与耐贮性相关的水稻脂氧合酶同工酶分析、OsLOX3的基因克隆以及一个脂氧合酶基因簇的结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粮食安全是一个全球性的战略问题,而粮食贮备是其中重要的一环。已经知道,稻谷在一般贮藏条件下第二年就会产生陈化变质现象,随着贮藏过程中温度和湿度的提高,陈化过程也会迅速加快。据统计,每年我国因为陈化问题损失的包括作为食用和种子的稻谷占总产量的3%。近年来的研究表明,稻谷贮藏期间脂质的降解是导致其品质下降并产生令人不快气味的主要原因之一,其中脂氧合酶(lipoxygenase,LOX,EC1.13.11.12)是脂质降解的关键酶。因此从理论上讲,粮食作物LOX的缺失可以明显的阻止脂质过氧化作用,减缓贮藏粮食氧化变质的速度,保持清新气味,提高耐贮性,上述推测已经在水稻LOX的主要同工酶LOX-3的缺失体与耐贮性关系的研究中得到了初步证实,但是有关LOX-3缺失体的简单筛选方法、水稻种子LOX同工酶分析、LOX-3的基因克隆以及与缺失的关系还有待于进一步的研究。
     本文首先根据水稻种胚脂氧合酶-3共氧化的次生反应特性及其催化产物的氧化特性,分别建立了筛选水稻种胚LOX-3缺失体的胡萝卜素漂白比色法和I_2-KI,与常用的LOX-3单克隆抗体筛选技术相比,这两种方法具有准确、快速、简单且成本低的特点,可以进一步用于耐储藏水稻的分子育种研究。
     采用生物化学的手段发现,水稻种子发育过程中的LOX同工酶多态性是非常丰富的,其中存在有分子量明显小于68 kDa的LOX同工酶。根据不同的分离方法,水稻种子发育过程中的LOX同工酶至少是4-9条。与具有LOX-3活性的越光相比,采用梯度PAGE(5-20%)分析发现,LOX-3缺少品种Daw Dam的LOX缺少谱带分别属于第一和第三类,而且至少有4条谱带缺失;采用IEF(pH3.5-10)分析发现,DawDam种子成熟过程中明显缺少pI为4.56的LOX同工酶(Ⅱ);采用Western blotting分析也发现,LOX-3缺少品种Daw Dam的LOX缺少谱带分别属于两大类。由于LOX-3缺少品种Daw Dam的LOX-3缺少并不是一个同工酶,而是缺少等电点较小的一类LOX,因此建议把种子发育过程中的LOX同工酶划分为LOX-Ⅰ类、LOX-Ⅱ类和LOX-Ⅲ类。
     进一步的免疫电镜观察发现,越光和Daw Dam的种子发育进程中,LOX蛋白并不出现在油体上,而是分布在蛋白贮藏囊泡(protein storage vacuole,PSV)的四周,因此与底物在空间上是分离的。但是在贮藏过程中,稻谷通常会自身发生细胞结构损伤和化学成分的改变,前者包括脂质体的溶合、细胞膜完整性下降、透性增加和细胞溶质功能的丧失。因此,也会导致LOX与底物的靠近,启动LOX参与的脂质过氧化,催化生成的脂氢过氧化物再被脂氢过氧化物裂解酶(hydroperoxide lyases,HPLs)和脂氢过氧化物异构酶(hydroperoxide isomerases,HPIs)降解或自动氧化为具有挥发性的己醛、戊醛和戊醇等羰基类低分子化合物,从而产生与稻米陈化变质有关的陈米霉味。此外,也不排除LOX作为储藏蛋白或合成传递生物胁迫和非生物胁迫信息信号分子的可能性。
     进一步克隆并报道一个新的水稻种子脂氧合酶的编码基因OsLOX3,该基因位于水稻第三染色体,并与OsLOX1/2呈基因簇排列。与OsLOX1/2相比,OsLOX3表达产物的等电点是最小的,其在染色体上的位置与本实验室耐贮性的QTL定位结果也是一致的。与OsLOX3相比,发现MiniOsLOX3在第四外元处存在有点突变,因此发生提前终止的现象,其原核表达产物的分子量为28 kDa,但是也具有一定的酶活性。最后,对位于水稻第三染色体的脂氧合酶基因簇进行了生物信息学分析,包括三维结构、结构域分布、进化树分析和表达谱等,并推测水稻种子LOX基因可能存在有可变剪接的可能性。
Food security is a global strategy issue and food storage is one of the key rings in this chain. Under normal storage condition, rice grain deterioration and development of a stale flavor often appear in the second year. According to statistics from Ministry of Agriculture, the loss during storage of rough rice for food and seeds accounts for about 3% of the total production per year in China. In recent years, many investigators have demonstrated that the degradation of lipids was mainly responsible for reducing rice quality and producing stale flavor during storage, and lipoxygenase (LOX, EC 1.13.11.12) was the key enzyme for lipid degradation in above processes. Therefore, the absence of LOX enzymes in crops might decrease lipid peroxidation, alleviate the accumulation stale flavor, and thus increase storability. This assumption has been preliminarily clarified in the relationship between LOX-3-less rice and storability. However, the simple method of screening rice embryos for LOX-3-null has not established. Analysis of LOX isozymes in developing rice seeds, cloning of OsLOX3 gene and its relationship with LOX-3-null have not carried out either.
