用户名: 密码: 验证码:
新生猪Sertoli细胞在胰岛移植中的免疫保护作用及其免疫豁免机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分新生猪Sertoli细胞在Wistar大鼠肾包膜下存活的实验研究
     【目的】在不使用任何免疫抑制剂和不进行任何免疫保护干预的措施下,探讨新生猪Sertoli细胞(NPSCs)在Wistar大鼠肾包膜下的生存状态并初步研究其自身免疫豁免机制,为NPSCs与胰岛细胞共同移植的应用奠定理论基础。
     【方法】体外分离培养10~15日龄的湖北白猪睾丸Sertoli细胞即NPSCs;该细胞体外培养3天后,应用RT-PCR检测Sox9和FasL的表达;同时将1.5×10~6个NPSCs移植入正常Wistar大鼠左肾包膜下,术后分别在第3、7、14、21和40天切取Wistar大鼠左侧肾脏,采用RT-PCR和免疫组化染色检测肾包膜下移植的NPSCs特异性标记Sox9的表达。
     【结果】每个新生猪睾丸可以获得5.68±1.75×10~7个NPSCs,占培养细胞总数的90%左右,活性达95%;体外分离培养的NPSCs能够稳定表达其特异性标记因子Sox9,但FasL几乎不表达。1.5×10~6个NPSCs移植入Wistar大鼠左肾包膜下第3、7、14和21天后,RT-PCR证实肾包膜下的移植物内有大量猪Sox9表达,Sox9免疫组化染色亦表明肾包膜下有成团聚集的Sox9阳性细胞;但是移植后第40天时,RT-PCR证实肾包膜下移植物内的猪Sox9表达明显减弱,同时免疫组化表明成团聚集的Sox9阳性细胞团明显减少,NPSCs仅散在存在。
     【结论】在不使用任何免疫抑制剂和不进行任何免疫保护干预的措施下,NPSCs在Wistar大鼠肾包膜下可以存活21天以上,但移植后40天时存活的NPSCs数量明显减少,其免疫豁免机制与FasL的作用无关。
     第二部分SD大鼠胰岛分离纯化及Wistar大鼠化学性糖尿病模型的建立
     【目的】优化Shapiro的胰岛细胞分离方法,分离纯化Sprague Dawley(SD)大鼠胰岛细胞;建立Wistar大鼠化学性糖尿病模型,为胰岛细胞移植研究奠定技术支持。
     【方法】采用含7.5mmol/LCa~(2+)的1mg/L的V型胶原酶胰管逆行灌注胰腺、37℃静止消化,Ficoll 400不连续密度梯度离心纯化的方法,分离培养SD大鼠胰岛细胞;培养的胰岛细胞经双硫腙(dithizon,DTZ)染色鉴定,ELISA葡萄糖刺激实验检测分离培养的胰岛细胞功能;200mg/kg的四氧嘧啶一次性腹腔注射诱导Wistar大鼠化学性糖尿病模型,连续两次非空腹血糖≥22mmol/L视为造模成功。
     【结果】每只大鼠可获得520±30个胰岛当量(islets equivalent quantity,IEQ)的胰岛细胞,DTZ染色鉴定后见胰岛细胞纯度达80%,手检后纯度达90%以上;Wistar大鼠腹腔注射四氧嘧啶后,第3和7天非空腹血糖均大于22mmol/L,并且出现多饮、多尿、体重下降等糖尿病症状,造模成功率达85%。
     【结论】经优化后的分离方法更加简捷并获得了纯度较高、大量的大鼠胰岛细胞;通过单次腹腔注射四氧嘧啶能够稳定、高效的诱导大鼠化学性糖尿病模型。
     第三部分联合移植异种新生猪Sertoli细胞延长大鼠同种异体胰岛移植存活
     【目的】探讨异种NPSCs在大鼠同种异体胰岛细胞移植中的免疫保护作用及潜在的免疫豁免机制,为NPSCs在临床同种异体胰岛移植的应用奠定理论基础。
     【方法】在上述第一、二部分的实验基础上,建立SD大鼠→Wistar糖尿病受鼠的同种异体胰岛移植模型。实验分组如下:①单纯胰岛细胞移植组(n=8),1500 IEQ的SD大鼠胰岛细胞移植入Wistar糖尿病大鼠左肾包膜下;②小量NPSCs与胰岛细胞同侧移植组(n=8),1.5×10~6个NPSCs与1500 IEQ的SD大鼠胰岛细胞共同移植入糖尿病Wistar大鼠左肾包膜下;③大量NPSCs与胰岛细胞同侧移植组(n=8),1.0×10~7个NPSCs与1500 IEQ的SD大鼠胰岛细胞共同移植入糖尿病Wistar大鼠左肾包膜下;④大量NPSCs与胰岛细胞分侧移植组(n=5),1.0×10~7个NPSCs移植入Wistar糖尿病大鼠右肾包膜下,同时将1500 IEQ的SD大鼠胰岛细胞移植入另一侧左肾包膜下;术后观察Wistar糖尿病大鼠血糖变化,血糖连续2次≥11.2mmol/L时视为胰岛细胞发生排斥;术后7天或移植物发生排斥时,免疫病理学比较肾包膜下淋巴细胞浸润情况并检测胰岛细胞特异性标记物Insulin、NPSCs特异性标记因子Sox9和保护性基因Bcl-2、HO-1的表达。
     【结果】1.5×10~6个NPSCs与1500 IEQ胰岛细胞共同移植入受鼠左肾包膜后,胰岛移植物平均存活时间仅稍微延长到8.33±0.58天;当同侧共同移植的NPSCs增加到1.0×10~7个时,胰岛移植物平均存活时间显著延长到16.33±1.53天,与单纯胰岛移植组(5.67±0.94天)相比,差异有显著意义(P<0.01);但是将1.0×10~7个NPSCs移植入受体鼠右肾,同时将1500 IEQ胰岛细胞移植入另一侧即左肾后,胰岛移植物平均存活时间未见明显延长(5.25±0.25天),与单纯胰岛移植组相比差异无显著意义(P>0.05)。大量NPSCs与胰岛细胞同侧移植组在移植术后7天,与单纯胰岛移植组相比,免疫组化可见,肾包膜炎症反应轻微,淋巴细胞散在浸润且局限在肾包膜下,包膜内可见呈团块状排列的细胞团,经Sox9免疫组化染色证实该细胞团即为移植的NPSCs;Insulin染色可见肾包膜下有大量的胰岛细胞存在;此外免疫组化还证实,大量NPSCs组肾包膜下有大量Bcl-2保护性基因的表达,但HO-1在各组间均有表达。
