单斜LiMnO_2掺杂体系的电子结构与磁学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用基于密度泛函理论的第一性原理计算方法研究了Li/Mn无序、Cr掺杂及Co掺杂对单斜LiMnO_2这一极具应用前景的锂离子电池正极材料的电子结构与性能的影响,以深入透彻理解相关实验现象,帮助找到能有效提高单斜LiMnO_2结构稳定性与电化学循环性能的制备工艺。同时,本论文还对单斜LiMnO_2的另外两个空穴掺杂相——单斜相Li_(0.33)MnO_2与单斜相Li0.5MnO_2——的制备工艺、光学性质、尤其是磁学性质开展了深入细致的研究。
On one hand, monoclinic LiMnO_2 system is one of the most promising cathode materials for lithium batteries. Nevertheless, this material shows bad stability of crystal structure and electrochemical cycling, therefore, before the truly practical application, doping has to been employed to improve its electrochemical properties. On the other hand, partially delithiated, i.e. hole-doped monoclinic LiMnO_2, monoclinic LixMnO_2 (0 < x < 1) is the transition-metal oxide which belongs to the manganese oxides on the boundary from Mott-Hubbard insulator charge-transfer insulator, and also belongs to the mixtures of eg system and t2g system. As a result, monoclinic LixMnO_2 is very worthy of deep investigation because it may represent rich, new and unique character in the field of condensed-matter physics, such as spin physics, orbital physics and so on. Aiming at these two issues, this dissertation has carried out to investigate the electronic structures, preparation technique and magnetic properties deeply and carefully.
     In Chapter II, the Effects of Li/Mn disorder on the chemical bonding and electronic structures of monoclinic LiMnO_2 are investigated via first-principles calculations based on density functional theory. It is found that Li/Mn disorder has reduced the ionicity of Li atoms, enhanced ionicity of Mn atoms, enlarged the structural distortion, weakened the layered character and Mn-Mn binding, which greatly benefits the migration of Mn ions from its own octahedral sites into the nearby Li sites, consequently impelling the material to a spinel-like structure, and doing great harm to the electrochemical activity, structural stability and performance of electrochemical cycling for monoclinic LiMnO_2. Therefore, for the application as cathode material in commercial lithium batteries, the Li/Mn disorder in monoclinic LiMnO_2 have to be controlled strictly or eliminated as far as possible. Additionally, the changes induced by the Li/Mn disorder in the band structures and density of states reveal that the material has changed for a semiconductor to a metal, and the metallic character originates from the 3d electrons of all Mn ions, which suggests that the effects of Li/Mn disorder in the electronic structures of monoclinic LiMnO_2 are not localized only around the disorder atoms. Based on total energy analysis, it is found that the Li/Mn disorder is derived from dynamics factors but not from thermodynamics factors. Therefore, it is definitely possible to obtain monoclinic LiMnO_2 with fully ordered Li/Mn atoms or with greatly reduced Li/Mn disorder.
     In Chapter III, first-principles calculations based on density functional theory were employed to investigate the effects of Cr-doping and Co-doping in monoclinic LiMnO_2. It is found that the doping can shorten the Mn-O bondlength effectively, suppress the Jahn-Teller distortion markedly and decrease the insulating band gap greatly, consequently enhancing the structural stability, improving the stability during electrochemical cycles, and increasing the electrical conductivity of monoclinic LiMnO_2, respectively. Based on carefully comparative studies on the effects between Cr-doping and Co-doping, it is found that Co-doping is more evident in compressing the crystal structures and suppressing the Jahn-Teller distortion, therefore, it is concluded that Co-doping is more effective than Cr-doping to improve the structural stability under equilibrium condition; Nevertheless, Cr-doping is more evident in decreasing the insulating band gap, which can increase the electrical conductivity and thereby the safety of lithium batteries using monoclinic LiMnO_2 as cathode material more effectively. More importantly, contrary to shorten the Li-O bondlength and the shortest Li-Mn distance induced by Co-doping, Cr-doping can stretch the Li-O bondlength, and especially the shortest Li-Mn distance, which make Cr-doping more effectively in improving the electrochemical activity as well as the rate capability, and hindering the migration of Mn ions into the interlayer Li sites, thereby improving the performance of electrochemical cycling, respectively. As a conclusion, Cr-doping is more effective than Co-doping in improving the electrochemical properties of monoclinic LiMnO_2.
     In Section IV, monoclinic Li_(0.33)MnO_2 has been successfully synthesized by low-temperature solid state reaction at 360℃. The magnetic property of Li_(0.33)MnO_2 has been studied by dc magnetization, magnetic hysteresis and ac susceptibility. The research results indicate that the material show paramagnetism at high temperature. The negative Weiss constant indicates the antiferromagnetic interaction between spins in this system. At low temperature, the irreversibility behavior and the dependence on the magnetic field confirm the multiple spin glass behavior. The fitting to the Power law based on the ac susceptibility data gives the characteristic relaxation time as 2×10-13 and 5.1×10-11 for Tf1 and Tf2, respectively, which indicates that monoclinic Li_(0.33)MnO_2 undergoes a magnetic transition from paramagnetism to atomic-scale spin glass, then to cluster spin glass with the decrease of temperature.