     In this paper, based on co-oxidation secondary reaction of LOX-3 and the oxidative ability of 9-hydroperoxide, the catalytic product of LOX-3, two reliable, rapid, simple and inexpensive spectrophotometic methods, named as carotene bleaching and iodide-starch methods, were developed to screen rice embryos for LOX-3-null in comparison with the monoclonal antibodies technique. Thus, above two methods could be used in breeding for storable rice cultivars.
     There are several LOX isozymes in maturing rice seeds, including some isozymes with molecular weight less than 68 kDa. According to different biochemical separating methods, there exist at least 4-9 isozyme bands. For example, in comparison with rice cultivar (Koshihikari, Japanese rice cultivar) with normal LOX-3 activity, the LOX-3-null cultivar Daw Dam reported by Suzuki et al (1996a, 2000) lack of the first and third types of LOX isozymes by native gradient PAGE (5-20%), also at least four bands disappeared. Furthermore, by using IEF methods (pH3.5-10), LOX isozyme (type II, pI4.56) could not be easily detected in Daw Dam. Meanwhile, two types of LOX isozymes disappeared confirmed by using western blotting method. In view of the fact that the lack of LOX isozymes in Daw Dam was the type of LOX isozyme with lowest pI rather than a single isozyme, we suggested that the LOX isozymes during rice maturation process was classified as three type, named as type I, II and III.
     In maturing rice seeds, the majority of LOX protein was present in protein storage vacuole (PSV) rather than oil body of both wild-type and LOX-3-null seeds, suggesting that LOX is separated from its substrate. However, physical damage during storage caused direct contact of the lipase with triacylglycerols, contributing the release of free fatty acids, especially the increase of the polyunsaturated fatty acid. Furthermore, LOX could catalyze the oxidation of polyunsaturated fatty acids, including linoleic and linolenic acids, into conjugated hydroperoxy fatty acids. Hydroperoxides were further transformed by autooxidation and enzymatic degradation, including hydroperoxide lyases (HPLs) and hydroperoxide isomerases (HPIs), into various volatile carbonyl compounds, such as hexanal, pentanal and pentanol, adding off-flavor which decreased the quality of strored rice and seriously influenced its storability. Additionally, the possibility that rice embryo LOXs may function as seed storage proteins or be involved in the synthesis signal molecule responsible for abiotic and biotic stresses could not be easily ruled out.
     Furthermore, cloning of a novel LOX gene OsLOX3 from developing rice seeds, which was located in Chromosome 3, also formed LOX gene cluster with OsLOX1/2. In comparison with the expression products of OsLOX1/2, OsLOX3 exhibited the lowest pI. The location of OsLOX3 in chromosome 3 was also consistent with QTL position related to rice storability reported by our research groups. The expression, purification and characterize of Mini0sL0X3 were also carried out. The 1 bp deletion of adenine residue, which causes a frame-shift, was at the 5' region of the fourth exon, leads to the product of MiniOsLOX3 with molecular weight being 28 kDa. Meanwhile, lower LOX activity was also detected. Finally, the bioinformatical analysis of LOX gene cluster located in chromosome 3 also illusted three-dimensional structures, domain distribution, phylogenetic analysis and the expressions profiles of the deduced OsLOX1/2/3. Additionally, we deduced that there exists the possibility of alternative splicing.
引文
丁安林,张艳,常汝镇,傅翠真.大豆脂肪氧化酶研究进展.大豆科学,1995,14(1):67-73.