     【结论】足量NPSCs对共同移植的大鼠胰岛细胞具有局部的免疫学保护作用,并显著延长大鼠胰岛细胞在同种异体肾包膜下的存活时间;其机制可能与NPSCs在局部诱导保护性基因Bcl-2表达上调有关,而与FasL的作用无关。NPSCs和胰岛细胞不同部位移植则无保护作用。
     第四部分新生猪Sertoli细胞抵御人血清中天然抗体介导的补体杀伤作用
     【目的】探讨异种NPSCs抵御人血清中天然抗体介导的补体杀伤作用及其主要机制,为NPSCs与胰岛细胞联合移植的临床应用奠定理论基础。
     【方法】以永生化猪血管内皮细胞系(SV40-PED)作为对照,FITC-GS-IB4 lectin染色流式细胞仪(FACS)及免疫荧光检测并比较NPSCs与SV40-PED天然抗原α-Gal的表达;FACS检测并比较2种细胞分别与正常人血清(normal human serum,NHS)中天然抗体IgM、IgG的结合情况;乳酸脱氢酶释放试验(LDH法)检测20%NHS对NPSCs及SV40-PED细胞的杀伤;MTT法检测两种细胞在20%NHS中培养时的活性;细胞免疫荧光检测补体C3c、C4d在NPSCs、SV40-PED的沉积;细胞免疫组化及免疫荧光检测补体攻膜复合物C5b-9在2种细胞上的沉积。Western blot检测并比较2种细胞clusterin的表达;RT-PCR检测并比较两种细胞补体调节蛋白CD46、CD59的表达。
     【结果】NPSCs能够表达α-Gal,但明显弱于SV40-PED(平均荧光强度分别为41.78±2.39和95.17±2.39,P<0.05);NPSCs虽可与人血清中天然抗体IgG、IgM结合,但其结合程度明显弱于SV40-PED;20%NHS对NPSCs、SV40-PED的杀伤率分别为24.38%±0.50%和53.13%±14.53%(P<0.01);2种细胞在20%NHS中的活性分别为:98.73%±18.84%和52.43%±8.08%(P<0.01);免疫荧光及组化可见SV40-PED细胞上分别有补体C3c、C4d和C5b-9的沉积;但NPSCs仅有C3c和C4d沉积,而未见C5b-9沉积;Western blot证明,clusterin在NPSCs的表达略强于SV40-PED;RT-PCR证实,NPSCs表达的CD59显著强于SV40-PED,而CD46在此两种细胞的表达无明显差异。
     【结论】NPSCs可以显著抵御人血清中天然抗体介导的杀伤作用,其机制可能与NPSCs低表达α-Gal导致其与天然抗体结合较少并高表达clusterin及CD59等补体调节蛋白从而抑制补体攻膜复合物形成有关。
PartⅠNeonatal Porcine Sertoli cells Survival in Non-immunosuppressiveWistar Rats
     【Objective】Evaluate neonatal porcine Sertoli cells (NPSCs) survival in thenon-immunosuppressive Wsitar rats and investigate its mechanism.
     【Methods】Neonatal porcine Sertoli cells were isolated from 10 to 15 daysold male largewhite pigs.The isolated NPSCs were cultured for 3 days before testing for Sox9 and FasLby RT-PCR (reverse transcription polymerase chain reaction,RT-PCR) and using fortransplantation.1.5×10~6 of NPSCs alone were implanted under the left renal capsule of each Wistar rat in the absence of immunosuppression.The xenograft-bearing kidneys wereharvested at 3,7,14,21,and 40 days post-transplant and then examined the expression ofSox9 with the immunochemistry and RT-PCR.
     【Results】With Sox9 immunostaining,about 5.68±1.75×10~7 NPSCs were obtained fromeach testes which represented more than 90% of the total isolated cells.Interestingly,FasLwhich was thought to confer Sertoli cells immunological privilege was almost negative.After transplantation,both immunochemistry and RT-PCR indicated that Sox9 in graftscould be detected at 3,7,14,and 21 days post-transplant,however,it was nearly negative at40 days post-transplant.