     In Chapter V, with the same process as indicated in Chapter IV, we have prepared monoclinic Li_(0.5)MnO_2 and studied its structural, valence state and magnetic properties via XRD, XPS, Raman and SQUID measurement. XPS analysis shows that the 2p3/2 and 2p1/2 of Mn ions in Li_(0.5)MnO_2 locate at 642.3 eV and 653.6 eV, respectively, and further quantitative analysis reveals that the mole ratio of Mn3+ to Mn4+ ions equals to 1: 1, which means that as same as LiMn2O4, the Mn ions in monoclinic Li_(0.5)MnO_2 are in the mixed valence state. The results of XRD and Raman indicate that monoclinic Li_(0.5)MnO_2 and LiMn2O4 are definitely different in the long-range and short-range crystal structure, which induces the different magnetic properties. SQUID measurement shows cluster spin-glass behavior for monoclinic Li_(0.5)MnO_2 at low temperature. The comparative studies on the magnetic behavior of monoclinic Li_(0.5)MnO_2 and Li_(0.33)MnO_2 reveal that the strong geometrical frustration induces the presence of multiple spin-glass behavior in monoclinic Li_(0.33)MnO_2, while the difference in bond length and angle should be responsible for the difference in the magnetic behavior of monoclinic Li_(0.5)MnO_2.
     Finally in Chapter VI, the research work of the whole dissertation has been summed up, and the shortcomings have been pointed out. In addition, ideas and suggestion for further research work have been put forward.
引文
[1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414: 359-367.
    [2] Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes [J]. J. Electrochem. Soc., 2001, 148: A224-A229.
    [3] Delmas C, Maccario M, Croguennec L, Weill F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J]. Nature Mater., 2008, 7: 665-671.
    [4] Mizushima K, Jones P C, Wiseman P J. LixCoO2 (0≤x≤1): A new cathode material for batteries of high energy density [J]. Mat. Res. Bull., 1980, 15: 783-789.
    [5]徐晓光.储能材料电子结构及性能的第一原理研究[D].长春:吉林大学, 2004.
    [6] Armstrong A R, Bruce P G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries [J]. Nature, 1996, 381: 499-506.
    [7]黄祖飞. LiMnO2体系结构与性能的第一性原理研究[D].长春:吉林大学, 2006.
    [8] Greedan J E, Raju N P, Davidson I J. Long rang and short range magnetic order in orthorhombic LiMnO2 [J]. J. Solid State Chem., 1997, 128: 209-214.
    [9] Lee Y S, Sun Y K, Adachi K, Yoshio M. Synthesis and electrochemical characterization of orthorhombic LiMnO2 material [J]. Electrochimica Acta, 2003, 48: 1031-1039.
    [10] Liu W, Farrington G C, Chaput F. Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the apechini process [J]. J. Electrochem. Soc., 1996, 143: 879-884.
    [11] Gummow R J, Kock A, Thacheray M M. Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells [J]. Solid State Ionics, 1994, 69: 59-67.
    [12] Tarascon J M, Coowar F, Amatuci G, Shokoohi F K, Guyomard D G. The system materials and electrochemical aspects [J]. J. Power Sources, 1995, 54: 103-108.
    [13] Xia Y, Yoshio M. An investigation of lithium ion insertion into spinel structure Li-Mn-O compounds [J]. J. Electrochem. Soc., 1996, 143: 825-833.
    [14] Jang D H, Shin Y J, Oh S M. Dissolution of spinel oxides and capacity losses in 4V Li/LixMn2O4 cell [J]. J. Electrochem. Soc., 1996, 143: 2204-2211.
    [15] Xia Y, Zhou Y, Yoshio M. Capacity fading on cycling of 4 V Li/LiMn2O4 cells [J]. J. Electrochem. Soc., 1997, 144: 2593-2600.
    [16] Arora P, White E R. Capacity fade mechanisms and side reactions in lithium-ion batteries [J]. J. Electrochem. Soc., 1998, 145: 3647-3667.
    [17] Thacheray M M. Spinel electrodes for lithium batteries [J]. J. Am. Ceram. Soc., 1999, 82: 3347-3354.
    [18] Lourdes H, Julian M, Luis S. Use of Li-M-Mn-O (M = Co, Cr, Ti) spinels prepared by a sol-gel method as cathodes in high-voltage lithium batteries [J]. Solid State Ionics, 1999, 118: 179-185.
    [19] Sun Y K, Park G S, Lee Y S. Structural changes (degradation) of oxysulfide LiAl0.24Mn1.76O3.98S0.02 spinel on high-temperature cycling [J]. J. Electrochem. Soc., 2001, 148: A994-A998.
    [20] Shigemura H, Sakebe H, Kageyama H. Structure and electrochemical properties of LiFexMn2-xO4 (0≤x≤0.5) spinel as 5V electrode material for lithium batteries [J]. J. Electrochem. Soc., 2001, 148: A730-A736.
    [21] Chitrakar R, Kanoh H, Kim Y–S, miyai Y, Ooi K. Synthesis of layered-type hydrous manganese oxides from monoclinic-type LiMnO2 [J]. J. Solid State. Chem., 2001, 160: 69-76.
    [22] Hwang S -J, Park H -S, Choy J -H, Campet G. Evolution of Local Structure around Manganese in Layered LiMnO2 upon Chemical and Electrochemical Delithiation/Relithiation [J]. Chem. Mater., 2000, 12: 1818-1826.
    [23] Armstrong A R, Dupre N, Paterson A J, Grey C P, Bruce P G. Combined Neutron Diffraction, NMR, and Electrochemical Investigation of the Layered-to-Spinel Transformation in LiMnO2 [J]. Chem. Mater., 2004, 6: 3106-3118.