    纪素兰,江玲,王益华,刘世家,刘喜,翟虎渠,万建民.利用回交重组自交群体检测水稻耐低温发芽数量性状基因座.南京农业大学学报,2007,30(1):1-6.
    刘军,黄上志,傅家瑞,汤学军.种子活力与蛋白质关系的研究进展.植物学通报,2001,18(1):46-51.
    刘南南,江玲,张文伟,刘玲珑,翟虎渠,万建民.水稻种胚LOX3基因在逆境胁迫中的作用.中国水稻科学,2008,22(1):8-14.
    刘立军,丁安林.改进的大豆脂肪氧化酶电泳显色方法.植物生理学通讯,1993,29(3):199-201.
    罗云波,生吉萍,李钰,夏红进.番茄脂肪氧合酶与乙烯释放量的关系.园艺学报,1999,26(1):28-32.
    麻浩,官春云,何小玲,丁安林.大豆种子脂肪氧化酶缺失基因控制豆腥味效果的研究.中国农业科学,2001,34(4):367-372.
    邱明发,金铁成,周瑞芳,彭风成.米谷蛋白与淀粉组分在大米陈化过程中的变化.中国粮油学报,1998,13(1):12-15.
    沈圣泉,庄杰云,王淑珍,杨国花,夏英武.水稻种子耐贮藏性QTL主效应和上位性效应分析.分子植物育种,2005,3(3):323-328.
    生吉萍,申琳,罗云波.果蔬成熟和衰老中的重要酶—脂氧合酶.果树科学,1999,16(1):72-77.
    王海滨.植物的脂肪氧化酶.植物生理学通讯,1990,26(2):63-67.
    王澎,硕士论文,水稻种胚脂氧合酶-3(LOX-3)基因的精细定位,南京农业大学,2006年.
    吴敏,陈昆松,张上隆.桃果实采后成熟过程中脂氧合酶活性变化.园艺学报,1999,26(4):227-231.
    杨洪强,贾文锁,张大鹏.水分胁迫下湖北海棠根系脂氧合酶活性与ABA积累的关系.植物学报,2000,42(3):244-248.
    张红梅,蔡宝宏,王俊丽,廖祥儒.植物的脂加氧酶.生命的化学,2003,23(2):146-148.
    张瑛,张磊,吴敬德,童继平,郑乐娅,吴跃进.植物脂肪氧化酶同功酶快速检测技术在无豆腥味大豆育种上的应用研究.大豆科学,2003,22(1):50-53.
    Axelrod B,Cheesbrough T M,Lassko S.Lipoxygenase from soybeans.Methods Enzymol.1981,71:441-451。
    Baracat-Pereira M C,de Almeida Oliveira M G,de Barros E G,Moreira M A,Santoro M M.Biochemical properties of soybean leaf lipoxygenases:Presence of soluble and membrane-bound forms. Plant Physiol Biochem, 2001, 39: 91-98.
    Beaudoin N, Rothstein S J. Developmental regulation of two tomato lipoxygenase promoters in transgenic tobacco and tomato. Plant Mol Biol, 1997, 33(5): 835-846.
    Bell E, Creelman R A, Mullet J E. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci USA, 1995, 92: 8675-8679.
    Bell E, Mullet J E. Lipoxygenase gene expression is modulated in plants by water deficit, wounding, and methyl jasmonate. Mol Gen Genet, 1991, 230:456-462.
    Bolle C, Spory S, Lubberstedt T. Segment encoding 5'-untranslated lesders of genes for thylakoid proteins contain cis-elements essential for transcription. Plant J, 1994, 6: 513-523.
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72:248-254.
    Brash A R. Lipoxygenases: Occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem, 1999, 274(34): 23679-23682.
    Brash A R, Jisaka M, Boeglin W E, Schneider C. On the basis for the positional specificity and stereo specificity of lipoxygenases. International Congress Series, 2002, 1233: 297-305.
    Bunker T W, Koetje D S, Stephenson L C, Creelman R A, Mullet J E, Grimes H D. Sink limitation induces the expression of multiple soybean vegetative lipoxygenase mRNAs while the endogenous jasmonic acid level remains low. Plant Cell, 1995, 7:1319-1331.
    Dellaporta S L, Wood T, Hicks T B. A plant DNA mini preparation: version II. Plant Mol Bio Rep, 1983, 1:19-21.
    Di Venere A, Salucci M L, Van Zadelhoff G, Veldink G, Mei G, Rosato N, Finazzi Agro' A, Maccarrone M. Structure-to-function relationship of mini-lipoxygenase, a 60 kDa fragment of soybean lipoxygenase-1 with lower stability but higher enzymatic activity. J Biol Chem, 2003, 278:18281-18288.