     【Conclusion】Neonatal porcine Sertoli cells could survive more than 21 days but less than40 days in non-immunosuppressive Wsitar rats.FasL did not contribute to theimmunoprotection provided by NPSCs.
     PartⅡIsolation Islets of SD Rats and Induction Chemically DiabeticModel in Wistar Rats
     【Objective】To isolate islets of SD rats with optimized Shapiro methods and inducechemically diabetes in Wistar rats.
     【Methods】Islets were isolated from SD rats with 1 mg/ml collagenase type V contained7.5mmol/L Ca~(2+) digestion,and then purified by Ficoll 400 discontinuous density gradientcentrifugation.DTZ staining was used to identify the isolated islets.Wistar rats wererendered diabetic with alloxan at a dose of 200mg/kg by intraperitoneal injection.Onlythose animals exhibiting two consective non-fasting blood glucose values≥22mmol/Lwere considered as diabetes.
     【Results】About 520±30 IEQ islets were obtained from each rats by our optimizedmethods.With DTZ staining identification,the islets were represented more than 80% of the isolated cells.After hand-picked,the purity of islets would be more than 90%.Almost85% Wistar rats with alloxan adimistration were induced into diabetes mellitus.
     【Conclusion】An enrich fraction islets were efficiallyand conveniently obtained with ouroptimized digestion methods.A single intraperitoneal injection of alloxan could stablyinduce chemically diabetes in Wistar rats.
     PartⅢCotransplantation with Xeno-neonatal Porcine Sertoli cellsSignificantly Prolongs Islet AIIograft Survival inNon-immunosuppressive Rats
     【Objective】To investigate neonatl porcine Sertoli cells protect islet allograft survival innon-immunosuppressive rats and its mechanisms.
     【Methods】Diabetic Wistar recipient rats were divided into follow groups.Group 1 (n=8),1500 IEQ SD islets alone was implantated under the left renal capsule of recipient.Group 2(n=8),1500 IEQ SD islets in combination with 1.5×10~6NPSCs were implanted under theleft renal capsule of recipient.Group 3 (n=8),1500 IEQ SD islets with 1.0×10~7NPSCs wereco-transplanted under the left renal capsule of recipient.Group 4 (n=5),1500 IEQ SD isletswere implanted under the left renal capsule and 1×107 of NPSCs were transplanted underthe right renal capsule of the same recipient rat.Blood samples were obtained from the tailvein of non-fasted animals for glucose assay.Graft-bearing kidneys (n=3) were harvested atthe time of rejection (return to hyperglycemia,two consecutive readings of≥11.2mmol/Lor at 7 days post transplant,and then analysis the pathology and expression of Sox9,insulin,Bcl-2 and HO-1.
     【Results】Although in combination with 1.5×10~6NPSCs,mean graft survival times were8.33±0.58 days,while co-transplanted with 1.0×10~7NPSCs,mean graft survival timessignificantly increased to 16.33±1.53 days (P<0.05 vs.islet alone,5.67±0.94 days). However,when 1,500 IEQ SD islets and 1.0×10~7NPSCs were transplanted seperately tothe different site of the same recipient,mean survival time,was only 5.25±0.5 days( P>0.05 vs.islets alone).With the immunopathology analysis,augmented islet survival wasassociated with reduced lymphocytic infiltrate as well as elevated numbers of sox9 positivecells and induced expression of Bcl-2 in transplanted sites.
     【Conclusion】Enough neonatl porcine Sertoli cells prolonged islet allograft survival innon-immunosuppressive rats with induced expression of Bcl-2 in local.
     PartⅣResistance of Neonatal Porcine Sertoli cells to Xeno-antibodiesMediated Complement Lysis
     【Objective】To invesitigate whether neonatal porcine Sertoli cells could protectthemselves from humoral injury mediated by xenoreactive antibodies and complement.
     【Methods】The SV40-PED was served as control cells.α-Gal expression of NPSCs wasmeasured FACS and immunofluorescence with FITC-GS-IB4 staing.The binding of humanserum IgG and IgM with NPSCs was assayed by FACS.After the incubation of NPSCswith 20% human B serum in vitro,the cellular lysis and viability assay were detected withLDH assay and MTT method,and then activation of the complement cascade (C3,C4,andC5b-9) was examined by immunohistochemistry and immunofluorescence.Western blotwere used to examine the expression of clusterin on the two cells,then CD59 and CD46were detected by RT-PCR.
     【Results】α-Gal expression was found on NPSCs,however,its mean fluorescenceintensity (MFI) was only 41.78±2.39 (P<0.01 vs.SV40-PED,95.17±2.39).Both of the twocells could bind with the IgG,IgM,however,MFI of IgM and IgG bind with NPSCs wassignificantly lower than SV40-PED.After incubation with 20% human serum,cellular lysisratio of the NPSCs was significantly lower than SV40-PED (24.38%±0.50% vs 53.13%±14.53%,P<0.01) and the viability of NPSCs and SV40-PED were98.73%±18.84% and 52.43%±8.08%,P<0.01,respectively.With immunohistochemistryand immunofluorescence analysis,C3 and C4 were found binding on both the NPSCs andSV40-PED cells,however,C5b-9 was only detected on SV40-PED cells.Additionally'compared with SV40-PED,expression of clusterin and CD59 on NPSCs tends to increasedby western blot or RT-PCR,however,expression of CD46 has no difference.
