黄渤海典型水域生态系统能量传递与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以海洋食物网作为海洋生态系统整合研究的重要切入口,以Ecopath with Ecosim模型为主要研究方法,构建和比较黄渤海典型水域,包括黄渤海、长江口邻近海域以及莱州湾的生态系统模型,分析典型海域生态系统的结构与功能、能量流动与营养相互关系,评价捕捞对生态系统的影响,探讨莱州湾中国对虾增殖放流的生态容量等,为基于生态系统水平的渔业管理提供基础研究依据。主要研究结果如下:
     (1)根据2000-2001年间的渔业资源、生态环境的调查数据,构建了包括22个功能群的黄海南部海域生态系统的Ecopath模型。结果表明,2000-2001年间主要高营养级生物(鱼类、虾蟹、头足类等)的营养级范围是2.78-4.39,渔获物的平均营养级是3.24。生态系统的营养流动主要是发生在食物网的较低营养级部分,系统营养转换效率是8.1%,其中,7.1%来自碎屑,9.3%来自初级生产者浮游植物。从第Ⅱ营养级到更高营养级间的转换效率分别是:5.0%,5.7%,18.5%和19.7%-20.4%。初级生产者食物链对生态系统能量总流动的贡献是61%,碎屑食物链是39%。渔业捕捞活动对大多数捕捞种类有负影响作用,黄海南部的捕捞压力较大,系统的渔业总效率值较高,维持渔业活动所需要的初级生产量也较高,均高于全球趋势。通过估计系统的各种生态参数,当前黄海南部生态系统处于不成熟的、不稳定的阶段。
     (2)根据2000年秋季和2006年秋季长江口及邻近海域渔业资源和生态环境调查数据,构建两个时期的Ecopath模型,比较分析了三峡工程蓄水前后该海域生态系统的结构、能量流动的特征,探讨三峡工程对河口生态系统的影响。三峡蓄水后低营养级层次渔获物数量增加,引起渔获物的平均营养级下降,从3.37降至3.33。相同食性的鱼类功能群的捕捞、捕食死亡率比例也发生一定的变化,捕捞死亡率仍占较高比例,生态营养效率值两个时期都具有较高值。2006年秋季总生物量、系统总流量、总初级生产量与净生产量比2000年秋季有增加趋势,第Ⅰ营养级的总流量较2000年秋季增加了23%;初级生产者食物链的转换效率增加,碎屑链的重要性略有降低。2006年秋季聚合度值较2000年秋季稍高,FML、FCI等系统成熟度指数比较接近,相差不大,两个时期长江口及邻近海域生态系统均处于脆弱的不稳定期。
     (3)根据1982年和1992年渤海渔业资源和生态环境的历史数据,构建2个时期的Ecopath模型,比较分析了10年间渤海生态系统结构以及渔业资源的变化。模型包含鳀、黄鲫、蓝点马鲛、其它中上层鱼类、小黄鱼、花鲈、其它底层鱼类、底栖鱼类、浮游动物、浮游植物、碎屑等17个功能群。研究发现,1992年渤海生态系统的总生物量比1982年有所下降:小型中上层鱼类成为渔业资源的主要成分,其生物量较1982年明显增加;渔获物平均营养级有所下降。从系统规模看1982年大于1992年,1982年到1992年的十年间,引起渤海生态系统结构变化的主要原因是初级生产力的变化以及捕捞因素。1982年与1992年渤海生态系统均处于脆弱的不稳定期,仍有较高的剩余生产量有待利用,因此渔业资源的恢复和增加具有一定的物质基础。
     (4)以1982年的渤海Ecopath静态模型为起始状态,设置相同的各功能群,利用CPUE和渔业相对捕捞强度作为时间强制序列,构建渤海Ecosim模型,模拟1982-2008年渤海生态系统发育的动态变化及其捕捞的影响。研究发现,1982-2008年间,只有口虾蛄的生物量保持上升趋势,主要经济鱼种小黄鱼、蓝点马鲛、鲲、花鲈、黄鲫等的生物量均呈下降趋势,虾蟹类、头足类的生物量相对稳定。渔获物平均营养级在1982-2008年间明显下降,总捕捞产量在1984年之后一直保持上升趋势,两者之间存在显著的负相关;FIB指数的变动与捕捞产量的变动保持一致。Q-90多样性指数在1982-1987年间处于波动状态,从1988-1994年间保持增长趋势,在1994年之后迅速下降,由2.5降至0.5附近,生态系统的生物多样性下降。模型终止状态(2008年)与起始状态(1982年)的比较表明,成熟度降低,生态系统出现一定程度退化,渔业捕捞是渔业生态系统出现退化的主要原因,降低了生态系统总体的生物量水平。
     (5)根据2009-2010年的莱州湾渔业资源与生态环境数据,构建了由26个功能群组成的莱州湾生态系统Ecopath模型,分析了生态系统的总体特征、营养相互关系与关键种,计算了放流品种中国对虾的增殖生态容量。系统的总体特征参数:系统的总初级生产量/总呼吸(TPP/TR)为1.53、总初级生产量/总生物量(TPP/B)为24.54,同时具有较低的循环指数(FCI=0.07)、较高的剩余生产量434.41t·km-2yr-1和较低的系统连接指数(CI=0.29),综合表明该系统目前处于脆弱的不稳定期。关键种分析得出中国对虾目前不是莱州湾生态系统的关键种,当前中国对虾的生物量是0.1143t·km-2,有较大的增殖潜力;当生物量增长到25.8倍时将不会超过增殖生态容量2.9489t·km-2。
Based on Ecopath with Ecosim software, food web as an important cut-in point of integrated marine ecosystem research, the typical waters of the Yellow and Bohai Sea ecosystem model were constructed, including the Yellow and the Bohai Sea, the Yangtze River Estuary and adjacent waters and Laizhou Bay. The trophic interactions, energy flow, ecosystem structure and function and fishing impact on the ecosystems were analyzed, and ecological carrying capacity of stock enhancement of Chinese shrimp was discussed in Laizhou Bay. The aims of present thesis are to provide basic information for ecosystem-based fisheries management. The main results were as follows:
     (1) A trophic mass-balance model of the southern Yellow Sea during2000-2001was constructed, including22important functional groups and their diet composition studied. The trophic levels of fish, shrimp, crabs, and cephalopods were between2.78and4.39, and the mean trophic level of the fisheries was3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was8.1%, of which7.1%was from primary producers and9.3%was from detritus within the ecosystem. The transfer efficiency between trophic levels Ⅱ to Ⅲ to IV to V to> V was5.0%,5.7%,18.5%, and19.7%-20.4%, respectively. Of the total flow, phytoplankton contributed61%and detritus contributed39%. Fishing was defined as a top predator within the ecosystem, and had a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, the data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum's ecological parameters, this ecosystem was at an immature stage.