    [24] Jang Y–I, Huang B, Chiang Y–M, Sadoway D R. Stabilization of LiMnO2 in the alpha-NaFeO2 structure type by LiAlO2 addition [J]. Electrochem. Solid-State Lett. 1998, 1: 13-16.
    [25] Jang Y–I, Chou F C and Chiang Y–M. Magnetic properties of monoclinic phaseLiAl0.05Mn0.95O2 [J]. J. Phys. Chem. Solids, 1999, 60: 1763-1771.
    [26] Armstrong A R, Robertson A D, Gitzendanner R and Bruce P G. The layered intercalation compounds Li(Mn1?yCoy)O2: positive electrode materials for lithium–ion batteries [J]. J. Solid State Chem., 1999, 145: 549-556.
    [27] Hwang S–J, Park H–S, Choy J–H, Campet G. Effects of Chromium Substitution on the Chemical Bonding Nature and Electrochemical Performance of Layered Lithium Manganese Oxide [J]. J. Phys. Chem. B, 2000, 104: 7612-7617.
    [28] Reed J, Ceder G, Van Der Ven A. Layered-to-spinel phase transition in LixMO2 [J]. Electrochem. Solid-State Lett., 2001, 4: A78-A81.
    [29] Huang Z–F, Meng X, Wang C -Z, Sun Y, Chen G. First-principles Calculations on the Jahn–Teller Distortion in Layered LiMnO2 [J]. J. Power Sources, 2006, 158: 1394-1399.
    [30] Reed J, Ceder G. Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation [J]. Chem. Rev., 2004, 104: 4513-4534.
    [31] Huang Zu-Fei, Wang Chun-Zhong, Meng Xing, Wang Deng-Pan, Chen Gang. Effects of Al-doping on the stabilization of monoclinic LiMnO2 [J]. Journal of Solid State Chemistry, 2006, 179: 1602–1609.
    [32] Huang Z -F, Zhang H Z, Wang C Z, Wang D P, Meng X, Ming X, Chen G. First-principles investigation on extraction of lithium ion from monoclinic LiMnO2 [J]. Solid State Sciences,2009, 11: 271-274.
    [33] Cooper S L. Localized to Itinerant Electronic Transition in Perovskite Oxides, Ed. J. B. Goodenough [M]. Berlin: Springer-Verlag, 2001.
    [34] Julien C M, Banov B, Monchilov A, Zaghib K. Lithiated manganese oxide Li0.33MnO2 as an electrode material for lithium batteries [J]. J. Power Sources. 2006, 159:1365-1369.
    [35] Wei Y J, Ehrenberg H, Kim K B, Park C W, Huang Z F, Baehtz C. Characterizations on the structural and electronic properties of thermal lithiated Li0.33MnO2 [J]. Journal of Alloys and Compounds, 2009, 479: 273-277.
    [36] Tokura Y and Nagaosa N. Orbital physics in transition-metal oxides [J]. Science, 2000, 288: 462-468.
    [37] Ruckamp R, Benckiser E, Haverkort M W, Roth H, Lorenz T, Freimuth A, Jongen L, Moller A, Meyer G, Reutler P, Buchner B, Revcolevschi A, Cheong S W, Sekar C, Krabbes G, Gruninger M. Optical study of orbital excitations in transition-metal oxides [J]. New J. Phys., 2005, 7: 144.
    [38] Urano C, Nohara M, Kondo S, Sakai F, Takagi H, Shiraki T, and Okubo T. LiV2O4 spinel as a heavy-Mass fermi liquid: anomalous transport and role of geometrical frustration [J]. Phys. Rev. Lett., 2000, 85: 1052-1055.
    [39] Nakatsuji S, Nambu Y, Tonomura H, Sakai O, Jonas S, Broholm C, Tsunetsugu H, Qiu Y M, Maeno Y. Spin disorder on a triangular lattice [J]. Science, 2005, 309: 1697-1700.
    [40] Khaliullin G and Maekawa S. Orbital liquid in three-dimensional Mott insulator: LaTiO3 [J]. Phys. Rev. Lett., 2000, 85: 3950-3953.
    [41] Fichtl R, Tsurkan V, Lunkenheimer P, Hemberger J, Fritsch V, Krug von Nidda H -A, Scheidt E -W, and Loidl A. Orbital freezing and orbital glass state in FeCr2S4 [J]. Phys. Rev. Lett., 2005, 94: 027601.
    [42] Horsch P, Khaliullin G and Oles A M. Dimerization versus orbital-moment ordering in a Mott insulator YVO3 [J]. Phys. Rev. Lett., 2003, 91: 257203.
    [43] Saitoh E, Okamoto S, Takahashi K T, Tobe K, Yamamoto K, Kimura T, Ishihara S, Maekawa S, Tokura Y. Observation of orbital waves as elementary excitations in a solid [J]. Nature, 2001, 410: 180-183.
    [44]程守洙,江之永.普通物理学第二册(第五版)[D].北京:高等教育出版社, 2005重印.
    [45] (a) Parr R G, Yang W. Density Functional Theory of Atoms and Molecules [M]. New York: Oxford, 1989; (b) Dreizler R M, Gross E K U, Density Functional Theory [M]. Berlin: Springer-Vertag, 1990.
    [46] Kohn W. Nobel Lecture: Electronic structure of matter—wave functions and density functionals [J]. Rev. Mod. Phys. 1999, 71: 1253-1266.
    [47]明星.自旋自由度对关联电子体系材料物理性质的影响:第一性原理研究[D].长春:吉林大学, 2009.