    Domoney C, Casey R, Turner L, Ellis N. Pisum lipoxygenase genes. Theor Appl Genet, 1991, 81: 800-805.
    Ealing P M, Casey R. The cDNA cloning of a pea (Pisum Sativum) seed lipoxygenase: sequence comparisons of the two major pea seed lipoxygenase isoforms. Biochem J, 1989,264:929-932.
    Evans D E, MacLeod L C, Eglinton J K, Gibson C E, Zhang X, Wallace W, Skerritt J S, Lance R C M. Measurement of beta-amylase in malting barley (Hordeum vulgare L.). Part 1: Development of a quantitative ELISA for beta-amylase. J Cereal Sci, 1997, 26: 229-239.
    Ferrie B J, Beaudoin N, Burkhart W, Bowsher C G, Rothstein S J. The cloning of two tomato lipoxygenase genes and their differential expression during fruit ripening. Plant Physiol, 1994,106: 109-118.
    Feussner I, Balkenhohl T J, Porzel A, Kuhn H, Wastemack C. Structural elucidation of oxygenated storage lipids in cucumber cotyledons. Implication of lipid body lipoxygenase in lipid mobilization during germination. J Biol Chem, 1997, 272(34): 21635-21641.
    Feussner I, Kuhn H, Wasternack C. Lipoxygenase-dependent degradation of storage lipids. Trends Plant Sci, 2001, 6(6): 268-273.
    Feussner I, Wasternack C, Kindl H, Kuhn H. Lipoxygenase-catalyzed oxygenation of storage lipids is implicated in lipid mobilization during germination. Proc Natl Acad Sci USA, 1995, 92: 11849-11853.
    
    Feussner I, Wasternack C. The lipoxygenase pathway. Annu Rev Plant Biol, 2002, 53: 275-297.
    Fischer A M, Dubbs W E, Baker R A, Fuller M A, Stephenson L C, Grimes H D. Protein dynamics, activity and cellular localization of soybean lipoxygenase indicated distinct functional roles for individual isoforms. Plant J, 1999,19(5): 543-554.
    Forster C, Arthur E, Crespi S, Hobbs S L A, Mullineaux P, Casey R. Isolation of a pea (Pisum Sativum) seed lipoxygenase promoter by inverse polymerase chain reaction and characterization of its expression in transgenic tobacco. Plant Mol Biol, 1994a, 26: 235-248.
    Forster C, Knox M, Domoney C, Casey R. lox1:Ps:2, a Pisum Sativum seed lipoxygenase gene. Plant Physiol, 1994b, 106:1227-1228.
    Forster C, North H, Afzal N, Domoney C, Hornostaj A, Robinson D S, Casey R. Molecular analysis of a null mutant for pea (Pisum Sativum L.) seed lipoxygenase-2. Plant Mol Biol, 1999,39:1209-1220.
    Fukuchi-Mizutani M, Ishiguro K, Nakayama T, Utsunomiya Y, Tanaka Y, Kusumi T, Ueda T. Molecular and functional characterization of a rose lipoxygenase cDNA related to flower senescence. Plant Sci, 2000,160:129-137.
    Funk C D, Funk L B, Fitzgerald G A, Samuelsson B. Characterization of human 12-lipoxygenase genes. Proc Natl Acad Sci USA, 1992, 89: 3962-3966.
    Geerts A, Feltkamp D, Rosahl S. Expression of lipoxygenase in wounded tubers of Solanum tuberosum L. Plant Physiol, 1994,105: 269-277.
    Gobel C, Feussner I, Schmidt A, Scheel D, Sanchez-Serrano J, Hamberg M, Rosahl S. Oxylipin profiling reveals the preferential stimulation of the 9-lipoxygenase pathway in elicitor-treated potato cells. J Biol Chem, 2001, 276(9): 6267-6273.
    Grechkin A. Recent developments in biochemistry of the plant lipoxygenase pathway. Prog Lipid Res, 1998, 37(5): 317-362.
    Hammond E G, Duvick D N, Fehr W R, Hildebrand D F, Lacefield E C, Pfeiffer T W. Rapid screening techniques for lipoxygenases in soybean seeds. Crop Sci, 1992, 32: 820 -821.
    Heitz T, Bergey D R, Ryan C A. A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate. Plant Physiol, 1997, 114: 1085-1093.