     (2) Based on the investigations of fishery resources and environment between Autumn2000and Autumn2006, the mass-balance models of the Yangtze River Estuary and adjacent waters ecosystem were constructed during the two periods. The changes of the ecosystem structure and energy flow were compared and analyzed before and after the sluice of the Three Gorges Dam, the impact on the estuary ecosystem discussed. Since the catch of lower trophic level species increased in Autumn2006, the mean trophic level of catch declined from3.37to3.33. Relative mortalities of same diet fish groups had some changes, and fishing mortality rate was higher. The ecological efficiencies during two periods had both high values. The total biomass, system throughput, primary production and net system production of Autumn2006were higher, and the system throughput in trophic level I increased23%than that of Autumn2000. The transfer efficiency of primary producers increased, and the role of detritus in nutrient regeneration decreased. The ascendency in Autumn2006was a little higher than that in Autumn2000, and FML and FCI index was close to Autumn2000. Based on analysis of Odum's ecological parameters, this ecosystem in Autumn2000and Autumn2006were both in developmental stage.
     (3) Based on the investigations of fishery resources and environment of the Bohai Sea in1982and1992, the Ecopath models of the Bohai Sea ecosystem during the two periods were constructed by the EwE modeling software. The changes of the Bohai Sea ecosystem structure and fishery resources between ten years were compared and analyzed. The models included17functional groups covering the main trophic flow of the Bohai Sea ecosystem, which were Japanese anchovy, Scaly hairfin anchovy, Japanese Spanish mackerel, other pelagic fishes, small yellow croaker, seabass, benthic fishes, other demersal fishes, zooplankton, phytoplankton, detritus, etc. The results indicated that the total biomass of1992was lower than that of1982, and small sized pelagic fishes have become the main components of the fishery resources in the Bohai Sea in1992, and the proportion was obviously higher than that in1982. The mean trophic level of catch declined in1992. The Bohai Sea ecosystem in1982and1992were both in developmental stage, and the system scale in1982was greater than that in1992. From1982to1992, the changes of the Bohai Sea ecosystem structure were mainly due to the decrease of primary production and increase of fishing pressure. Since there was high surplus production, the recovery of depleted fishery stocks and increase of fishery resources may be possible and high potential if the rational conservation measures were applied.
     (4) Using1982Bohai Sea model as the starting status, an Ecosim model was constructed in Bohai Sea, including the same functional groups. This model simulated the dynamic changes in different development stages of Bohai Sea ecosystem, and the fishing impact on this ecosystem, using CPUE and relative fishing effort time series to drive this model. From1982to2008, the biomass of mantis shrimp retained increasing, the biomass of main economical fishes decreased, including small yellow croaker, Japanese spanish mackerel, Japanese anchovy, seabass and scaly hairfin anchovy, and the biomass of shrimps, crabs and cephalopods relatively stabilized. The mean trophic level of catch declined obviously from1982to2008, and had notably negative correlation with the total catch. FIB index had the same change trends with the total catch, increasing after1984. Q-90diversity index was in a state of fluctuation from1982to1987, maintaining growth trend from1988tol994, followed by a rapid decline after1994, from2.5to around0.5, and ecosystem biodiversity declined. Compared start state (1982) with end state (2008) of the model, the maturity of ecosystem decreased. Overfishing resulted in the degeneration of ecosystem and the decline of the total biomass level.
     (5) Based on the data of surveys of fishery resources and environment from2009to2010, an Ecopath mass-balance model of the Laizhou Bay ecosystem was constructed, including26functional groups. This study analyzed the summary statistics parameters of the ecosystem, mixed trophic impacts and keystone species, and calculated the ecological carrying capacity of Chinese shrimp enhancement by Ecopath model. The ecosystem attributes statistics:the total primary production/total respiration (TPP/TR) and total primary production/total biomass (TPP/B) was1.53and24.54, respectively, together with low Finn's cycling index (0.07), high surplus production being434.41t-km-2yr-1and low system connectance index (0.29), indicating that this ecosystem was at an early development stage according to Odum's theory. Moreover, the analysis on the keystone species showed that Chinese shrimp was not a keystone species of this ecosystem. Current biomass of Chinese shrimp was0.1143t-km2, and Chinese shrimp has potential for continued enhancement. The biomass of Chinese shrimp could be increased25.8times without exceeding the ecological carrying capacity of2.9489t-km-2.