     【Conclusion】NPSCs could survive and resist xenoreactive antibodies mediatedcomplement lysis in vitro by prevent the complement attack complex formation.This mayassociate with NPSCs expressed low level ofα-Gal,and then lead to lower binding of thexenoreactive antibodies,and also expressed higher level of clusterin and CD59.
引文
1.Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC. A role for CD95 ligand in preventing graft rejection. Nature 1995; 377 (6550): 630.
    2.Cupp AS, Kim G, Skinner MK. Expression and action of transforming growth factor beta (TGFbetal,TGFbeta2, and TGFbeta3) during embryonic rat testis development.Biol Reprod 1999; 60 (6): 1304.
    3.Suarez-Pinzon W, Korbutt GS, Power R, Hooton J, Rajotte RV, Rabinovitch A.Testicular sertoli cells protect islet beta-cells from autoimmune destruction in NOD mice by a transforming growth factor-betal -dependent mechanism. Diabetes 2000; 49(11): 1810.
    4.Bailey R, Griswold MD. Clusterin in the male reproductive system: localization and possible function. Mol Cell Endocrinol 1999; 151 (1-2): 17.
    5.Selawry HP, Cameron DF. Sertoli cell-enriched fractions in successful islet cell transplantation. Cell Transplant 1993; 2 (2): 123.
    6.Korbutt GS, Elliott JF, Rajotte RV. Cotransplantation of allogeneic islets with allogeneic testicular cell aggregates allows long-term graft survival without systemic immunosuppression. Diabetes 1997; 46 (2): 317.
    7.胡枫,尹注增,王璐等.猪睾丸Sertoli细胞的分离、培养及其免疫豁免相关细胞因子的检测.中华器官移植杂志2008; 29 (9): 522.
    8.Yin ZZ, Xie L, Zeng MH, et al. Sertoli cells induce xenolymphocyte apoptosis in vitro.Transplant Proc 2006; 38 (10): 3309.
    9.Morais da Silva S, Hacker A, Harley V, Goodfellow P, Swain A, Lovell-Badge R. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet 1996; 14 (1): 62.
    10.Kent J, Wheatley SC, Andrews JE, Sinclair AH, Koopman P. A male-specific role for SOX9 in vertebrate sex determination. Development 1996; 122 (9): 2813.
    11. Koopman P. Sry and Sox9: mammalian testis-determining genes. Cell Mol Life Sci 1999; 55 (6-7): 839.
    12. Frojdman K, Harley VR, Pelliniemi LJ. Sox9 protein in rat sertoli cells is age and stage dependent. Histochem Cell Biol 2000; 113 (1): 31.
    13. Hemendinger RA, Gores P, Blacksten L, Harley V, Halberstadt C. Identification of a specific Sertoli cell marker, Sox9, for use in transplantation. Cell Transplant 2002; 11 (6): 499.
    14. Dufour JM, Rajotte RV, Seeberger K, Kin T, Korbutt GS. Long-term survival of neonatal porcine Sertoli cells in non-immunosuppressed rats. Xenotransplantation 2003; 10 (6):577.
    15. Lee HM, Oh BC, Yang JH, et al. Age-dependent expression of immune-privilege and proliferation-related molecules on porcine Sertoli cells. Xenotransplantation 2006; 13 (1): 69.
    1.Sievenpiper JL, Jenkins AL, Whitham DL, Vuksan V. Insulin resistance: concepts,controversies, and the role of nutrition. Can J Diet Pract Res 2002; 63 (1): 20.
    2.Becker BN, Odorico JS, Becker YT, et al. Simultaneous pancreas-kidney and pancreastransplantation. J Am Soc Nephrol 2001;12 (11): 2517.
    3.Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients withtype 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. NEngl J Med 2000; 343 (4): 230.
    4.Lacy PE, Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 1967; 16 (1): 35.
    5.Thomas FT, Hutchings A, Contreras J, et al. Islet transplantation in the twenty-first century. Immunol Res 2002; 26 (1-3): 289.
    6.Berney T, Buhler L, Caulfield A, et al. Transplantation of islets of Langerhans: new developments. Swiss Med Wkly 2001;131 (47-48): 671.
    7.Ryan EA, Paty BW, Senior PA, et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005; 54 (7): 2060.
    8.Shapiro AM, Hao E, Rajotte RV, Kneteman NM. High yield of rodent islets with intraductal collagenase and stationary digestion--a comparison with standard technique Cell Transplant 1996; 5 (6): 631.
    9.Saudek F, Cihalova E, Karasova L. Islet yield and early function in rat-to-mouse transplantation using different types of collagenase. Transplant Proc 1997; 29 (4):1963.
    10.Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabet Med 2005; 22 (4): 359.
    11.叶燕丽,王辉云,王莲桂,等.四氧嘧啶制作糖尿病模型.实验动物科学与管理2001;18 (2): 54.
    12.于德民,吴锐,尹潍,等.实验性链脲佐霉素糖尿病动物模型的研究.中国糖尿病杂志1995; 3 (2): 105.
    13.周吉银,周世文.糖尿病大鼠模型研究进展.中华中医药学刊2007; 25 (3): 533.
    14.张均田.现代药理学实验方法.北京:北京医科大学中国协和医科大学联合出版社,1998.
