and Pseudomonas aeruginosa biofilm formation [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(31): 11076-11081
    [118]O'Toole G.A.Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development [J]. Molecular microbiology,1998,30(2):295-304
    [119]Deziel E., Lepine F., Milot S., et al. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa:3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids [J]. Microbiology,2003,149(8):2005-2013
    [120]Kohler T., Curty L.K., Barja F., et al. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili [J]. Journal of bacteriology,2000,182(21): 5990-5996
    [121]Rashid M.H.Kornberg A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa [J]. Proceedings of the National Academy of Sciences,2000, 97(9):4885-4890
    [122]Semmler A.B., Whitchurch C.B., Leech A.J., et al. Identification of a novel gene, fimV, involved in twitching motility in Pseudomonas aeruginosa [J]. Microbiology,2000,146(6):1321-1332
    [123]Rashid M.H., Rumbaugh K., Passador L., et al. Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa [J]. Proceedings of the National Academy of Sciences,2000,97(17):9636-9641
    [124]Bradley D.E. A function of Pseudomonas aeruginosa PAO polar pili:twitching motility [J]. Canadian journal of microbiology,1980,26(2):146-154
    [125]Comolli J.C., Hauser A.R., Waite L., et al. Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia [J]. Infection and immunity,1999,67(7):3625-3630
    [126]Patriquin G.M., Banin E., Gilmour C., et al. Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa [J]. Journal of Bacteriology,2008,190(2): 662-671
    [127]Heydorn A., Ersb(?)ll B., Kato J., et al. Statistical analysis of Pseudomonas aeruginosa biofilm development:impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression [J]. Applied and environmental microbiology,2002,68(4): 2008-2017
    [128]Davey M.E.O'toole G.A. Microbial biofilms:from ecology to molecular genetics [J]. Microbiology and Molecular Biology Reviews,2000,64(4):847-867
    [129]Molin S.Tolker-Nielsen T. Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure [J]. Current opinion in biotechnology,2003,14(3): 255-261
    [130]Caiazza N.C., Shanks R.M.Q.O'Toole G. Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa [J]. Journal of Bacteriology,2005,187(21):7351-7361
    [131]Ochsner U.A.Reiser J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa [J]. Proceedings of the National Academy of Sciences of the United States of America,1995,92(14):6424-6428
    [132]O'Toole GA.Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development [J]. Molecular Microbiology,2002,30(2):295-304
    [133]Fraser G.M.Hughes C. Swarming motility [J]. Current Opinion in Microbiology,1999,2(6):630-635
    [134]Rather P.N. Swarmer cell differentiation in Proteus mirabilis [J]. Environmental Microbiology,2005, 7(8):1065-1073
    [135]Overhage J., Lewenza S., Marr A.K., et al. Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library [J]. Journal of Bacteriology, 2007,189(5):2164-2169
    [136]孙玮洁,王媛,沈立新,et al.铜绿假单胞菌群体感应抑制物筛选系统的构建及其应用[J].生物工程学报,2009,25(8):1173-1179
    [137]Conly J. Antimicrobial resistance in Canada [J]. Canadian Medical Association Journal,2002,167(8): 885-891
    [138]Juan C, Macia M.D., Gutierrez O., et al. Molecular mechanisms of beta-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains [J]. Antimicrob Agents Chemother,2005,49(11):4733-8
    [139]Levy R., Hindley D., Burman R., et al. Unusual cause of pseudomonal infection [J]. BMJ:British Medical Journal,1995,310(6974):258
    [140]Liao X.Hancock R. Cloning and characterization of the Pseudomonas aeruginosa pbpB gene encoding penicillin-binding protein 3 [J]. Antimicrobial agents and chemotherapy,1995,39(8): 1871-1874