引文
[1]唐启升,苏纪兰,孙松,等.中国近海生态系统动力学研究进展.地球科学进展,2005a,20(12):1288-1299
    [2]唐启升,苏纪兰,张经.我国近海生态系统食物产出的关键过程及其可持续机理.地球科学进展,2005b,20(12):1280-1287
    [3]何池全.三江平原毛果苔草湿地能量流动过程分析.生态学报,2002,22(8):1350-1353
    [4]高会旺,杨华,张英娟,等.渤海初级生产力的若干理化影响因子初步分析.青岛海洋大学学报,2001,31(4):487-494
    [5]唐启升.应用VPA方法概算黄海鲱鱼的渔捞死亡和资源量.海洋学报,1986,8(4):476-486
    [6]金显仕,Johannes H,赵宪勇,李富国.黄海鳀鱼限额捕捞的研究.中国水产科学,2001a,8(3):81-83
    [7]李向心.基于个体发育的黄渤海鳀鱼种群动态模型研究:[博士学位论文].青岛:中国海洋大学,2007
    [8]王震勇.胶州湾浮游生态系统四十年变化的模拟与分析:[硕士学位论文].青岛:中国海洋人学,2007
    [9]唐启升,孙耀,郭学武,张波.黄、渤海8种鱼类的生态转换效率及其影响因素.水产学报,2002,26(3):219-225
    [10]张其永,林秋眠,林尤通,等.闽南—台湾浅滩渔场鱼类食物网研究.海洋学报,1981,3(2):275-290
    [11]邓景耀,孟田湘,任胜民.渤海鱼类食物关系的初步研究.生态学报,1986,6(4):356-364
    [12]邓景耀,姜卫民,杨纪明,等.渤海主要生物种间关系及食物网研究.中国水产科学,1997,4(4):1-7
    [13]韦晟,姜卫民.黄海鱼类食物网的研究.海洋与湖沼,1992,23(2):182-192
    [14]杨纪明.渤海无脊椎动物的食性和营养级研究.现代渔业信息,2001,16(9):8-16
    [15]程济生,朱金声.黄海主要经济无脊椎动物摄食特征及其营养层次的研究.海洋学报,1997,19(6):102-108
    [16]张波,唐启升.渤、黄、东海高营养层次重要生物资源种类的营养级研究.海洋科学进展,2004,22(4):393-404
    [17]唐启升,苏纪兰.中国海洋生态系统动力学研究Ⅰ.关键科学问题与研究发展战略.北京:科学出版社,2000
    [18]纪炜炜,李圣法,陈雪忠.鱼类营养级在海洋生态系统研究中的应用.中国水产科学,2010,17(4):878-887
    [19]徐珊楠,陈作志,郑杏雯,黄小平,李适宇.红树林种植-养殖耦合系统的养殖生态容量.中国水产科学,2010,17(3):393-401
    [20]仝龄,唐启升,Pauly D.渤海生态通道模型的初探.应用生态学报,2000,11(3):435-440
    [21]李云凯,宋兵,陈勇,等.太湖生态系统发育的Ecopath with Ecosim动态模拟.中国水产科学,2009,16(2):257-265
    [22]汤毓祥,邹娥梅,Heung-Jae L冬至初春黄海暖流的路径和起源.海洋学报,2001,23(1):1-12
    [23]王辉武.黄海暖流季节和年际变化研究:[硕士学位论文].青岛:国家海洋局第一研究所,2008
    [24]金显仕,赵宪勇,孟田湘,崔毅.黄渤海生物资源与栖息环境.北京:科学出版社,2005
    [25]唐启升,贾晓平,郑元甲,孟田湘,等.中国专属经济区海洋生物资源与栖息环境.北京:科学出版社,2006
    [26]金显仕.黄东海渔业资源群落结构与优势种交替.中国海洋生态系统动力学研究Ⅰ关键科学问题与研究发展战略.北京:科学出版社,2000,62-66
    [27]徐宾铎,金显仕,梁振林.秋季黄海底层鱼类群落结构的变化.中国水产科学,2003,10(2):148-154
    [28]曾玲,李显森,赵宪勇,等.黄海中南部鳀鱼的生殖力及其变化.中国水产科学,2005, 12(5):569-574
    [29]水柏年.黄海南部、东海北部小黄鱼的年龄与生长研究.浙江海洋学院学报,2003,22(1):16-20
    [30]张国政.黄海小黄鱼种群特征及其影响因素研究:[硕士学位论文].青岛:中国海洋大学,2010
    [31]李忠炉.黄海小黄鱼、大头鳕和黄鮟鱇生物学特征的年际变化:[博士学位论文].青岛:中国科学院海洋研究所,2011
    [32]金显仕.山东半岛南部水域春季游泳动物群落结构的变化.水产学报,2003,27(1):19-24
    [33]朱建成,赵宪勇,李富国.黄海鳀鱼的生长特征及其年际与季节变化.海洋水产研究,2007,28(3):64-72
    [34]张国政,李显森,金显仕,等.黄海南部小黄鱼生长、死亡和最适开捕体长.中国水产科学,2010,17(4):839-846
    [35]唐启升.海洋食物网与高营养层次营养动力学研究策略.海洋水产研究,1999,20(2):1-11
    [36]陈晶晶.中国海真光层深度遥感反演及其时空变化研究:[硕士学位论文].厦门:厦门大学,2004
    [37]张志南,慕芳红,于子山,等.南黄海鳀鱼产卵场小型底栖生物的丰度和生物量.青岛海洋大学学报,2002,32(2):251-258
    [38]刘录三,李新正.南黄海春秋季大型底栖动物分布现状.海洋与湖沼,2003,24(1):26-32
    [39]苏纪兰,唐启升,等.中国海洋生态系统动力学研究Ⅱ渤海生态系统动力学过程.北京:科学出版社,2002
    [40]欧阳力剑,郭学武.东、黄海主要鱼类Q/B值与种群摄食量研究.渔业科学进展,2010,31(2):23-29
    [41]张波,唐启升,金显仕.黄海生态系统高营养层次生物群落功能群及其主要种类.生态学报,2009a,29(3):1099-1111
    [42]金显仕,程济生,邱盛尧,等.黄渤海渔业资源综合研究与评价.北京:海洋出版社,2006, p.389-398
    [43]江红.东海渔业生态系统及其保护区情景模拟分析:[博士学位论文].上海:华东师范大学,2008
    [44]韦晟,姜卫民.黄海鱼类食物网的研究.海洋与湖沼,1992,23(2):182-192
    [45]林景祺.小黄鱼幼鱼和成鱼的摄食习性及其摄食条件的研究.海洋渔业资源论文集.北京:农业出版社,1962,34-43
    [46]程家骅,李圣法,丁峰元,等.东、黄海大型水母爆发现象及其可能成因浅析.现代渔业信息,2004,19(5):10-12
    [47]刘瑞玉,罗秉征.三峡工程对长江口生态与渔业的影响.水土保持通报,1987,7(4):37-40
    [48]陈吉余,徐海根.三峡工程对长江河口的影响.长江流域资源与环境,1995,4(3):242-246
    [49]线薇薇,刘瑞玉,罗秉征.三峡水库蓄水前长江口生态与环境.长江流域资源与环境,2004,13(2):119-123
    [50]单秀娟,线薇薇,武云飞.三峡工程蓄水前后秋季长江口鱼类浮游生物群落结构的动态变化初探.中国海洋大学学报,2005,35(6):936-940
    [51]柴超,俞志明,宋秀贤,沈志良.三峡工程蓄水前后长江口水域营养盐结构及限制特征.2007,28(1):24-29
    [52]包伟静,曹双,林红.三峡水库蓄水前后大通水文站泥沙变化过程分析.水资源研究,2010,31(3):21-23
    [53]张志南,林岿旋,周红,韩洁,王睿照,田胜艳.东、黄海春秋季小型底栖生物丰度和生物量研究.生态学报,2004,24(5):997-1005
    [54]刘录三,孟伟,田自强,蔡玉林.长江口及毗邻海域大型底栖动物的空间分布与历史演变.生态学报,2008,8(7):3027-3034
    [55]郝锵.中国近海叶绿素和初级生产力的时空分布特征和环境调控机制研究:[博士学位论文].青岛:中国海洋大学,2010
    [56]程家骅,张秋华,李圣法,等.东黄海渔业资源利用.上海:上海科学技术出版社,2006a
    [57]郑元甲,陈雪忠,程家骅,等.东海大陆架生物资源与环境.上海:上海科学技术出版社,2003
    [58]张波,唐启升,金显仕,东海高营养层次鱼类功能群及其主要种类.中国水产科学,2007,4(6):939-949
    [59]张波,金显仕,唐启升.长江口及邻近海域高营养层次生物群落功能群及其变化.应用生态学报,2009b,20(2):344-351
    [60]韩博平.生态网络分析的研究进展.生态学杂志,1993,12(6):41-45
    [61]宋兵.太湖渔业和环境的生态系统模型研究:[博学位论文].上海:华东师范大学,2004
    [62]赵传絪,陈渊泉,邵泽民,等.长江径流对河口及邻近海区渔业影响的初步研究.水产学报,1988,12(4):315-326
    [63]线薇薇,刘瑞玉,罗秉征.2004.三峡水库蓄水前长江口生态与环境[J].长江流域资源与境,13(2):119-123
    [64]罗秉征,沈焕庭.三峡工程与河口生态环境.北京:科学出版社,1994,253-343
    [65]程家骅,丁峰元,李圣法,等.夏季东海北部近海鱼类群落结构变化.自然资源学报,2006b,21(5):775-782
    [66]全为民,沈新强,韩金娣,陈亚瞿.长江口及邻近水域富营养化现状及变化趋势的评价与分析.海洋环境科学,2005,24(3):13-16
    [67]金显仕.渤海主要渔业生物资源变动的研究.中国水产科学,2001b,7(4):22-26
    [68]金显仕,唐启升.渤海渔业资源结构、数量分布及其变化.中国水产科学,1998,5(3):18-24
    [69]邓景耀,金显仕.渤海越冬场渔业生物资源量和群落结构的动态特征.自然资源学报,2001,16(1):42-46
    [70]张波,唐启升.渤、黄、东海高营养层次重要生物资源种类的营养级研究.海洋科学进展,2004,22(4):393-404
    [71]郭旭鹏,金显仕,戴芳群.渤海小黄鱼生长特征的变化.中国水产科学,2006,13(2):243-249
    [72]陈江麟,刘文新,刘书臻,等.渤海表层沉积物重金属污染评价.海洋科学,2004,28(12): 16-21