    1. Berney T, Buhler L, Caulfield A, et al. Transplantation of islets of Langerhans: new developments. Swiss Med Wkly 2001; 131 (47-48): 671.
    2. Thomas FT, Hutchings A, Contreras J, et al. Islet transplantation in the twenty-first century. Immunol Res 2002; 26 (1-3): 289.
    3. Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343 (4): 230.
    4. Ryan EA, Paty BW, Senior PA, et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005; 54 (7): 2060.
    5. Whitmore WF, 3rd, Karsh L, Gittes RF. The role of germinal epithelium and spermatogenesis in the privileged survival of intratesticular grafts. J Urol 1985; 134 (4): 782.
    6. Cameron DF, Whittingtoh K, Schultz RE, Selawry HP. Successful islet/abdominal testis transplantation does not require Leydig cells. Transplantation 1990; 50 (4): 649.
    7. Korbutt GS, Elliott JF, Rajotte RV. Cotransplantation of allogeneic islets with allogeneic testicular cell aggregates allows long-term graft survival without systemic immunosuppression. Diabetes 1997; 46 (2): 317.
    8. Selawry HP, Cameron DF. Sertoli cell-enriched fractions in successful islet cell transplantation. Cell Transplant 1993; 2 (2): 123.
    9. Valdes-Gonzalez RA, Dorantes LM, Garibay GN, et al. Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study. Eur J Endocrinol 2005; 153 (3): 419.
    10. Check E. Diabetes trial stirs debate on safety of xenotransplants. Nature 2002; 419 (6902): 5.
    11. Isaac JR, Skinner S, Elliot R, et al. Transplantation of neonatal porcine islets and sertoli cells into nonimmunosuppressed nonhuman primates. Transplant Proc 2005; 37 (1): 487.
    12. Wang DZ, Skinner S, Elliot R, et al. Xenotransplantation of neonatal porcine islets and Sertoli cells into nonimmunosuppressed streptozotocin-induced diabetic rats. Transplant Proc 2005; 37 (1): 470.
    13. Suarez-Pinzon W, Korbutt GS, Power R, Hooton J, Rajotte RV, Rabinovitch A. Testicular sertoli cells protect islet beta-cells from autoimmune destruction in NOD mice by a transforming growth factor-betal-dependent mechanism. Diabetes 2000; 49 (11): 1810.
    14. Morais da Silva S, Hacker A, Harley V, Goodfellow P, Swain A, Lovell-Badge R. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet 1996; 14 (1): 62.
    15. Kent J, Wheatley SC, Andrews JE, Sinclair AH, Koopman P. A male-specific role for SOX9 in vertebrate sex determination. Development 1996; 122 (9): 2813.
    16. Koopman P. Sry and Sox9: mammalian testis-determining genes. Cell Mol Life Sci 1999; 55 (6-7): 839.
    17. Frojdman K, Harley VR, Pelliniemi LJ. Sox9 protein in rat sertoli cells is age and stage dependent. Histochem Cell Biol 2000; 113 (1): 31.
    18. Hemendinger RA, Gores P, Blacksten L, Harley V, Halberstadt C. Identification of a specific Sertoli cell marker, Sox9, for use in transplantation. Cell Transplant 2002; 11 (6): 499.
    19. Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC. A role for CD95 ligand in preventing graft rejection. Nature 1995; 377 (6550): 630.
    20. Allison J, Georgiou HM, Strasser A, Vaux DL. Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc Natl Acad Sci USA 1997; 94 (8): 3943.
    21. Judge TA, Desai NM, Yang Z, et.al. Utility of adenoviral-mediated Fas ligand gene transfer to modulate islet allograft survival. Transplantation 1998; 66 (4): 426.
    22. Kang SM, Schneider DB, Lin Z, et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat Med 1997; 3 (7): 738.
    23. Korbutt GS, Suarez-Pinzon WL, Power RF, Rajotte RV, Rabinovitch A. Testicular Sertoli cells exert both protective and destructive effects on syngeneic islet grafts in non-obese diabetic mice. Diabetologia 2000; 43 (4): 474.
    1. Ryan EA, Lakey JR, Paty BW, et al. Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes 2002; 51 (7): 2148.
    2. Groth CG Prospects in xenotransplantation: a personal view. Transplant Proc 2007; 39 (3):685.
    3. Logan JS. Prospects for xenotransplantation. Curr Opin Immunol 2000; 12 (5): 563.
    4. Rayat GR, Gill RG Pancreatic islet xenotransplantation: barriers and prospects. Curr Diab Rep 2003; 3 (4): 336.
    5. Valdes-Gonzalez RA, Dorantes LM, Garibay GN, et al. Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study. Eur J Endocrinol 2005; 153 (3): 419.
    6. Manez R, Domenech N, Centeno A, et al. Failure to deplete anti-Galalphal-3Gal antibodies after pig-to-baboon organ xenotransplantation by immunoaffinity columns containing multiple Galalphal-3Gal oligosaccharides. Xenotransplantation 2004; 11 (5): 408.
    7. Dor FJ, Cheng J, Alt A, Cooper DK, Schuurman HJ. Gal alpha 1,3 Gal expression on porcine pancreatic islets, testis, spleen, and thymus. Xenotransplantation 2004; 11 (1): 101.
    8. Lee HM, Oh BC, Lim DP, et al. Establishment and characterization of porcine Sertoli cell line for the study of xenotransplantation. Xenotransplantation 2007; 14 (2): 112.