    [141]Lin J.T., Connelly M.B., Amolo C., et al. Global transcriptional response of Bacillus subtilis to treatment with subinhibitory concentrations of antibiotics that inhibit protein synthesis [J]. Antimicrobial Agents and Chemotherapy,2005,49(5):1915-1926
    [142]Mesaros N., Glupczynski Y., Avrain L., et al. A combined phenotypic and genotypic method for the detection of Mex efflux pumps in Pseudomonas aeruginosa [J]. Journal of Antimicrobial Chemotherapy,2007,59(3):378-386
    [143]Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms [J]. Journal of Molecular Microbiology and Biotechnology,2001,3(2):255-264
    [144]Westbrock-Wadman S., Sherman D.R., Hickey M.J., et al. Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability [J]. Antimicrobial agents and chemotherapy,1999,43(12):2975-2983
    [145]Zhao Q., Li X.-Z., Mistry A., et al. Influence of the TonB energy-coupling protein on efflux-mediated multidrug resistance in Pseudomonas aeruginosa [J]. Antimicrobial agents and chemotherapy,1998, 42(9):2225-2231
    [146]Costerton J.W., Lewandowski Z., Caldwell D.E., et al. Microbial biofilms [J]. Annual Reviews in Microbiology,1995,49(1):711-745
    [147]Bagge N., Schuster M., Hentzer M., et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-lactamase and alginate production [J]. Antimicrobial agents and chemotherapy,2004,48(4):1175-1187
    [148]Marshall P., Loeb G., Cowan M., et al. Response of microbial adhesives and biofilm matrix polymers to chemical treatments as determined by interference reflection microscopy and light section microscopy [J]. Applied and Environmental Microbiology,1989,55(11):2827-2831
    [149]Williams P., Winzer K., Chan W.C., et al. Look who's talking:communication and quorum sensing in the bacterial world [J]. Philosophical Transactions of the Royal Society B:Biological Sciences,2007, 362(1483):1119-1134
    [150]Juhas M., Eberl L.Tummler B. Quorum sensing:the power of cooperation in the world of Pseudomonas [J]. Environmental microbiology,2005,7(4):459-471
    [151]Wade D.S., Calfee M.W., Rocha E.R., et al. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa [J]. Journal of bacteriology,2005,187(13):4372-4380
    [152]Whiteley M., Lee K.M.Greenberg E. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa [J]. Proceedings of the National Academy of Sciences,1999,96(24): 13904-13909
    [153]Deziel E., Gopalan S., Tampakaki A.P., et al. The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation:multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones [J]. Molecular microbiology,2004,55(4):998-1014
    [154]Xiao G., Deziel E., He J., et al. MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands [J]. Molecular microbiology,2006,62(6):1689-1699
    [155]Ventre I., Ledgham F., Prima V., et al. Dimerization of the quorum sensing regulator RhlR: development of a method using EGFP fluorescence anisotropy [J]. Molecular microbiology,2003, 48(1):187-198
    [156]Wu H., Song Z., Givskov M., et al. Pseudomonas aeruginosa mutations in lasI and rhll quorum sensing systems result in milder chronic lung infection [J]. Microbiology,2001,147(5):1105-1113
    [157]Rasmussen T.B.Givskov M. Quorum sensing inhibitors:a bargain of effects [J]. Microbiology.2006, 152(4):895-904
    [158]Diggle S.P., Cornelis P., Williams P., et al.4-quinolone signalling in Pseudomonas aeruginosa:old molecules, new perspectives [J]. International Journal of Medical Microbiology,2006,296(2-3):83
    [159]Williams P., Winzer K., Chan W.C., et al. Look who's talking:communication and quorum sensing in the bacterial world [J]. Philosophical Transactions of the Royal Society of B:Biological Sciences,2007, 362(1483):1119-1134
    [160]Pesci EC, Milbank JB, Pearson JP, et al. Quinolone signaling inthe cell-to-cell communication system of Pseudomonasn aeruginosa. [J]. P Natl Acad Sci USA 96:11229-11234,1999(96:11229-11234):