    [48] Born M and Oppenheimer R. Zur Quantentheorie der Molekeln. Ann. Phys. (Leipzig) 1927, 84 (20): 457.
    [49] Born M, Huang K. Dynamical Theory of Crystal Lattices [M]. Oxford: Oxford Universities Press, 1954.
    [50] Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev. B 1964, 136: 864-871.
    [51] Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys. Rev. A 1965, 140: 1133-1138.
    [52] Alder B J, and Wainwright T E. Phase transition for a hard sphere system [J]. J.Chem.Phys., 1959, 27:1208.
    [53] Car R, and Parrinello M. Unified approach for molecular dynamics and density-functional theory [J]. Phys.Rev.Lett., 1985, 55: 2471.
    [54]李正中.固体物理[M].北京:高等教育出版社, 2002.
    [55]冯端、金国钧.凝聚态物理学(上卷) [M].北京:高等教育出版社, 2003.
    [56] Kohn W. Nobel Lecture: Electronic structure of matter-wave functions and density functionals [J]. Rev. Mod. Phys., 1999, 71: 1253 -1266.
    [57] Ceperley D M, Alder B L. Ground State of the Electron Gas by a Stochastic Method [J]. Phys. Rev. Lett., 1980, 45: 566-569.
    [58] Perdew T P, A. Zunger. Self-interaction correction to density-functional approximations for many-electron systems [J]. Phys. Rev. B 1981, 23: 5048-5079.
    [59] Burke K, Perdew J P, and Wang Y, Electronic Density Functional Theory: Recent Progress and New Direction [M]. Plenum, 1998.
    [60] Perdew J P, Burke K, and Ernzerhof M. Generalized Gradient Approximation Made Simple [J]. Phys. Rev. Lett. 1996, 77: 3865-3868.
    [61] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B 1990, 41: 7892-7895.
    [62] Andersen O K. Linear methods in band theory [J]. Phys. Rev. B, 1975, 12: 3060-3083.
    [63] Liu A Y and Cohen M L. Prediction of new low compressibility solids [J]. Science, 1989, 245: 841-842.
    [64] Ceder G, Chiang Y M, Sadoway D R, Aydinol M K, Jang Y I, Huang B. Identification of cathode materials for lithium batteries guided by first-principles calculations [J]. Nature, 1998, 392: 694-696.
    [65] Huang Z -F, Du F, Wang C Z, Wang D P, Chen G. Low-spin Mn3+ ion inrhombohedral LiMnO2 predicted by first-principles calculations, Physical Review B, 2007, 75: 054411.
    [66] Singh D J, Magnetic and Electronic Properties of LiMnO2 [J]. Phys. Rev. B, 1997, 55: 309-317.
    [67]杜菲.关联电子体系新奇磁学性质的研究[D].长春:吉林大学, 2008.
    [68] Smolinski H, Gros C, Weber W, Peuchert U, Roth G, Weiden M, and Geibel C. NaV2O5 as a Quarter-Filled Ladder Compound [J]. Phys. Rev. Lett. 1998, 80: 5164-5167.
    [69] Igor S, Noriaki H and Kiyoyuki T. Crucial Role of the Lattice Distortion in the Magnetism of LaMnO3 [J]. Physical Review Letters, 1996, 76: 4825-4828.
    [70] Greedan J E. Geometrical frustrated magnetic materials [J]. Journal of Materials Chemistry, 2001, 11: 37-53
    [71] Gardner J S, Gaulin B D, Berlinsky A J, Waldron P, Dunsiger S R, Raju N P and Greedan J. E. Neutron scattering studies of the cooperative paramagnet pyrochlore Tb2Ti2O7 [J]. Physical Review B, 2001, 64: 224416.
    [72]吴代鸣.固体物理基础[M].北京:高等教育出版社,2007.
    [1] Armstrong A R, Bruce P G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries [J]. Nature, 1996, 381: 499-506.
    [2] Armstrong A R, Robertson A D, Gitzendanner R and Bruce P G. The layered intercalation compounds Li(Mn1?yCoy)O2: positive electrode materials for lithium–ion batteries [J]. J. Solid State Chem., 1999, 145: 549-556.
    [3] Hwang S -J, Park H -S, Choy J -H, Campet G. Evolution of Local Structure around Manganese in Layered LiMnO2 upon Chemical and Electrochemical Delithiation/Relithiation [J]. Chem. Mater., 2000, 12: 1818-1826.
    [4] Armstrong A R, Dupre N, Paterson A J, Grey C P, Bruce P G. Combined Neutron Diffraction, NMR, and Electrochemical Investigation of the Layered-to-Spinel Transformation in LiMnO2 [J]. Chem. Mater., 2004, 6: 3106-3118.
    [5] Singh D J. Magnetic and Electronic Properties of LiMnO2 [J]. Phys. Rev. B, 1997,55:309-317.
    [6] Huang Z–F, Meng X, Wang C -Z, Sun Y, Chen G. First-principles Calculations on the Jahn–Teller Distortion in Layered LiMnO2 [J]. J. Power Sources, 2006, 158: 1394-1399.
    [7] Huang Z–F, Wang C -Z, Meng X, Sun Y, Chen G. Competition between Ferromagnetic and Antiferromagnetic Interaction in Monoclinic LiMnO2 [J]. Comput. Mater. Sci., 2008, 42: 504-512.
    [8] Dutta G, Manthiram A, Goodenough J B, Grenier J C. Chemical synthesis and properties of Li1?δ?xNi1+δO2 and Li[Ni2]O4 [J]. J. Solid State Chem., 1992, 96: 123-131.