    9. van den Berg CW, Perez de la Lastra JM, Llanes D, Morgan BP. Purification and characterization of the pig analogue of human membrane cofactor protein (CD46/MCP). J Immunol 1997; 158 (4): 1703.
    10. Perez de la Lastra JM, Harris CL, Hinchliffe SJ, Holt DS, Rushmere NK, Morgan BP. Pigs express multiple forms of decay-accelerating factor (CD55), all of which contain only three short consensus repeats. J Immunol 2000; 165 (5): 2563.
    11. Maher SE, Pflugh DL, Larsen NJ, Rothschild MF, Bothwell AL. Structure/function characterization of porcine CD59: expression, chromosomal mapping, complement-inhibition, and costimulatory activity. Transplantation 1998; 66 (8): 1094.
    12. van den Berg CW, Morgan BP. Complement-inhibiting activities of human CD59 and analogues from rat, sheep, and pig are not homologously restricted. J Immunol 1994; 152 (8): 4095.
    13. Hinchliffe SJ, Rushmere NK, Hanna SM, Morgan BP. Molecular cloning and functional characterization of the pig analogue of CD59: relevance to xenotransplantation. J Immunol 1998; 160 (8): 3924.
    14. Manji RA, Manji JS, Koshal A, Korbutt GS, Rajotte RV. Human ABO blood group is important in survival and function of porcine working hearts. Am J Transplant 2003; 3 (3): 286.
    15. Lin Y, Soares MP, Sato K, et al. Long-term survival of hamster hearts in presensitized rats. J Immunol 2000; 164 (9): 4883.
    16. Dufour JM, Rajotte RV, Korbutt GS, Emerich DF. Harnessing the immunomodulatory properties of Sertoli cells to enable xenotransplantation in type I diabetes. Immunol Invest 2003; 32 (4): 275.
    17. Oriol R, Ye Y, Koren E, Cooper DK. Carbohydrate antigens of pig tissues reacting with human natural antibodies as potential targets for hyperacute vascular rejection in pig-to-man organ xenotransplantation. Transplantation 1993; 56 (6): 1433.
    18. McKenzie IF, Xing PX, Vaughan HA, Prenzoska J, Dabkowski PL, Sandrin MS. Distribution of the major xenoantigen (gal (alpha 1-3)gal) for pig to human xenografts. Transpl Immunol 1994; 2 (2): 81.
    19. Murphy LA, Goldstein IJ. Five alpha-D-galactopyranosyl-binding isolectins from Bandeiraea simplicifolia seeds. J Biol Chem 1977; 252 (13): 4739.
    20. Zhu M, Wang SS, Xia ZX, et al. Inhibition of xenogeneic response in porcine endothelium using RNA interference. Transplantation 2005; 79 (3): 289.
    21. Zhu M, Chen G, Chen D, et al. Induction of accommodation model by combined RNA interference targeting 1,3-galactosyltransferase gene and low-dose GS-IB4 lectin in vitro. Transplant Proc 2006; 38 (10): 3193.
    22. Dufour JM, Hamilton M, Rajotte RV, Korbutt GS. Neonatal porcine Sertoli cells inhibit human natural antibody-mediated lysis. Biol Reprod 2005; 72 (5): 1224.
    23. Bailey R, Griswold MD. Clusterin in the male reproductive system: localization and possible function. Mol Cell Endocrinol 1999; 151 (1-2): 17.
    24. Jenne DE, Tschopp J. Molecular structure and functional characterization of a human complement cytolysis inhibitor found in blood and seminal plasma: identity to sulfated glycoprotein 2, a constituent of rat testis fluid. Proc Natl Acad Sci USA 1989; 86 (18): 7123.
    25. Silkensen JR, Schwochau GB, Rosenberg ME. The role of clusterin in tissue injury. Biochem Cell Biol 1994; 72 (11-12): 483.
    26. Murphy BF, Saunders JR, O'Bryan MK, Kirszbaum L, Walker ID, d'Apice AJ. SP-40,40 is an inhibitor of C5b-6-initiated haemolysis. Int Immunol 1989; 1 (5): 551.
    27. Saunders JR, Aminian A, McRae JL, OTarrell KA, Adam WR, Murphy BF. Clusterin depletion enhances immune glomerular injury in the isolated perfused kidney. Kidney Int 1994; 45 (3): 817.
    1. Onkamo P, Vaananen S, Karvonen M, Tuomilehto J. Worldwide increase in incidence of Type I diabetes-the analysis of the data on published incidence trends. Diabetologia 1999; 42(12): 1395.
    2. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27 (5): 1047.
    3. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993; 329 (14): 977.
    4. Wang PH, Lau J, Chalmers TC. Meta-analysis of effects of intensive blood-glucose control on late complications of type Ⅰ diabetes. Lancet 1993; 341 (8856): 1306.
    5. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. Jama 2003; 290 (16): 2159.
    6. Hypoglycemia in the Diabetes Control and Complications Trial. The Diabetes Control and Complications Trial Research Group. Diabetes 1997; 46 (2): 271.
    7. Gross CR, Limwattananon C, Matthees BJ. Quality of life after pancreas transplantation: a review. Clin Transplant 1998; 12 (4): 351.