    
    Hildebrand D F. Lipoxygenase. Physiol Plant, 1989,76:249-253.
    Hohne M, Nellen A, Schwennesen K, Kindl H. Lipid body lipoxygenase characterized by protein fragmentation, cDNA sequence and very early expression of the enzyme during germination of cucumber seeds. Eur JBiochem, 1996, 241(1): 6-11.
    Holtman W L, Roberts M R, Oppedijk B J, et al. 14-3-3 proteins interact with a 13-lipoxygenase, but not with a 9-lipoxygenase. FEBS Lett, 2000,474:48-52.
    Hornsten L, Su C, Osbourn A E, Hellman U, Oliw E H. Cloning of the manganese lipoxygenase gene reveals homology with the lipoxygenase gene family. Eur J Biochem, 2002,269:2690-2697.
    Hughes R K, Lawson D M, Hornostaj A R, Fairhurst S A, Casey R. Mutagenesis and modelling of linoleate-binding to pea seed lipoxygenase. Eur J Biochem, 2001,268:1030-1040.
    Hughes R K, Wu Z C, Robinson D S, Hardy D, West S I, Fairhurst S A, Casey R. Characterization of authentic recombinant pea-seed lipoxygenases with distinct properties and reaction mechanisms. Biochem J, 1998,333:33-43.
    Ida S, Masaki Y, Morita Y. The isolation of multiple forms and product specificity of rice lipoxygenase. Agric Biol Chem, 1983,47(3): 637-641.
    Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1977, 227:680-685.
    Jensen A B, Poca E, Rigaud M, Freyssinet G, Pages M. Molecular characterization of L2 lipoxygenase from maize embryos. Plant Mol Biol, 1997,33: 605-614.
    Kausch K, Handa A K. Molecular cloning of a ripening-specific lipoxygenase and its expression during wild-type and mutant tomato fruit development. Plant Physiol, 1997,113:1041-1050.
    Kikuchi A, Kitamura K. Simple and rapid carotene bleaching tests for the detection of lipoxygenase isozymes in soybean seeds. Japan J Breed, 1987,37:10-16.
    Knox M, Forster C, Domoney C. Structure of the Pisum sativum seed lipoxygenase gene lox1:Ps:3. Biochim Biophys Acta, 1994, 1214 (3): 341-343.
    Koch E, Meier B M, Eiben H G, Slusarenko A. A lipoxygenase from leaves of tomato (Lycopersicon esculentum Mill.) is induced in response to plant pathogenic pseudomonads. Plant Physiol, 1992, 99: 571-576.
    Kuhn H, Thiele B J. The diversity of the lipoxygenase family. Many sequence data but little information on biological significance. FEBS Lett, 1999, 449: 7-11.
    Leone A, Melillo M T, Bleve-Zacheo T. Lipoxygenase in pea roots subjected to biotic stress. Plant Sci, 2001,161:703-717.
    Leon J, Royo J, Vancanneyt G, Sanz C, Silkowski H, Griffiths G, Sanchez-Serrano J J. Lipoxygenase H1 gene silencing reveals a specific role in supplying fatty acid hydroperoxides for aliphatic aldehyde production. J Biol Chem, 2002, 277(1): 416-423.
    Leon J, Sanchez-Serrano J J. Molecular biology of jasmonic acid biosynthesis in plants. Plant Physiol Biochem, 1999, 37(5): 373-380.
    
    Liechti R, Farmer E E. The jasmonate pathway. Science, 2002, 296:1649-1650.
    Maccarrone M, Salucci ML, Van Zadelhoff G, Malatesta F, Veldink G A, Vliegenthart J F G, Finazzi-Agro A. Tryptic digestion of soybean lipoxygenase-1 generates a 60 kDa fragment with improved activity and membrane binding ability. Biochemistry, 2001a, 40(23): 6819-6827.
    Maccarrone M, Bari M, Battista N, Finazzi-Agro A. The catalytic efficiency of soybean lipoxygenase-1 is enhanced at low gravity. Biophys Chem, 2001b, 90: 97-101.
    Maccarrone M, Van Zadelhoff G, Veldink G A, Vliegenthart J F G, Finazzi-Agro A. Early activation of lipoxygenase in lentil (Lens culinaris) root protoplasts by oxidative stress induces programmed cell death. Eur J Biochem, 2000, 267:5078-5084.