    [161]Gallagher L.A., McKnight S.L., Kuznetsova M.S., et al. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa [J]. Journal of bacteriology,2002,184(23): 6472-6480
    [162]Coleman J.P., Hudson L.L., McKnight S.L., et al. Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase [J]. Journal of Bacteriology,2008,190(4):1247-1255
    [163]D'Argenio D.A., Calfee M., Rainey P.B., et al. Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants [J]. Journal of bacteriology,2002,184(23):6481-6489
    [164]D'Argenio D.A., Wu M., Hoffman L.R., et al. Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients [J]. Molecular Microbiology,2007,64(2): 512-533
    [165]Whitchurch C.B., Beatson S.A., Comolli J.C., et al. Pseudomonas aeruginosa fimL regulates multiple virulence functions by intersecting with Vfr-modulated pathways [J]. Molecular Microbiology,2005, 55(5):1357-1378
    [166]Cao H., Krishnan G., Goumnerov B., et al. A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism [J]. Proceedings of the National Academy of Sciences,2001,98(25):14613-14618
    [167]Xiao G., Deziel E., He J., et al. MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands [J]. Molecular microbiology,2006,62(6):1689-1699
    [168]Yu S., Jensen V., Seeliger J., et al. Structure elucidation and preliminary assessment of hydrolase activity of PqsE, the Pseudomonas quinolone signal (PQS) response protein [J]. Biochemistry,2009, 48(43):10298-10307
    [169]Farrow III J.M., Sund Z.M., Ellison M.L., et al. PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system [J]. Journal of bacteriology,2008, 190(21):7043-7051
    [170]Deziel E., Lepine F., Milot S., et al. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(5):1339-1344
    [171]Xiao G., He J.Rahme L.G. Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry [J]. Microbiology,2006,152(6): 1679-1686
    [172]Diggle S.P., Lumjiaktase P., Dipilato F., et al. Functional Genetic Analysis Reveals a 2-Alkyl-4-Quinolone Signaling System in the Human Pathogen Burkholderia pseudomallei and Related Bacteria [J]. Chemistry & biology,2006,13(7):701-710
    [173]Bredenbruch F., Geffers R., Nimtz M., et al. The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity [J]. Environmental Microbiology,2006,8(8):1318-1329
    [174]Tashiro Y., Ichikawa S., Nakajima-Kambe T., et al. Pseudomonas quinolone signal affects membrane vesicle production in not only Gram-negative but also Gram-positive bacteria [J]. Microbes and Environments,2008,25(2):120-125
    [175]Blondeau J.M. Fluoroquinolones:mechanism of action, classification, and development of resistance [J]. Survey of Ophthalmology,2004,49(2):S73-S78
    [176]Haussler S.Becker T. The pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations [J]. PLoS pathogens,2008,4(9):e1000166
    [177]付秀花,王恬顾宏伟.中草药的免疫增强作用[J].畜牧与兽医,2002,34(8):40-43
    [178]程远芳,宋代军.中草药的免疫增强机理[J].中国饲料,2004,7:26-28
    [179]王瑞君.几种中草药对金黄色葡萄球菌体外抑制作用的研究[J].现代食品科技,2009,25(9):1104-1106
    [180]Jing L., Li J., Yang L., et al国内抗菌中药的研究进展及前景[J].内蒙古中医药,2009,28(24):
    [181]Rogers B. Bacterial targets to antimicrobial leads and development candidates [J]. Current Opinion in Drug Discovery & Development,2004,7(2):211
    [182]Liang H., Li L., Kong W., et al. Identification of a novel regulator of the quorum-sensing systems in Pseudomonas aeruginosa [J]. FEMS microbiology letters,2009,293(2):196-204
    [183]Pearson J.P., Pesci E.C.Iglewski B.H. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes [J]. Journal of bacteriology,1997, 179(18):5756-5767
    [184]Brint J.M.Ohman D.E. Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family [J]. Journal of Bacteriology,1995,177(24):7155-7163
    [185]Duan K., Dammel C., Stein J., et al. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication [J]. Molecular microbiology,2003,50(5):1477-1491