    [73]刘学海.渤海近岸水域环境污染状况分析.环境保护科学,2010,36(1):14-18
    [74]李显森,牛明香,戴芳群.渤海渔业生物生殖群体结构及其分布特征.海洋水产研究,2008,29(4):15-21
    [75]邓景耀,孟田湘,任胜民.渤海鱼类的食物关系.海洋水产研究,1988a,9:151-172
    [76]朱鑫华.渤海渔业资源数量分布及群落增长量.渤海渔业资源调查报告,1992
    [77]邓景耀,孟田湘,任胜民,等.渤海鱼类种类组成及数量分布.海洋水产研究,1988b,9:11-89
    [78]金显仕,邓景耀.莱州湾渔业资源群落结构和生物多样性的变化.生物多样性,2000,8(1):65-72
    [79]邓景耀,金显仕.莱州湾及黄河口水域渔业生物多样性及其保护研究.动物学研究,2000,21(1):76-82
    [80]邓景耀.对虾放流增殖的研究.海洋渔业,1997,1:1-6
    [81]邓景耀.对虾渔业生物学研究现状.生命科学,1998,10(4):191-194,197
    [82]张秀梅,王熙杰,涂忠,等.山东省渔业资源增殖放流现状与展望.中国渔业经济,2009,2(27):51-58
    [83]李继龙,王国伟,杨文波,等.国外渔业资源增殖放流状况及其对我国的启示.中国渔业经济,2009,3(27):111-123
    [84]唐启升.关于容纳量及其研究.海洋水产研究,1996,17(2):1-5
    [85]周红,华尔,张志南.秋季莱州湾及邻近海域大型底栖动物群落结构的研究.中国海洋大学学报,2010,40(8):080-087
    [86]张波,李忠义,金显仕.渤海鱼类群落功能群及其主要种类.水产学报,2012,36(1):64-72
    [87]杨纪明.渤海无脊椎动物的食性和营养级研究.现代渔业信息,2001,16(9):8-16
    [88]唐启升,韦晟,姜卫民.渤海菜州湾渔业资源增殖的敌害生物及其对增殖种类的危害.应 用生态学报,1997,8:199-206
    [89]刘瑞玉,崔玉珩,徐凤山.胶州湾中国对虾增殖效果与回捕率的研究.海洋与湖沼,1993,24:137-142
    [90]叶昌臣,李玉文,韩茂仁等.黄海北部中国对虾合理放流数量的讨论.海洋水产研究,1994a,15:9-18
    [91]孙军,刘东艳,柴心玉,钱树本.莱州湾及潍河口夏季浮游植物生物量和初级生产力的分布.海洋学报,2002,24(5):81-90
    [92]叶昌臣,孙德山,郑宝太等.黄海北部放流虾的死亡特征和去向的研究.海洋水产研究,1994b,11(15):31-38
    [93]徐君卓,淮彦.象山港中国对虾放流移植的生产性试验.海洋水产科技,1991,(2):1-60
    [94]Pauly D, Christensen V, Guenette S, et al. Towards sustainability in world fisheries. Nature, 2002,418:689-695
    [95]Hoegh-Guldberg O and Bruno J F. The Impact of Climate Change on the World's Marine Ecosystems. Science,2010,328:1523-1528
    [96]FAO. The state of the World's Fisheries and Aquaculture 2010. Food and Agriculture Organization of the United Nations, Rome:2010
    [97]Anticamara J A, Watson R, Gelchua A, Pauly D. Global fishing effort (1950-2010):Trends, gaps, and implications. Fisheries Research,2011.107:131-136
    [98]MBER. Supplement to the Science Plan and Implementation Strategy [R]. IGBP Report No. 52A. Stockholm:IGBP Secretariat,2010:36
    [99]Jennings S, and Kaiser M J. The effects of fishing on marine ecosystems. Advances in Marine Biology,1998,34:203-314
    [100]Pauly D, Christensen V, Dalsgaard J, Froese R and Torres F. Fishing down the marine food webs. Science,1998,279:860-863
    [101]Lewison R L, Crowder L B, Read A J, et al. Understanding impacts of fisheries by catch on marine megafauna. Trends Ecol Evol,2004,19(11):598-604
    [102]Dayton P K, Thrush S, Coleman F C. Ecological Effects of Fishing in marine ecosystem of the United States. Pew Oceans Commission, Arington, Virginia,2002
    [103]Jamieson, G and Ch-I, Zhang. Report of the Study Group on ecosystem-based management science and its application to the North Pacific. Secretariat/Publisher North Pacific Marine Science Organization. PICES Scientific Report N°29,2005,77p
    [104]FAO. Code of Conduct for Responsible Fisheries. FAO (U.N. Food and Agriculture Organization), Rome.1995
    [105]NRC. Sustaining Marine Fisheries. National Research Council. National Academy Press, Washington, DC.1999
    [106]FAO. The ecosystem approach to fisheries. FAO Technical Guidelines for Responsible Fisheries 4 (Suppl.2) (Roma. FAO 112 pp.),2003
    [107]Walters C J, Christensen V, Martell S, Kitchell J F. Single species versus ecosystem harvest management:ecosystem structure erosion under myopic management. ICES Journal of Marine Science,2005,62:558-568
    [108]Cury P M, Chirstensen V. Quantitative Ecosystem Indicators for Fishery Management. ICES J Mar Sci,2005,62:307-310
    [109]Mace P M. A new role for MSY in single-species and ecosystem approaches to fisheries stock assessment and management. Fish and Fisheries,2001,2:2-32
    [110]Christensen V, Walters C J. Ecopath with Ecosim:methods, capabilities and limitations. Ecological Modelling,2004,172:109-139
    [111]Cury P, Shannon L J, Roux J P, Daskalov G, Jarre A, Pauly D, Moloney C L. Trophodynamic indicators for an ecosystem approach to fisheries. ICES Journal of Marine Science,2005,62:430-442
    [112]Fletcher W J, Chesson J, Sainbury K J, Hundloe T J, Fisher M. Aflexible and practical framework for reporting on ecologically sustainable development for wild capture fisheries. Fish. Res,2005,71:175-183
    [113]Lindeman R L. The trophic-dynamic aspect of ecology. Ecology,1942,23:399-418
    [114]IMBER. Science Plan and Implementation Strategy. IGBP Report No.52. IGBP Secretariat, Stockholm,2005,76 pp
    [115]Travers M, Shin Y J, Jennings S, Cury P. Towards end-to-end models for investigating the effects of climate and fishing in marine ecosystems. Progress in Oceanography,2007,75: 751-770