    Maccarrone M, Veldink G A, Vliegenthart J F G. Phytochrome control and anoxia effect on the activity and expression of soybean seedling lipoxygenase 1 and 2. FEBS Lett, 1991,291:117-121.
    Maccarrone M, Veldink G A, Vliegenthart J F G. Thermal injury and ozone stress affect soybean lipoxygenases expression. FEBS Lett, 1992, 309: 225-230.
    Maccarrone M, Veldink G A, Finazzi-Agro A, Vliegenthart J F G. Modulation of soybean lipoxygenase expression and membrane oxidation by water deficit. FEBS Lett, 1995, 371: 223-226.
    Matsui K, Hijiya K, Tabuchi Y, Kajiwara T. Cucumber cotyledon lipoxygenase during postgerminative growth. Its expression and action on lipid bodies. Plant Physiol, 1999,119:1279-1287.
    Mauch F, Kmecl A, Schaffrath U, Volrath S, Gorlach J, Ward E, Ryals J, Dudler R. Mechanosensitive expression of a lipoxygenase gene in wheat. Plant Physiol, 1997,114:1561-1566.
    Melan M A, Dong X N, Endara M E, Davis K R, Ausubel F M, Peterman T K. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol, 1993,101:441-450.
    Mita G, Gallo A, Greco V, Zasiura C, Casey R, Zacheo G, Santino A. Molecular cloning and biochemical characterization of a lipoxygenase in almond (Prunus dulcis) seed. Eur J Biochem, 2001, 268: 1500-1507.
    Mizuno K, Iida T, Takano A, Yokoyama M, Fujimura T. A new 9-lipoxygenase cDNA from developing rice seeds. Plant Cell Physiol, 2003, 44:1168-1175.
    Nobuta K, Venu R C, Lu C, Belo A, Vemaraju K, Kulkarai K, Wang W, Pillay M, Green P J, Wang G L, Meyers B C. An expression atlas of rice mRNAs and small RNAs. Nature Biotech, 2007, 25(4): 473-477.
    Ohta H, Ida S, Mikami B, Morita Y. Purification and characterization of rice lipoxygenase component 3 from embryos. Agric Biol Chem, 1986,50(12): 3165-3171.
    Ohta H, Shida K, Peng Y L, Furusawa I, Shishiyama J, Aibara S, Morita Y. The occurrence of lipid hydroperoxide-decomposing activities in rice and the relationship of such activities to the formation of antifungal substances. Plant Cell Physiol, 1990, 31(8): 1117-1122.
    Ohta H, Shida K, Peng Y L, Furusawa I, Shishiyama J, Aibara S, Morita Y. A lipoxygenase pathway is activated in rice after infection with the rice blast fungus Magnaporthe grisea. Plant Physiol, 1991, 97: 94-98.
    Ohta H, Shirano Y, Tanaka K, Morita Y, Shibata D. cDNA cloning of rice lipoxygenase L-2 and characterization using an active enzyme expressed from the cDNA in Escherichia coli. Eur J Biochem, 1992, 206: 331-336.
    
    Oliw E H. Plant and fungal lipoxygenases. Prostaglandins Other Lipid Mediat, 2002,68-69:313-323.
    Ory R L, Delucca A J, St Angelo A J, Dupuy H P. Storage quality of brown rice as affected by packaging with and without carbon dioxide. J Food Prot, 1980, 43:929-932.
    Peng Y L, Shirano Y, Ohta H, Hibino T, Tanaka K, Shibata D. A novel lipoxygenase from rice. Primary structure and specific expression upon incompatible infection with rice blast fungus. J Biol Chem, 1994, 269(5): 3755-3761.
    Pfeiffer T W, Hildebrand D F, Tekrony D M. Agronomic performance of soybean lipoxygenase isolines. Crop Sci. 1992, 32: 357-362.
    Pinhero R G, Paliyath G, Yada R Y, Murr D P. Modulation of phospholipase D and lipoxygenase activities during chilling. Relation to chilling tolerance of maize seedlings. Plant Physiol Biochem, 1998, 36(3): 213-224.
    Porta H, Rueda-Bemtez P, Campos F, Colmenero-Flores J M, Colorado J M, Carmona M J, Covarrubias A A, Rocha-Sosa M. Analysis of lipoxygenase mRNA accumulation in the common bean (Phaseolus vulgaris L.) during development and under stress conditions. Plant Cell Physiol, 1999, 40(8): 850-858.
    Porta H, Rocha-Sosa M. Plant lipoxygenase. Physiological and molecular features. Plant Physiol, 2002, 130: 15-21.