    [186]Duan K.Surette M.G. Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems [J]. Journal of bacteriology,2007,189(13):4827-4836
    [187]Rashid M.H.Kornberg A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa [J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(9):4885-4890
    [188]Chugani S.A., Whiteley M., Lee K.M., et al. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa [J]. Proceedings of the National Academy of Sciences, 2001,98(5):2752-2757
    [189]Bjarnsholt T., van Gennip M., Jakobsen T.H., et al. In vitro screens for quorum sensing inhibitors and in vivo confirmation of their effect [J]. Nature Protocols,2010,5(2):282-293
    [190]Johansen H.K., Espersen F., PEDERSEN S.S., et al. Chronic Pseudomonas aeruginosa lung infection in normal and athymic rats [J]. Apmis,1993,101(1-6):207-225
    [191]Johansen H.K., Espersen F., Cryz S., et al. Immunization with Pseudomonas aeruginosa vaccines and adjuvant can modulate the type of inflammatory response subsequent to infection [J]. Infection and immunity,1994,62(8):3146-3155
    [192]Pesci E.C., Milbank J.B., Pearson J.P., et al. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa [J]. Proceedings of the National Academy of Sciences,1999, 96(20):11229-11234
    [193]Heurlier K., Williams F., Heeb S., et al. Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1 [J]. Journal of bacteriology,2004,186(10):2936-2945
    [194]Mulcahy H., O'Callaghan J., O'Grady E.P., et al. The posttranscriptional regulator RsmA plays a role in the interaction between Pseudomonas aeruginosa and human airway epithelial cells by positively regulating the type Ⅲ secretion system [J]. Infection and immunity,2006,74(5):3012-3015
    [195]Deziel E., Gopalan S., Tampakaki A.P., et al. The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation:multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-omoserine lactones [J]. Molecular microbiology,2004,55(4):998-1014
    [196]Diggle S.P., Lumjiaktase P., Dipilato F., et al. Functional Genetic Analysis Reveals a 2-Alkyl-4-Quinolone Signaling System in the Human Pathogen Burkholderia pseudomallei and Related Bacteria [J]. Chemistry & biology,2006,13(7):701-710
    [197]Overhage J., Lewenza S., Marr A.K., et al. Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library [J]. Journal of Bacteriology, 2007,189(5):2164-2169
    [198]Bacalso M., Xu T., Yeung K., et al. Biofilm Formation of Pseudomonas aeruginosa PA14 Required lasl and was Stimulated by the Pseudomonas Quinolone Signal although Salicylic Acid Inhibition is Independent of the pqs Pathway [J]. Journal of Experimental Microbiology and Immunology,2011,15: 84-89
    [199]Goure J., Pastor A., Faudry E., et al. The V antigen of Pseudomonas aeruginosa is required for assembly of the functional PopB/PopD translocation pore in host cell membranes [J]. Infection and immunity,2004,72(8):4741-4750
    [200]Sawa T., Yahr T.L., Ohara M., et al. Active and passive immunization with the Pseudomonas V antigen protects against type Ⅲ intoxication and lung injury [J]. Nature medicine,1999,5(4):392-398
    [201]Holder I.A., Neely A.N.Frank D.W. PcrV immunization enhances survival of burned Pseudomonas aeruginosa-infected mice [J]. Infection and immunity,2001,69(9):5908-5910
    [202]Baer M., Sawa T., Flynn P., et al. An engineered human antibody fab fragment specific for Pseudomonas aeruginosa PcrV antigen has potent antibacterial activity [J]. Infection and immunity, 2009,77(3):1083-1090
    [203]Givskov M., de Nys R., Manefield M., et al. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling [J]. Journal of Bacteriology,1996,178(22):6618-6622
    [204]Wu H., Song Z., Hentzer M., et al. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice [J]. Journal of antimicrobial chemotherapy,2004,53(6):1054-1061