    8. Ryan EA. Pancreas transplants: for whom? Lancet 1998; 351 (9109): 1072.
    9. Venstrom JM, McBride MA, Rother KI, Hirshberg B, Orchard TJ, Harlan DM. Survival after pancreas transplantation in patients with diabetes and preserved kidney function. Jama 2003; 290 (21): 2817.
    10. Gruessner RW, Sutherland DE, Troppmann C, et al. The surgical risk of pancreas transplantation in the cyclosporine era: an overview. J Am Coll Surg 1997; 185 (2):128.
    11.Ballinger WF, Lacy PE. Transplantation of intact pancreatic islets in rats. Surgery 1972; 72 (2): 175.
    12.Younes NA, Nothias JM, Garfinkel MR. Islet transplantation: the quest for an ideal source. Ann Saudi Med 2008; 28 (5): 325.
    13.Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343 (4): 230.
    14.Ricordi C, Lacy PE, Finke EH, Olack BJ, Scharp DW. Automated method for isolation of human pancreatic islets. Diabetes 1988; 37 (4): 413.
    15.Scharp DW, Lacy PE, Santiago JV, et al. Insulin independence after islet transplantation into type I diabetic patient. Diabetes 1990; 39 (4): 515.
    16.Hering BJ, Bretzel RG, Hopt UT, et al. New protocol toward prevention of early human islet allograft failure. Transplant Proc 1994; 26 (2): 570.
    17.Bretzel RG, Brandhorst D, Brandhorst H, et al. Improved survival of intraportal pancreatic islet cell allografts in patients with type-1 diabetes mellitus by refined peritransplant management. J Mol Med 1999; 77 (1): 140.
    18.Hering. B, Ricordi. C. Islet transplantation for patients with Type 1 diabetes: results,research priorities, and reasons for optimism. Graft 1999; 2: 12.
    19.Brendel. M, Hering. B, Schulz. A, Bretzel. R. Newsletter No. 8 of the International Islet Transplant Registry Report.University of Giessen, Germany, 1999.
    20.陈实.移植学前沿.湖北:科学技术出版社,2002.
    21.卫国红,蔡德鸿,翁建平.埃德蒙顿方案后的同种异体人胰岛移植进展.中华糖尿病杂志2005; 13 (6): 475.
    22.Bretzel RG, Jahr H, Eckhard M, Martin I, Winter D, Brendel MD. Islet cell transplantation today. Langenbecks Arch Surg 2007; 392 (3): 239.
    23.Ryan EA, Paty BW, Senior PA, et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005; 54 (7): 2060.
    24.Witkowski P, Zakai SB, Rana A, Sledzinski Z, Hardy MA. Pancreatic islet transplantation, what has been achieved since Edmonton break-through. Ann Transplant 2006; 11 (2): 5.
    25.Matsumoto S, Okitsu T, Iwanaga Y, et al. Insulin independence after living-donor distal pancreatectomy and islet allotransplantation. Lancet 2005; 365 (9471): 1642.
    26.Ryan EA, Lakey JR, Paty BW, et al. Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes 2002; 51 (7): 2148.
    27.刘雪梅.第三次国际胰腺和胰岛移植及人工胰岛素释放系统会议纪要.中华器官移植杂志1991;24:185.
    28.Tibell A, Groth CG, Moller E, Korsgren O, Andersson A, Hellerstrom C. Pig-to-human islet transplantation in eight patients. Transplant Proc 1994; 26 (2):762.
    29.Reinholt FP, Hultenby K, Tibell A, Korsgren O, Groth CG. Survival of fetal porcine pancreatic islet tissue transplanted to a diabetic patient: findings by ultrastructural immunocytochemistry. Xenotransplantation 1998; 5 (3): 222.
    30.夏穗生,张伟杰,姜汉英,等。.临床异种(猪)胰岛移植三例报告.中华器官移植杂志1993; 14 (4): 146.
    31.张伟杰,夏穗生,姜汉英,等.异种胰岛治疗1型糖尿病9例报告.中华实用外科杂志1994;17:733.
    32.Wei W, Zhaohui M, Bin Y. Intra-hepatic artery transplantation of newborn porcine islets (NPI) into 20 type 1 diabetic patients with steroids immunosuppression protocol. 10th Congress of the International Pancreas and Islet Transplantation.Association in Geneva, 2005.
    33.朱旅云,王广宇,王秀慧,等.异种胰岛细胞移植治疗1型糖尿病2例..临床荟萃2007; 22 (20): 1487.
    34.Maki T, O'Neil JJ, Porter J, Mullon CJ, Solomon BA, Monaco AP. Porcine islets forxenotransplantation. Transplantation 1996; 62 (1): 136.
    35.Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas.Science 1980; 210 (4472): 908.
    36.Sun Y, Ma X, Zhou D, Vacek I, Sun AM. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest 1996; 98 (6): 1417.
    37.章乐红,胡以则,陈德,等.微囊包膜猪胰岛异种移植的实验与临床研究.中华普通外科杂志 2000; 15 (11): 679.
    38.Elliott RB, Escobar L, Tan PL, Muzina M, Zwain S, Buchanan C. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 2007; 14 (2): 157.
    39.Gray DW. Encapsulated islet cells: the role of direct and indirect presentation and the relevance to xenotransplantation and autoimmune recurrence. Br Med Bull 1997; 53 (4): 777.
    40.Paradis K, Langford G, Long Z, et al. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN 111 Study Group. Science 1999; 285 (5431): 1236.