    [9] Chitrakar R, Kanoh H, Kim Y–S, miyai Y, Ooi K. Synthesis of layered-type hydrous manganese oxides from monoclinic-type LiMnO2 [J]. J. Solid State. Chem., 2001, 160: 69-76.
    [10] Jang Y–I, Huang B, Chiang Y–M, Sadoway D R. Stabilization of LiMnO2 in the alpha-NaFeO2 structure type by LiAlO2 addition [J]. Electrochem. Solid-State Lett. 1998, 1: 13-16.
    [11] Jang Y–I, Chou F C and Chiang Y–M. Magnetic properties of monoclinic phaseLiAl0.05Mn0.95O2 [J]. J. Phys. Chem. Solids, 1999, 60: 1763-1771.
    [12] Hwang S–J, Park H–S, Choy J–H, Campet G. Effects of Chromium Substitution on the Chemical Bonding Nature and Electrochemical Performance of Layered Lithium Manganese Oxide [J]. J. Phys. Chem. B, 2000, 104: 7612-7617.
    [13] Reed J, Ceder G, Van Der Ven A. Layered-to-spinel phase transition in LixMO2 [J]. Electrochem. Solid-State Lett., 2001, 4: A78-A81.
    [14] Reed J, Ceder G. Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation [J]. Chem. Rev., 2004, 104: 4513-4534.
    [15] Huang Zu-Fei, Wang Chun-Zhong, Meng Xing, Wang Deng-Pan, Chen Gang. Effects of Al-doping on the stabilization of monoclinic LiMnO2 [J]. Journal of Solid State Chemistry, 2006, 179: 1602–1609.
    [16] Huang Z -F, Zhang H Z, Wang C Z, Wang D P, Meng X, Ming X, Chen G. First-principles investigation on extraction of lithium ion from monoclinic LiMnO2 [J]. Solid State Sciences,2009, 11: 271-274.
    [17] (a) Segall M D, Lindan P L D , Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C. First-principles simulation: ideas, illustrations and the CASTEP code [J]. J. Phys.: Condens. Mat., 2002, 14: 2717-2744. (b) Perdew J P, Burke S and Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865-3868. (c) Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B, 1990, 41: 7892-7895.
    [18] Koyama Y, Kim Y–S, Tanaka I, Adachi H. Changes in chemical bondings by Li deintercalation in LiMO2 (M = Cr, V, Co and Ni) [J]. Jpn. J. Appl. Phys., 1999, 38: 2024-2027.
    [19] Mishra S K, Ceder G. Structural stability of lithium manganese oxides [J]. Phys. Rev. B, 1999, 59: 6120-6130.
    [20]黄祖飞. LiMnO2体系结构与性能的第一性原理研究[D].长春:吉林大学, 2006.
    [21] Prasad R, Benedek R, Thackeray M M. Dopant-induced statbilization of rhombohedral LiMnO2 against Jahn-Teller Distortion [J]. Phys. Rev. B, 2005, 71:134111.
    [22]徐晓光.储能材料电子结构及性能的第一原理研究[D].长春:吉林大学, 2004.
    [23] Ceder G, Van der Ven A, Marianetti C, Morgan D. First-principles alloy theory in oxides [J]. Modelling Simul. Mater. Sci. Eng., 2000, 8: 311-321
    [24] Arroyo y de Dompablo M E, Marianetti C, Van der Ven A, Ceder G. Jahn-teller mediated ordering in layered LixMO2 compounds [J]. Physical Review B, 2001, 63: 144107.
    [25] Velikokhatnyi O I, Chang C–C, Kumta P N. Phase stability and electronic structure of NaMnO2 [J]. Journal of the Electrochemical Society, 2003, 150: A1262-A1266.
    [1] Armstrong A R, Bruce P G. Synthesis of Layered LiMnO2 as an Electrode for Rechargeable Lithium Batteries [J]. Nature, 1996, 381: 499-506.
    [2] Hwang S -J, Park H -S, Choy J -H, Campet G. Evolution of Local Structure around Manganese in Layered LiMnO2 upon Chemical and Electrochemical Delithiation/Relithiation [J]. Chem. Mater., 2000, 12: 1818-1826.
    [3] Armstrong A R, Dupre N, Paterson A J, Grey C P, Bruce P G. Combined Neutron Diffraction, NMR, and Electrochemical Investigation of the Layered-to-Spinel Transformation in LiMnO2 [J]. Chem. Mater., 2004, 6: 3106-3118.
    [4] Jang Y–I, Huang B, Chiang Y–M, Sadoway D R. Stabilization of LiMnO2 in the alpha-NaFeO2 structure type by LiAlO2 addition [J]. Electrochem. Solid-State Lett. 1998, 1: 13-16.
    [5] Hwang S–J, Park H–S, Choy J–H, Campet G. Effects of chromium substitution on the shemical bonding nature and electrochemical performance of layered lithium manganese oxide [J]. J. Phys. Chem. B, 2000, 104: 7612-7617.
    [6] Armstrong A R, Robertson A D, Gitzendanner R and Bruce P G. The layered intercalation compounds Li(Mn1?yCoy)O2: positive electrode materials for lithium–ion batteries [J]. J. Solid State Chem., 1999, 145: 549-556.
    [7] Park H–S, Hwang S–J, and Choy J–H. Relationship between chemical bonding character and electrochemical performance in Nickel-substituted lithium manganese oxide [J]. J. Phys. Chem. B, 2001, 105: 4860-4866.