    [116]John H, Steele J H, Ruzicka J J. Constructing end-to-end models using ECOPATH data. Journal of Marine Systems,2011,87:227-238
    [117]Beaugrand G, Reid P C, Ibanez F, et al. Reorganization of North Atlantic Marine copepod biodiversity and climate. Science,2002,296:1692-1694
    [118]Mullon C, Freon P, Parada C, et al. From particles to individuals:modelling the early stages of anchovy (Engraulis capensis/encrasicolus) in the southern Benguela. Fisheries Oceanography,2003,12:396-406
    [119]Cayre P, Marsac F. Modelling the yellowfin tuna (Thunnus albacares) vertical distribution using sonic tagging results and local environmental parameters. Aquatic Living Resources, 1993,6:1-14
    [120]Fasham M, Ducklow H, McKelvie S. A nitrogen-based model of plankton dynamics in the oceanic mixed layer. Journal of Marine Research,1990,48:591-639
    [121]Kone V, Machu E, Penven, et al. Modelling the primary and secondary productions of the Southern Benguela upwelling system:a comparative study through two biogeochemical models. Global Biogeochemical Cycles,2005,19:GB4021
    [122]Edwards A M, Yool A. The role of higher predation in plankton population models. Journal of Plankton Research,2000,22:1085-1112
    [123]Baretta J W, Ebenhoh W, Ruardij P. The European Regional Seas Ecosystem Model, a complex marine ecosystem model. Netherlands Journal of Sea Research.1995,33:233-246
    [124]Baretta-Bekker J G, Baretta J W. Special issue:European Regional Seas Ecosystem Model Ⅱ:Journal of Sea Research,1997,38 (3/4)
    [125]Siddorn J R, Allen J I, Blackford J C, et al. Modelling the hydrodynamics and ecosystem of the North-West European continental shelf for operational oceanography. Journal of Marine Systems,2007,65:417-429
    [126]Bryant A D, Heat M R, Broekhuizen N, et al. Modelling the predation, growth and population dynamics of fish within a spatially-resolved shelf-sea ecosystem model. Netherlands Journal of Sea Research,1995,33:407-421
    [127]Pope J G. A Modified Cohort Analysis in Which Constant Natural Mortality is Replaced by Estimates of Predation Levels. ICES C.M.1979/H,16p
    [128]Gregg W W, Conkright M E, Ginoux P, et al. Ocean primary production and climate:global decadal changes. Geophysical Research Letters,2003,30 (15):1809
    [129]Helgason, T, Gislason, H.VPA-analysis with Species Interaction due to Predation. ICES CM 1979/G:52
    [130]Gislason H, Sparre P. Some thoughts on the incorporation of areas and migrations in MSVPA, ICES C.M.1994/Mini:15,20 pp
    [131]Galluci V F, Jurado M J, Livingston P. Sensitivity analysis of the multispecies virtual population analysis model parameterized for a system of trophically linked species from the eastern Bering Sea. Cienc.,2004,30:285-296
    [132]Tsou T S, Collie J S. Estimating predation mortality in the Georges Bank fish community. Can. J. Fish. Aquatic Sci,2001,58:908-922
    [133]Magnusson K G. An overview of the multispecies VPA-theory and applications. Reviews in Fish Biology and Fisheries,1995,5:195-212
    [134]Sparre P. Introduction to multispecies virtual population analysis. ICES Marine Science Symposia,1991,193:12-21
    [135]Heather L H, Kenneth A R, Brian F, et al. Brown shrimp on the edge:linking habitat to survival using an individual based simulation model, ecological applications,2004, 14(4):1232-1247
    [136]Hermann A, Hinckley S, Megrey B, Napp J. Applied and theoretical considerations for constructing spatially explicit individual-based models of marine larval fish that include multiple trophic levels. ICES Journal of Marine Science,2001,58:1030-1041
    [137]Werner E, Quinlan J A, Lough R G, Lynch D R. Spatially-explicit individual based modeling of marine populations:a review of the advances in the 1990s. Sarsia,2001,86: 411-421
    [138]Kishi M J, Kashiwai M, Ware D M,, et al. NEMURO-a lower trophic level model for the North Pacific marine ecosystem. Ecological Modelling,2007,202 (1-2):12-25
    [139]Ito S, Kishi M., Kurita Y, et al. Initial design for a fish bioenergetics model of Pacific saury coupled to a lower trophic ecosystem model. Fisheries Oceanography,2004,13:111-124
    [140]Megrey B, Rose K, Klumb R, et al. A bioenergetic/population dynamics model of Pacific herring (Clupea harengus pallasi) coupled to a lower trophic level nutrient-phytoplankton-zooplankton model:dynamics, description, validation and sensitivity analysis. Ecological Modelling,2007,202:144-164