    Provost P, Samuelsson B, Radmark O. Interaction of 5-lipoxygenase with cellular proteins. Proc Natl Acad Sci USA, 1999, 96:1881-1885.
    Reynaud D, Ali M, Demin P, Pace-Asciak C R. Formation of 14,15-hepoxilins of the A_3 and B_3 series through a 15-lipoxygenase and hydroperoxide isomerase present in garlic roots. J Biol Chem, 1999, 274(40): 28213-28218.
    Robinson D S, Wu Z, Domoney C, Casey R. Lipoxygenases and the quality of foods. Food Chem, 1995, 54: 33-43.
    Rodriguez-Rosales M P, Kerkeb L, Ferrol N, Donaire J P. Lipoxygenase activity and lipid composition of cotyledons and oil bodies of two sunflower hybrids. Plant Physiol Bichem, 1998, 36(4): 285-291.
    Rouster J, Mechelen J V, Cameron-Mills V. The untranslated leader sequence of the barley lipoxygenase 1 (Lox1) gene confers embryo-specific expression. Plant J, 1998,15(3): 435-440.
    Royo J, Leon J, Vancanneyt G, Albar J P, Rosahl S, Ortego F, Castanera P, Sanchez-Serrano J J. Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of proteinase inhibitors and increases weight gain of insect pests. Proc Natl Acad Sci USA, 1999, 96(3): 1146-1151.
    Royo J, Vancanneyt G, Perez A G, Sanz C, Stormann K, Rosahl S, Sanchez-Serrano J J. Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns. J Biol Chem, 1996, 271(35): 21012-21019.
    Rusterucci C, Montillet J L, Agnel J P, Battesti C, Alonso B, Knoll A, Bessoule J J, Etienne P, Suty L, Blein J P, Triantaphylides C. Involvement of lipoxygenase-dependent production of fatty acid hydroperoxides in the development of the hypersensitive cell death induced by cryptogein on tobacco leaves. J Biol Chem, 1999, 274(51): 36446-36455.
    Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. 3rd. New York: Cold-Spring Harbor Laboratory Press, 2001.
    Saravitz D M, Siedow J N. The differential expression of wound-inducible lipoxygenase genes in soybean leaves. Plant Physiol, 1996,110: 287-299.
    Schaffrath U, Zabbai F, Dudler R. Characterization of RCI-1, a chloroplastic rice lipoxygenase whose synthesis is induced by chemical plant resistance activators. Eur J Biochem, 2000, 267: 5935-5942.
    Schmitt N F, Van Mechelen J R. Expression of lipoxygenase isoenzymes in developing barley grains. Plant Sci, 1997,128:141-150.
    
    Serageldin I. Biotechnology and food security in the 21st century. Science, 1999, 285(5426): 387 -389.
    Sharp R N, Timme L K. Effects of storage time, storage temperature, and packaging methods on shelf life of brown rice. Cereal Chem, 1986, 63: 247-251.
    Shibata D, Kato T, Tanaka K. Nucleotide sequences of a soybean lipoxygenase gene and the short intergenic region between an upstream lipoxygenase gene. Plant Mol Biol, 1991, 16: 353-359.
    Shibata D, Steczko J, Dixon J E, Andrews P C, Hermodson M, Axelrod B. Primary structure of soybean lipoxygenase L-2. J Biol Chem, 1988, 263(14): 6816-6821.
    Shibata D, Steczko J, Dixon J E, Hermodson M, Yazdanparast R, Axelrod B. Primary structure of soybean lipoxygenase-1. J Biol Chem, 1987, 262(21): 10080-10085.
    Siedow J N. Plant lipoxygenase: structure and function. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42:145-188.
    Start W G, Ma Y, Polacco J C, Hildebrand D F, Freyer G A, Altschuler M. Two soybean seed lipoxygenase nulls accumulate reduced levels of lipoxygenase transcripts. Plant Mol Biol, 1986, 7: 11-23.
    Steczko J, Donoho G P, Clemens J C, Dixon J E, Axelrod B. Conserved histidine residues in soybean lipoxygenase: functional consequences of their replacement. Biochemistry, 1992,31:4053-4057.
    Su C, Oliw E H. Manganese lipoxygenase. J Biol Chem, 1998,273(21): 13072-13079.
    Sudharshan E, Rao A G A. Involvement of cysteine residues and domain interactions in the reversible unfolding of lipoxygenase-1. J Biol Chem, 1999, 274(50): 35351-35358.