    [205]Rasmussen T.B., Skindersoe M.E., Bjarnsholt T., et al. Identity and effects of quorum-sensing inhibitors produced by Penicillium species [J]. Microbiology,2005,151(5):1325-1340
    [206]Skindersoe M.E., Ettinger-Epstein P., Rasmussen T.B., et al. Quorum sensing antagonism from marine organisms [J]. Marine Biotechnology,2008,10(1):56-63
    [207]Bjarnsholt T., Jensen P.O., Rasmussen T.B., et al. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections [J]. Microbiology,2005,151(12): 3873-3880
    [208]Rasmussen T.B., Bjarnsholt T., Skindersoe M.E., et al. Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector [J]. Journal of bacteriology,2005,187(5): 1799-1814
    [209]Murugan K., Selvanayaki K.Al-Sohaibani S. Antibiofilm activity of Andrographis paniculata against cystic fibrosis clinical isolate Pseudomonas aeruginosa [J]. World Journal of Microbiology and Biotechnology,2011,27(7):1661-1668
    [210]Krishnan T., Yin W.F.Chan K.G. Inhibition of Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas aeruginosa PAO1 by Ayurveda Spice Clove (Syzygium Aromaticum) bud extract [J]. Sensors,2012,12(4):4016-4030
    [211]Skindersoe M.E., Alhede M., Phipps R., et al. Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa [J]. Antimicrobial agents and chemotherapy,2008,52(10):3648-3663
    [212]Yang L., Rybtke M.T., Jakobsen T.H., et al. Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors [J]. Antimicrobial agents and chemotherapy, 2009,53(6):2432-2443
    [213]Wilson R., Pitt T., Taylor G., et al. Pyocyanin and 1-hydroxyphenazine produced by Pseudomonas aeruginosa inhibit the beating of human respiratory cilia in vitro [J]. Journal of Clinical Investigation, 1987,79(1):221
    [214]Allen L., Dockrell D.H., Pattery T., et al. Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo [J]. The Journal of Immunology,2005,174(6):3643-3649
    [215]Yoshino M.Murakami K. Interaction of iron with polyphenolic compounds:application to antioxidant characterization [J]. Analytical biochemistry,1998,257(1):40-44
    [216]LIU I.X., DURHAM D.G.RICHARDS R.M.E. Baicalin Synergy with β-actam Antibiotics Against Methicillin-resistant Staphylococcus aureus and Other β-Lactam-resistant Strains of S. aureus [J]. Journal of pharmacy and pharmacology,2000,52(3):361-366
    [217]Fernandez-Pinar R., Camara M., Dubern J.-F., et al. The Pseudomonas aeruginosa quinolone quorum sensing signal alters the multicellular behaviour of Pseudomonas putida KT2440 [J]. Research in Microbiology,2011,162(8):773-781
    [218]Mahajan-Miklos S., Tan M.-W., Rahme L.G., et al. Molecular Mechanisms of Bacterial Virulence Elucidated Using a Pseudomonas aeruginosa-Caenorhabditis elegans Pathogenesis Model [J]. Cell, 1999,96(1):47-56
    [219]Semighini C.P., Hornby J.M., Dumitru R., et al. Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi [J]. Molecular Microbiology, 2005,59(3):753-764
    [220]Brehm-Stecher B.F.Johnson E.A. Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone [J]. Antimicrobial Agents and Chemotherapy,2003,47(10):3357-3360
    [221]Jabra-Rizk M., Meiller T., James C., et al. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility [J]. Antimicrobial Agents and Chemotherapy,2006,50(4): 1463-1469
    [222]Mattick J.S. Type IV pili and twitching motility [J]. Annual Reviews in Microbiology,2002,56(1): 289-314
    [223]McKnight S.L., Iglewski B.H.Pesci E.C. The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa [J]. Journal of bacteriology,2000,182(10):2702-2708
    [224]Petrova O.E.Sauer K. SagS contributes to the motile-sessile switch and acts in concert with BfiSR to enable Pseudomonas aeruginosa biofilm formation [J]. Journal of Bacteriology,2011,193(23): 6614-6628
    [225]Petrova O.E.Sauer K. A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development [J]. PLoS Pathogens,2009,5(11):e1000668

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700