    [8] Huang Zu-Fei, Wang Chun-Zhong, Meng Xing, Wang Deng-Pan, Chen Gang. Effects of Al-doping on the stabilization of monoclinic LiMnO2 [J]. Journal of Solid State Chemistry, 2006, 179: 1602–1609.
    [9]黄祖飞. LiMnO2体系结构与性能的第一性原理研究[D].长春:吉林大学, 2006.
    [10] (a) Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmatskaya E V, Nobes R H. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study [J]. Int. J. Quant. Chem., 2000, 77: 895-910.(b) CASTEP Users Guide, Accelrys Inc., San Diego, 2001.
    [11] Perdew J P, Burke S and Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865-3868.
    [12] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B 1990, 41: 7892-7895.
    [13] Mishra S K, Ceder G. Structural Stability of Lithium Manganese Oxides [J]. Phys. Rev. B, 1999, 59: 6120-6125.
    [14] Huang Z–F, Meng X, Wang C -Z, Sun Y, Chen G. First-principles calculations on the Jahn–Teller distortion in layered LiMnO2 [J]. J. Power Sources, 2006, 158: 1394-1399.
    [15] Huang Z -F, Zhang H Z, Wang C Z, Wang D P, Meng X, Ming X, Chen G. First-principles investigation on extraction of lithium ion from monoclinic LiMnO2 [J],Solid State Sciences,2009, 11: 271-274.
    [16] Prasad R, Benedek R, Kropf A J et al., Divalent-dopant Criterion for the Suppression of Jahn-Teller Distortion in Mn Oxides: First-principles Calculations and X-ray Absorption Spectroscopy Measurements for Co in LiMnO2 [J]. Phys. Rev. B, 2003, 68: 012101.
    [17] Reed J, Ceder G, Van Der Ven A. Layered-to-spinel phase transition in LixMO2 [J]. Electrochem. Solid-State Lett., 2001, 4: A78-A81.
    [18] Reed J, Ceder G. Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation [J]. Chem. Rev., 2004, 104: 4513-4534.
    [19] Singh D J. Magnetic and Electronic Properties of LiMnO2 [J]. Phys. Rev. B, 1997, 55: 309-317.
    [20]徐晓光.储能材料电子结构及性能的第一原理研究[D].长春:吉林大学, 2004.
    [21]金胜哲,黄祖飞,明星,王春忠,孟醒,陈岗.二价金属元素掺杂对LiCoO2体系电子输运性质的影响[J].物理学报, 2007, 56: 6008-6012.
    [22] Kang B W, Ceder G. Battery materials for ultrafastcharging and discharging [J]. Nature, 2009, 458: 190-193.
    [23] Zaghib K, Goodenough J B, Mauger A, Julien C. Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries [J]. J. Power Sources, 2009, 194:1021-1023.
    [24] Aydinol M K, Kohan A F, Ceder G, Cho K, Joannopoulos. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides [J]. Phys. Rev. B, 1997, 56: 1353-1365.
    [25] Huang Z–F, Wang C -Z, Meng X, Sun Y, Chen G. Competition between Ferromagnetic and Antiferromagnetic Interaction in Monoclinic LiMnO2 [J]. Comput. Mater. Sci., 2008, 42: 504-512.
    [1] Wei Y J, Ehrenberg H, Kim K B, Park C W, Huang Z F, Baehtz C. Characterizations on the structural and electronic properties of thermal lithiated Li0.33MnO2 [J]. Journal of Alloys and Compounds, 2009, 479: 273-277.
    [2]郭贻诚.铁磁学[M].北京:高等教育出版社,1965.
    [3] Wang Fang, Zhang Jian, Chen Yuan-fu, Wang Guang-jun, Sun Ji-rong, Zhang Shao-ying, and Shen Bao-gen. Spin-glass behavior in La(Fe1-xMnx)11.4Si1.6 compounds [J]. Physical Review B, 2004, 69: 094424.
    [4] Wu H, Haverkort M W, Hu Z, Khomskii D I, and Tjeng L H. Nature of magnetism in Ca3Co2O6 [J]. Physical Review Letters, 2005, 95: 186401.
    [5] Sugiyama J, Nozaki H, Brewer J H, Ansaldo E J, Morris G D and Delmas C. Frustrated magnetism in the two-dimensional triangular lattice of LixCoO2 [J]. Phys. Rev. B, 2005, 72: 144424.
    [6] Cardoso C A, Araujo-Moreira F M, Awana V P S, Takayama-Muromachi E, de Lima O F, Yamauchi H, Karppinen M. Spin glass behavior in RuSr2Gd1.5Ce0.5Cu2O10 [J]. Physical Review B, 2003, 67: 020407.
    [7] Paolone A, Cordero F, Cantelli R, and Ferretti M. An elastic spectroscopy study of the spin-glass and cluster spin-glass phases of La2A1-xSrxCuO4 [J]. Physical Review B, 2002, 66: 094503.
    [8] Wang Y T, Bai H Y, Pan M X, Zhao D Q, and Wang W H. Multiple spin-glass-like behaviors in a Pr-based bulk metallic glass [J]. Physical Review B, 2006, 74: 064422.
    [9] Jaeger C, Bihler C, Vallaitis Goennenwein T S T B, Opel M, Gross R, Brandt M S. Spin-glass-like behavior of Ge:Mn [J]. Physical Review B, 2006, 74: 045330.
    [10] Jana Y M, Sakai O, Higashinaka R, Fukazawa H, Maeno Y, Dasgupta P, and Ghosh D. Spin-glass-like magnetic ground state of the geometrically frustrated pyrochlore niobate Tb2Nb2O7[J]. Physical Review B, 2003, 68: 174413.