    [141]Pauly D, Watson R. Background and interpretation of the 'Marine Trophic Index' as a measure of biodiversity. Philosophical Transactions of the Royal Society:Biological Sciences,2005,360:415-423
    [142]Yang J. A tentative analysis of the trophic levels of North Sea fish. Marine Ecology Progress Series,1982,7:247-252
    [143]Jiang W, Gibbs MT. Predicting the carrying capacity of bivalve shell-fish culture using a steady, linear food web model. Aquaculture,2005,244:171-185
    [144]Byron C, Link J, Costa-Pierce B, Bengtson D. Calculating ecological carrying capacity of shellfish aquaculture using mass-balance modeling:Narragansett Bay, Rhode Island. Ecological Modelling,2011,222:1743-1755
    [145]Polovina J J. Model of a coral reef ecosystem I:the ECOPATH model and its application to French Frigate Schoals. Coral Reefs,1984,3:1-11
    [146]Christensen V, Pauly D. Ecopath Ⅱ-a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling,1992,61:169-185
    [147]Walters C, Christensen V, Pauly D. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Reviews in Fish Biology and Fisheries,1997,7: 139-172
    [148]Walters C J and Juanes F. Recruitment Limitation as a Consequence of Natural Selection for use of Restricted Feeding Habitats and Predation Risk Taking by Juvenile Fishes. Canadian Journal of Fisheries and Aquatic Sciences,1993,50:2058-2070
    [149]Walters C J and Korman J. Linking recruitment to trophic factors:revisiting the Beverton-Holt recruitment model from a life history and multispecies perspective. Reviews in Fish Biology and Fisheries,1999,9:187-202
    [150]Walters C J, Martell S J. Harvest Management for Aquatic Ecosystems. Princeton University Press.2004
    [151]Morissette L. Complexity, cost and quality of ecosystem models and their impact on resilience:a comparative analysis, with emphasis on marine mammals and the Gulf of St. Lawrence:[PhD thesis]. Vancouver:the University of British Columbia,2007
    [152]Field J C. Francis R C, Aydin K. Top-down modeling and bottom-up dynamics:linking a fisheries-based ecosystem model with climate hypotheses in the Northern California current. Progress in Oceanography,2006,68:238-270
    [153]Christensen V, Walters C J. Ecopath with Ecosim:methods, capabilities and limitations. Jiang H, Cheng H Q, Xu H G, et al. Trophic controls of jellyfish blooms and links with fisheries in the East China Sea. Ecol. Model,2008,212:492-503
    [154]Villanueva, M C, et al. Comparative analysis of trophic structure and interactions of two tropical lagoons. Ecological Modelling,2006,197:461-477
    [155]Christensen, V. Fishery-induced changes in a marine ecosystem:insight for model of the Gulf of Thailand. Journal of Fish Science,1998,53(Supply A):128-142
    [156]Shannon L J, Cury P M, Jarre A. Modelling effects of fishing in the Southern Benguela ecosystem. ICES Journal of Marine Science,2000,57:720-722
    [157]Maria I C, Duarte L O, Garcia C B, et al. Ecosystem impacts of the introduction of bycatch reduction devices in a tropical shrimp trawl fishery:Insights through simulation. Fisheries Research,2006,77:333-342
    [158]Zeller D, Reinert J. Modelling spatial closures and fishing effort restrictions in the Faroe Islands marine ecosystem. Ecological Modelling,2004,172:403-420
    [159]Preikshot D B. The influence of geographic scale, climate and trophic dynamics upon North Pacific oceanic ecosystem models:[PhD thesis]. Vancouver:the University of British Columbia,2007
    [160]Ulanowicz R E. Growth and development:ecosystem phenomenology. Springer Verlag, New York.1986a,203p
    [161]Christensen, V. and D. Pauly (Eds.),1993. Flow characteristics of aquatic ecosystems. In: Trophic models of aquatic ecosystems. ICLARM Conference Proceedings, Manila,26:390 PP
    [162]Walters C J, Christensen V, Pauly D. Structuring Dynamic Models of Exploited Ecosystems from Trophic Mass-balance Assessments. Reviews in Fish Biology and Fisheries,1997,7: 139-172
    [163]Walters C J, Pauly D, Christensen V. Ecospace:Prediction of Mesoscale Spatial Patterns in Trophic Relationships of Exploited Ecosystems, with Emphasis on the Impacts of Marine Protected Areas. Ecosystems,1998,2(6):539-554
    [164]Christensen V, Walters C J, Pauly D. Ecopath with Ecosim:a user's guide. Fisheries Centre of University of British Columbia, Vancouver, Canada.2004.154 p
    [165]Iversen S A, Zhu D, Johannessen A, Toresen R. Stock size, distribution and biology of anchovy in the Yellow Sea and East China Sea. Fish. Res.,1993,16:147-163