    Surrey K. Spectrophotometry method for determination of lipoxidase activity. Plant Physiol, 1964, 39: 65-70.
    Suurmeijer C N, Perez-Gilabert M, van der Hijden H, Veldink G A, Vliegenthart J F. Purification, product characterization and kinetic properties of soluble tomato lipoxygenase. Plant Physiol Biochem, 1998, 36(9): 657-663.
    Suzuki Y, Higo K I, Hagiwara K, Ohtsubo K I, Kobayashi A. Production and use of monoclonal antibodies against rice embryo lipoxygense-3. Biosci Biotech Biochem, 1992, 56(4): 678-679.
    Suzuki Y, Ise K, Li C Y, Honda I, Iwai Y, Matsukura U. Volatile components in stored rice [Oryza sativa (L.)] of varieties with and without lipoxygenase-3 in seeds. J Agric Food Chem, 1999, 47: 1119-1124.
    Suzuki Y, Ise K, Nagamine T. Geographical variation of the gene, (lox3(t)), causing lipoxygenase-3 deficiency in Asian rice varieties. Rice Genet Newsl, 2000,17:13-14.
    Suzuki Y, Matsukura U. Lipoxygenase activity in maturing and germination rice seeds with and without lipoxygenase-3 in mature seeds. Plant Sci, 1997,125:119-126.
    Suzuki Y, Nagamine T, Kobayashi A, Ohtsubo K. Detection of a new rice variety lacking lipoxygenase-3 by monoclonal antibodies. Japan J Breed, 1993,43:405-409.
    Suzuki Y, Nagamine T, Okuno K. Genetic analysis of null-allele for lipoxygenase-3 in rice seeds. Euphytica, 1996a, 91: 99-101.
    Suzuki Y, Yasui T, Matsukura U, Terao J. Oxidative stability of bran lipids from rice [Oryza sativa (L.)] lacking lipoxygenase-3 in seeds. J Agric Food Chem, 1996b, 44: 3479-3483.
    Trawatha S E, Tekrony D M, Hildebrand D F. Soybean lipoxygenase mutants and seed longevity. Crop Sci, 1995,35:862-868.
    Vicient C M, Delseny M. Isolation of total RNA from Arabidopsis thaliana seeds. Anal Biochem, 1999, 268:412-413.
    Wang C X, Croft K P, Jarlfors U, Hildebrand D F. Subcellular localization studies indicate that lipoxygenases 1 to 6 are not involved in lipid mobilization during soybean germination. Plant Physiol, 1999,120(1): 227-235.
    Wang R, Shen W, Liu L, Jiang L, Liu Y, Su N, Wan J. A novel lipoxygenase gene from developing rice seeds confers dual position specificity and responds to wounding and insect attack. Plant Mol Biol, 2008, 66:401-414.
    Wang W H, Kato T, Takano T, Shibata D, Kitamura K, Takeda G. Two single-base substitutions involved in altering in a paired-box of AAATAC in the promoter region of soybean lipoxygenase L-3 gene impair the promoter function in tobacco cells. Plant Sci, 1995,109: 67-73.
    Wang W H, Takano T, Shibata D, Kitamura K, Takeda G. Molecular basis of a null mutation in soybean lipoxygenase 2: substitution of glutamine for an iron-ligand histidine. Proc Natl Acad Sci USA, 1994,91: 5828-5832.
    Wang Y Z, Zhang D P. Activities, quantitative changes and subcellular localization of α-amylase during development of apple fruit. Acta Bot Sin, 2002,44(1):34-41.
    Werz O, Klemm J, Samuelsson B, Radmark O. 5-lipoxygenase is phosphorylated by p38 kinase-dependent MAPKAP kinases. Proc Natl Acad Sci USA, 2000, 97(10): 5261-5266.
    Wisniewski J P, Gardner C D, Brewin N J. Isolation of lipoxygenase cDNA clones from pea nodule mRNA. Plant Mol Biol, 1999, 39(4): 775-783.
    Yenofsky R L, Fine M, Liu C. Isolation and characterization of a soybean (Glycine max) lipoxygenase-3 gene. Mol Gen Genet, 1988, 211: 215-222.
    Yuan Q P, Quackenbush J, Sultana R, Pertea M, Salzberg S L, Buell C R. Rice bioinformatics. Analysis of rice sequence data and leveraging the data to other plant species. Plant Physiol, 2001, 125: 1166-1174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700