    [11] Li D, Nimori S and Shiokawa Y. Random spin freezing in uranium intermetallic compound UCuSi [J]. J. Phys.: Condens. Matter, 2006, 18: 3299–3306.
    [12] Henryk Szymczak, Ritta Szymczak, Marek Baran, Jan Fink-Finowicki. Clusterglass behavior of La0.9Ca0.1CoO3 single crystals [J]. Journal of Magnetism and Magnetic Materials, 2004, 272–276: 1327–1329.
    [13]杜菲.关联电子体系新奇磁学性质的研究[D].长春:吉林大学, 2008.
    [14] Tougait O, Noe H and Troc R. Spin-glass like behavior in a new ternary uranium cobalt aluminide, U3Co4+xAl12-x with x=0.55(2) [J]. Journal of Solid State Chemistry, 2004, 177: 2053–2057.
    [15] Coey J M D, Venkatesan M, Stamenov P, Fitzgerald C B, and Dorneles L S. Magnetism in hafnium dioxide [J]. Physical Review B, 2005, 72: 024450.
    [16] Gruyters M. Spin-glass-like behavior in CoO nanoparticles and the origin of exchange bias in layered CoO2 ferromagnet structures [J]. Phys. Rev. Lett., 2005, 95: 077204.
    [17] Felner I, Awana V P S, Takayama-Muromachi E. Magnetization study of RuSr2Y1.5Ce0.5Cu2O10 [J]. Physical Review B, 2003, 68: 094508.
    [18] Li Shandong, Liu Meimei, Huang Zhigao, Xu Feng, Zou Wenqin, Zhang Fengming, and Du Youwei. CoMnSb, a magnetocaloric material with a large low field magnetic entropy change at intermediate temperature [J]. Journal of Applied Physics, 2006, 99: 063901.
    [19] Shand P M, Stark C C, Williams D, Morales M A, Pekarek T M, Leslie-Pelecky D L. Spin glass or random anisotropy? The origin of magnetically glassy behavior in nanostructured GdAl2 [J]. Journal of Applied Physics, 2005, 97: 101505.
    [20] Irons S H, Sangrey T D, Beauchamp K M, Smith M D and zur Loye H -C. ac susceptibility of Sr3CuPtxIr1-xO6: A magnetic system with competing interactions and dimensionality [J]. Physical Review B, 2000, 61: 11594.
    [21] Suzuki M, Suzuki I S, Walter J. Magnetism and superconductivity in McTa2S2C [J]. Physical Review B, 2005, 71: 224407.
    [22] De K, Thakur M, Manna A, Giri S. Unusual glassy states in LaMn0.5Fe0.5O3: Evidence of two distinct dynamical freezing processes [J]. Journal of Applied Physics, 2006, 99: 013908.
    [23] Mukadam M D, Yusuf S M, Sharma P, Kulshreshtha S K, Dey G K. Dynamics of spin clusters in amorphous Fe2O3 [J]. Phys. Rev. B, 2005, 72: 174408.
    [24] Andrew T. Ogielski and Ingo Morgenstern. Critical behavior ofthree-dimensional Ising spin-glass model [J]. Phys. Rev. Lett, 1985, 54: 928-931.
    [25] Marcano N, Gómez Sal J C, Espeso J I, Fernándz Barquín L, and Paulsen C. Cluster-glass percolative scenario in CeNi1?xCux studied by very low-temperature ac susceptibility and dc magnetization [J]. Phys. Rev. B, 2007, 76: 224419.
    [26] Mukadam M D, Yusuf S M, Sharma P, Kulshreshtha S K, Dey G K. Phys. Dynamics of spin clusters in amorphous Fe2O3 [J]. Phys. Rev. B, 2005, 72: 174408.
    [27] Li D X, Yamamoto E, Nimori S, Yubuta K, and Shiokawa Y. Spin-glass behavior in CeCu2-type uranium compound U2AuGa3 [J]. Appl. Phys. Lett, 2005, 87: 142505.
    [28] Kundu A K, Nordblad P and Rao C N R. Nonequilibrium magnetic properties of single-crystalline La0.7Ca0.3CoO3 [J]. Phys. Rev. B, 2005, 72: 144423.
    [1] Wei Y J, Ehrenberg H, Kim K B, Park C W, Huang Z F, Baehtz C. Characterizations on the structural and electronic properties of thermal lithiated Li0.33MnO2 [J]. Journal of Alloys and Compounds, 2009, 479: 273-277.
    [2] Yoshio M, Nakamura H, Xia Y Y, Lithiated manganese dioxide, Li0.33MnO2, as a 3 V cathode for lithium batteries [J]. Electrochimica Acta, 1999, 5: 273-283.
    [3] Julien C M, Massot M. Spectroscopic studies of the structural transitions in positive electrodes for lithium batteries [J]. J. Power Sources, 2003, 119: 743-748.
    [4] Julien C M, Massot M. Lattice vibrations of materials for lithium rechargeable batteries III: Lithium manganese oxides [J]. Materials Science and Engineering B, 2003, 100: 69-78.
    [5] Julien C M, Banov B, Monchilov A, Zaghib K. Lithiated manganese oxide Li0.33MnO2 as an electrode material for lithium batteries [J]. J. Power Sources, 2006, 159: 1365-1369.
    [6] Ogata A, Shimizu T, Komaba S. Crystallization of LiMn2O4 observed with high temperature X-ray diffraction [J]. J. Power Sources, 2007, 174: 756-760.