    [166]Iversen S A, Johannessen A, Jin X S, Li F G, Zhao X Y. Development of stock size, fishery and biological aspects of anchovy based on R/V "Bei Dou" 1984-1999 surveys. Mar. Fish. Res.,2001,22,33-39
    [167]Zhao, X Y, Hamre, J, Li, F G, Jin, X S, Tang, Q S. Recruitment, sustainable yield and possible ecological consequences of the sharp decline of the anchovy (Engraulis japonicus) stock in the Yellow Sea in the 1990s. Fish. Oceanogr.,2003,12,495-501
    [168]Jin X S, Zhang B, Xue Y. The response of the diets of four carnivorous fishes to variations in the Yellow Sea ecosystem. Deep-Sea Research Ⅱ,2010,57:996-1000
    [169]Jin X S, Tang Q S. Changes in fish species diversity and dominant species composition in the Yellow Sea. Fisheries Research,1996,26:337-352
    [170]Lin C, Ning X, Su J, et al. Environmental changes and the responses of the ecosystems of the Yellow Sea during 1976-2000. Journal of Marine System,2005,55:223-234
    [171]Arancibia H, Munoz H. Ecosystem based approach:a comparative assessment of the institutional response in fisheries: the case of demersal fisheries (Phase 1). APEC Fisheries Working Group Report.2006,18 p
    [172]Shannon L J, Cochrane K L, Moloney C L, Freon P. Ecosystem approach to fisheries management in the Benguela:a workshop overview. In:Shannon L J, Cochrane K L, Pillar S C eds. Ecosystem approaches to fisheries in the Southern Benguela. Aft. J. Mar. Sci., 2004,26:1-8
    [173]Gulland J A. Manual of methods for fish stock assessment. Part 1. Fish population analysis. FAO Fish. Tech. pap.,1965,68 p
    [174]Dalsgaard J, Pauly D. Preliminary mass-balance model of Prince William Sound, Alaska, for the pre-spill period,1980-1989. Fisheries Centre Research Report,1997,5(2):34p
    [175]Bundy A. Mass balance models of the eastern Scotian Shelf before and after the cod collapse and other ecosystem changes. Can. Tech. Rep. Fish. Aquat. Sci.,2004,2520: xii-193
    [176]Lu S G, Wang X C, Han B P. A field study on the conversion ratio of phytoplankton biomass carbon to chlorophyll-a in Jiaozhou Bay, China. Chinese Journal of Oceanology and Limnology,2009,27(4):793-805
    [177]Christensen V, Pauly D. Flow characteristics of aquatic ecosystems. In:Christensen V, Pauly D eds. Trophic Models of Aquatic Ecosystems. International Center for Living Aquatic Resources Management Conference Proceedings,1993,26:390p
    [178]Jiang H, Cheng H Q, Xu H G, et al. Trophic controls of jellyfish blooms and links with fisheries in the East China Sea. Ecol. Model.,2008,212:492-503
    [179]Cheung W L. Vulnerability of marine fishes to fishing:from global overview to the northern south China Sea:[PhD thesis]. Vancouver:the University of British Columbia,2007
    [180]Allen R R. Relation between production and biomass. Journal of the Fisheries Research Board of Canada,1971,28:1573-1581
    [181]Gulland J A. Fish stock assessment:a manual of basic methods. Johan Wiley and sons, NewYork.1983
    [182]Pauly D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. Cons int Explor Mer,1980,39(2):175-192
    [183]Palomares M L D, Pauly D. A multiple regression model for predicting the food consumption of marine fish populations. Freshwat Res,1989,40:259-273
    [184]Kavanagh P, Newlands N, Christensen V, Pauly D. Automated parameter optimization for Ecopath ecosystem models. Ecological Modelling,2004,172 (2-4):141-150
    [185]Pianka E R. Niche overlap and diffuse competition. Proceedings of the National Academy of Sciences,1974,71:2141-2145
    [186]Ulanowicz R E, Norden J S. Symmetrical overhead in flow networks. Int. J. Syst. Sci.,1990, 21 (2):429-437
    [187]Leontief W W. The Structure of the U.S. Economy. New York:Oxford University Press, 1951
    [188]Power M E, Tilman D, Estes J A, et al. Challenges in the quest for keystones. Bioscience, 1996,46 (8):609-620
    [189]Libralato S, Christensen V, Pauly D. A method for identifying keystone species in food web models. Ecol. Model.,2006,195:153-171
    [190]Odum E P. The strategy of ecosystem development. Science,1969,164:262-270
    [191]Finn J T. Measures of ecosystem structrie and functioning derived from analysis of flows. Journal of Theoretical Biology,1976,56:363-380
    [192]Zhang B, Tang Q S, Jin X S. Decadal-scale variations of trophic levels at high trophic levels in the Yellow Sea and the Bohai Sea ecosystem. Journal of Marine Systems,2007,67: 304-311