    41.Streilein JW. Unraveling immune privilege. Science 1995; 270 (5239): 1158.
    42.Cudicini C, Lejeune H, Gomez E, et al. Human Leydig cells and Sertoli cells are producers of interleukins-1 and -6. J Clin Endocrinol Metab 1997; 82 (5): 1426.
    43.Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC. A role for CD95 ligand in preventing graft rejection. Nature 1995; 377 (6550): 630.
    44.Cupp AS, Kim G, Skinner MK. Expression and action of transforming growth factor beta (TGFbetal, TGFbeta2, and TGFbeta3) during embryonic rat testis development. Biol Reprod 1999; 60 (6): 1304.
    45. Bailey R, Griswold MD. Clusterin in the male reproductive system: localization and possible function. Mol Cell Endocrinol 1999; 151 (1-2): 17.
    46. Borlongan CV, Cameron DF, Saporta S, Sanberg PR. Intracerebral transplantation of testis-derived sertoli cells promotes functional recovery in female rats with 6-hydroxydopamine-induced hemiparkinsonism. Exp Neurol 1997; 148 (1): 388.
    47. Liu HW, Kuang YJ, Wu JC, Ma KH, Wang SD, Liu JC. Intrastriatal transplantation of Sertoli cells may improve amphetamine-induced rotation and tyrosine hydroxylase immunoreactivity of the striatum in hemiparkinsonian rats. Brain Res 1999; 838 (1-2): 227.
    48. Rodriguez AI, Willing AE, Cameron DF, Saporta S, Sandberg PR. Neurobehavioral assessment of transplanted porcine Sertoli cells into the intact rat striatum. Neurotox Res 2002; 4 (2): 103.
    49. Rodriguez AI, Willing AE, Saporta S, Cameron DF, Sanberg PR. Effects of Sertoli cell transplants in a 3-nitropropionic acid model of early Huntington's disease: a preliminary study. Neurotox Res 2003; 5 (6): 443.
    50. Korbutt GS, Elliott JF, Rajotte RV. Cotransplantation of allogeneic islets with allogeneic testicular cell aggregates allows long-term graft survival without systemic immunosuppression. Diabetes 1997; 46 (2): 317.
    51. Selawry HP, Cameron DF. Sertoli cell-enriched fractions in successful islet cell transplantation. Cell Transplant 1993; 2 (2): 123.
    52. Willing AE, Cameron DF, Sanberg PR. Sertoli cell transplants: their use in the treatment of neurodegenerative disease. Mol Med Today 1998; 4 (11): 471.
    53. Valdes-Gonzalez RA, Dorantes LM, Garibay GN, et al. Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study. Eur J Endocrinol 2005; 153 (3): 419.
    54. Check E. Diabetes trial stirs debate on safety of xenotransplants. Nature 2002; 419 (6902): 5.
    55. Isaac JR, Skinner S, Elliot R, et al. Transplantation of neonatal porcine islets and sertoli cells into nonimmunosuppressed nonhuman primates. Transplant Proc 2005; 37(1): 487.
    56. Wang DZ, Skinner S, Elliot R, et al. Xenotransplantation of neonatal porcine islets and Sertoli cells into nonimmunosuppressed streptozotocin-induced diabetic rats. Transplant Proc 2005; 37 (1): 470.
    57. Judge TA, Desai NM, Yang Z, et al. Utility of adenoviral-mediated Fas ligand gene transfer to modulate islet allograft survival. Transplantation 1998; 66 (4): 426.
    58. Allison J, Georgiou HM, Strasser A, Vaux DL. Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc Natl Acad Sci U S A 1997; 94 (8): 3943.
    59. Kang SM, Schneider DB, Lin Z, et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat Med 1997; 3 (7): 738.
    60. Korbutt GS, Suarez-Pinzon WL, Power RF, Rajotte RV, Rabinovitch A. Testicular Sertoli cells exert both protective and destructive effects on syngeneic islet grafts in non-obese diabetic mice. Diabetologia 2000; 43 (4): 474.
    61. Suarez-Pinzon W, Korbutt GS, Power R, Hooton J, Rajotte RV, Rabinovitch A. Testicular sertoli cells protect islet beta-cells from autoimmune destruction in NOD mice by a transforming growth factor-betal-dependent mechanism. Diabetes 2000; 49(11): 1810.
    62. Chen JJ, Sun Y, Nabel GJ. Regulation of the proinflammatory effects of Fas ligand (CD95L). Science 1998; 282 (5394): 1714.
    63. Wilbanks GA, Mammolenti M, Streilein JW. Studies on the induction of anterior chamber-associated immune deviation (ACAID). Ⅲ. Induction of ACAID depends upon intraocular transforming growth factor-beta. Eur J Immunol 1992; 22 (1): 165.
    64. Ksander BR, Streilein JW. Failure of infiltrating precursor cytotoxic T cells to acquire direct cytotoxic function in immunologically privileged sites. J Immunol 1990; 145 (7): 2057.
    65. Dufour JM, Hamilton M, Rajotte RV, Korbutt GS. Neonatal porcine Sertoli cells inhibit human natural antibody-mediated lysis. Biol Reprod 2005; 72 (5): 1224.
    66. Lee HM, Oh BC, Lim DP, et al. Establishment and characterization of porcine Sertoli cell line for the study of xenotransplantation. Xenotransplantation 2007; 14 (2): 112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700