    [7] He P, Luo J Y, Yang X H, Xia Y Y. Preparation and electrochemical profile of Li0.33MnO2 nanorods as cathode material for secondary lithium batteries [J]. Electrochimica Acta, 2009, 54: 7345-7349.
    [8] Liu W, Farrington G C, Chaput F. Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the apechini process [J]. J. Electrochem. Soc., 1996, 143: 879-884.
    [9] Xia Y, Yoshio M. An investigation of lithium ion insertion into spinel structure Li-Mn-O compounds [J]. J. Electrochem. Soc., 1996, 143: 825-833.
    [10] Xia Y, Zhou Y, Yoshio M. Capacity fading on cycling of 4 V Li/LiMn2O4 cells [J]. J. Electrochem. Soc., 1997, 144: 2593-2600.
    [11] Thacheray M M. Spinel electrodes for lithium batteries [J]. J. Am. Ceram. Soc., 1999, 82: 3347-3354.
    [12] Shigemura H, Sakebe H, Kageyama H. Structure and electrochemical propertiesof LiFexMn2-xO4 (0≤x≤0.5) spinel as 5V electrode material for lithium batteries [J]. J. Electrochem. Soc., 2001, 148: A730-A736.
    [13] Yang Z H, Zhang W X, Wang Q, Song X M, Qian Y T. Synthesis of porous and hollow microspheres of nanocrystalline Mn2O3 [J]. Chemical Physics Letter, 2006, 418: 46-49.
    [14] Julien M -H, Borsa F, Carretta P, Horvati? M, Berthier C, and Lin C T. Charge Segregation, Cluster Spin Glass, and Superconductivity in La1.94Sr0.06CuO4 [J]. Phys. Rev. Lett, 1999, 83: 604-607.
    [15] Cordero F, Paolone A, Cantelli R, Ferretti M. Anelastic spectroscopy of the cluster spin-glass phase in La2-xSrxCuO4 [J]. Phys. Rev. B, 2000, 62: 5309–5312.
    [16] Mori T and Leithe-Jasper A. Spin glass behavior in rhombohedral B12 cluster compounds [J]. Phys. Rev. B, 2002, 6: 14419.
    [17] Li Dexin, Nimori Shigeki and Shiokawa Yoshinobu. Random spin freezing in uranium intermetallic compound UCuSi [J]. J. Phys.: Condens. Matter, 2006, 18: 3299–3306.
    [18] Szymczak H, Szymczak R, Baran M, Fink-Finowicki J. Cluster glass behavior of La0.9Ca0.1CoO3 single crystals [J]. Journal of Magnetism and Magnetic Materials, 2004, 272-276: 1327-1329.
    [19] Lafond A, Meerschaut A, Rouxel J. Spin-glass-like behavior of the incommensurate composite phase LaCrS3 [J]. Phys. Rev. B, 1995, 52: 1112-1119.
    [20] Zorko A , Shawish S E, Ar?on D, Jagli?i? Z, Lappas A, van Tol H and Brunel L C. Magnetic interactions inα-NaMnO2: Quantum spin-2 system on a spatially anisotropic two-dimensional triangular lattice [J]. Phys. Rev. B, 2008, 77: 024412.
    [21] Giot M, Chapon L C, Androulakis J, Green M A, Radaelli P G, and Lappas A. Magnetoelastic coupling and symmetry breaking in the frustrated antiferromagnetα-NaMnO2 [J]. Phys. Rev. Lett., 2007, 99: 247211.
    [22] Carretta P, Mariani M, Azzoni C B, and Mozzati M C. Mesoscopic phase separation in NaxCoO2 (0.65≤x≤0.75) [J]. Phys. Rev. B, 2004, 70: 024409.
    [23] Greedan J E. Geometrically frustrated magnetic materials [J]. J. Mater. Chem, 2001, 11: 37-53.
    [24] Allodi G, De Renzi R, Guidi G, Licci F, and Pieper M W. Electronic phase separation in lanthanum manganites: Evidence from 55Mn NMR [J]. Phys. Rev.B, 1997, 56: 6036.
    [25] de Vaulx C, Julien M -H, Berthier C, Horvatic′M, Bordet P, Simonet V, Chen D P, and Lin C T. Nonmagnetic insulator state in NaCoO2 and phase separation of Na vacancies [J]. Phys. Rev. Lett, 2005, 95: 186405.
    [26] Dho J, Kim I, and Lee S. Phase separation in La0.5Ca0.5MnO3 observed by 55Mn and 139La NMR [J]. Phys. Rev. B, 1999, 60: 14545-14548.
    [27] Jang Y -I, Huang B, Chou F C, Sadoway D R, and Chiang Y–M. Magnetic characterization ofλ-MnO2 and Li2Mn2O4 prepared by electrochemical cycling of LiMn2O4 [J]. J. Appl. Phys., 2000, 87: 7382.
    [28] Jaeger C, Bihler C, and Vallaitis T. Spin-glass-like behavior of Ge:Mn [J]. Phys. Rev. B, 2006, 74: 045330.
    [29] Gawiec P and Grempel D R. Quantum fluctuations in a disordered two-dimensional spin model [J]. Phys. Rev. B, 1996, 54: 5.
    [30] Du Fei, Huang Zu-Fei, Wang Chun-Zhong, Meng Xing, and Chen Gang. Spin-glass-like behavior in rhombohedral Li(Mn,Cr)O2 [J]. J. Appl. Phys., 2007, 102: 113906.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700