    [193]Blanchard J L, Pinnegar J K, Mackinson S. Exploring marine mammal-fishery interactions using Ecopath with Ecosim:modelling the Barents Sea Ecosystem. Cefas, Science Series Technical Report,2002,117
    [194]Tang Q S. Effects of long-term physical and biological perturbations on the contemporary biomass yields of the Yellow Sea ecosystem. In:Sherman, K., Alexander, L.M., Gold, B.D. (Eds.), Large Marine Ecosystems:Stress, Mitigation, and Sustainability. AAAS Press, Washington, DC,1993, pp.79-93
    [195]Jarre-Teichmann A, Christensen V. Comparative modelling of trophic flows in four large upwelling ecosystems:global vs local effects. In:Durand M-H, Cury P, Medelssohn R, Roy C, Bakun A, Pauly D eds. Global vs Local Changes in Upwelling Ecosystems. Proceedings of the First International CEOS Meeting,6-8 September 1994. ORSTOM, Paris.1998, 423-443
    [196]Coll M, Santojanni A, Palomera I., Tudela S, Arneri E.2007. An ecological model of the Northern and Central Adriatic Sea:Analysis of ecosystem structure and fishing impacts. Journal of Marine Systems,67:119-154
    [197]Xu B D, Jin X S. Variations in fish community structure during winter in the southern Yellow Sea over the period 1985-2002. Fisheries Research,2005,71:79-91
    [198]Dong Z J, Liu D Y, Keesing J K. Jellyfish blooms in China:Dominant species, causes and consequences. Marine Pollution Bulletin,2010,60:954-963
    [199]Pauly D, Christensen V. Primary production required to sustain global fisheries. Nature, 1995,374:255-257
    [200]Pauly D, Christensen V, Walters C J. Ecopath, Ecosim and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES Journal of Marine Science,2000,57:697-706
    [201]Ulanowicz R E. NETWRK 4.2a: A package of computer algorithms to analyse ecological flow networks. Solomons, MD, US.1999
    [202]Heymans J J. Comparing the Newfoundland-Southern Labrador marine ecosystem models using information theory. In:Heymans JJ, Ed. Ecosystem models of Newfoundland and Southeastern Labrador (2J3KLNO):additional information and analyses for "back to the future". vol.11(5):Fisheries Centre Research Reports.2003, pp 62-71
    [203]Ulanowicz R E. Quantitative methods for ecological network analysis. Comput Biol Chem, 2004,28:321-39
    [204]Patricio J, Ulanowicz R, Pardall M A, Marques J C. Ascendency as ecological indicator for environmental quality assessment at the ecosystem level:a case study. Hydrobiologia,2006, 555:19-30
    [205]Heymans J J, Shannon L J, Jarre A. Changes in the northern Benguela ecosystem over three decades:1970s,1980s, and 1990s. Ecological Modeling,2004,172:175-195
    [206]Tang Q, Jin X, Wang J, et al. Decadal-scale variation of ecosystem productivity and control mechanisms in the Bohai Sea[J]. Fish.Oceanogr.,2003,12(4/5):223-233
    [207]Jin X S. Variations of community structure, diversity and biomass of demersal fish assemblage in the Bohai Sea between 1982/1983 and 1992/1993. Journal of Fishery Sciences of China,1996,3(3):31-47
    [208]Kempton, R. A. & Taylor, L. R. Models and statistics for species diversity. Nature 1976, 262:818-820
    [209]Ainsworth, C. H. & Pitcher, T. J. Modifying Kempton's species diversity index for use with ecosystem simulation models. Ecological Indicators,2006,6:623-630
    [210]Watson R. A., Nowara G. B., Tracey S. R. Ecosystem model of Tasmanian waters explores impacts of climate-change induced changes in primary productivity. Ecological Modelling, 2012
    [211]Kashiwai M. History of carrying capacity concept as an index of ecosystem productivity (Review). Bulletin Hokkaido National Fisheries Research Institute,1995,59:81-100
    [212]Cohen J E. Population, economics, environment and culture:an introduction to human carrying capacity. Journal of Applied Ecology 1997,34:1325-1333
    [213]Cooney RT. A theoretical evaluation of the carrying capacity of Prince William Sound, Alaska, for juvenile pacific salmon. Fisheries Research,1993,18:77-87
    [214]Salvanes AG.V, Aksnes D, Fossa JH, et al. Simulated carrying capacities of fish in Norwegian fjords. Fish. Oceanog.,1995,4:17-32
    [215]Chen DG, Shen WQ, Liu Q, et al. The geographical characteristics and fish species diversity in the Laizhou Bay and Yellow River estuary. Journal of fishery sciences of China, 2000,7:46-52
    [216]Christensen V, Pauly D. Fish Production, Catches and the Carrying Capacity of the World Oceans. Naga, the ICLARM 18,1995, pp.34-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700