互花米草入侵和利用本土红树植物防控情境下红树林湿地食物网关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红树林因其高的初级生产力和生境异质性支持了红树林生态系统丰富的生物多样性和复杂的食物网结构,而以前的研究显示互花米草入侵红树林生态系统后可能会对底栖动物食物源造成显著影响,从而改变了红树林湿地生态系统食物网关系。然而,至今未见互花米草入侵如何影响红树林周边水域浮游动物和游泳动物食物来源的研究报道。本博士论文研究利用稳定同位素技术系统分析了互花米草入侵对福建漳江口(N23°55.719',E117°26.436')红树林周边水域内浮游动物和游泳动物的食物来源,并跟踪了三个红树林生态系统中利用本地红树植物替代互花米草过程中大型底栖动物群落结构和主要物种食物源的变化,主要结果和结论如下:
     (1)漳江口周边水体叶绿素a含量表现出较大的时空变化,在夏季和春季最高,而冬季最低,并于盐度之间存在显著负相关关系。冬季颗粒有机物(POM)组成相对稳定,自近岸到近海处,陆源红树植物平均贡献度下降(30.6%—24.1%),而海源浮游植物的平均贡献度逐渐升高(23%—28%),本地源底栖微藻的平均贡献度在33%—35%之间,而互花米草的平均贡献度低于15%。夏季POM组成变化较大,近岸处红树植物的平均贡献度高达62.1%,近海处平均贡献度也达到33.5%,海源浮游植物(Phytoplankton)(10.9%-20.9%)、底栖微藻(BMA)(21.4%—31.4%)和入侵种互花米草(5.7%—10.7%)的平均贡献度均随近岸到近海呈上升趋势。总体来讲,本地红树植物和底栖微藻及海源浮游植物是漳江口颗粒有机物的主要贡献者,而入侵种互花米草对POM组成的贡献度较低,平均低于15%,贡献范围最高也低于40%。
     (2)漳江口浮游动物总密度在不同季节之间表现出显著差异,夏季最高,冬季最低。浮游动物的有机碳来源方面,冬季陆源红树植物对浮游动物贡献较小,低于21%,POM和BMA的平均贡献度在24—34%之间变化,而互花米草平均贡献度在15%—35%之间。夏季浮游动物有机碳来源变化较大,近岸处陆源红树植物的平均贡献度高达65.6%,但随近岸到近海处下降至14.5%,POM和BMA的平均贡献度在14%—28%之间变化,入侵种互花米草平均贡献度范围也较广,在4%—45%之间变化。浮游动物主要有机碳来源是本地源的红树植物和底栖微藻等,但互花米草也能对浮游动物的有机碳来源比例造成显著影响,平均贡献度低于50%,考虑其贡献比例范围,最高可达59%,成为浮游动物主要食物源。
     (3)福建漳江口潮沟内采集到的鱼类主要有碎屑食性的前鳞鲻(Osteomugil ophuyseni),杂食性的拟矛尾复鰕虎鱼(Parachaeturichthys polynerna),七丝鲚(Coilia grayii)和黄鳍鲷(Sparus latus)以及肉食性的花鲈(Lateolabrax japonicus)和尖吻蛇鳗(Ophichthus apicalis)等6种。对这些鱼类组织的稳定同位素分析结果显示,互花米草对6种鱼类的有机碳源贡献度,除对黄鳍鲷的贡献度最低值为28%(28—57%)之外,对其它5种鱼类的有机碳贡献度最低均在50%以上,表明互花米草已经同化入本地食物网,成为高营养层次的鱼类的主要有机碳源。6种鱼类中,只有黄鳍鲷表现出稳定同位素值与个体体长之间显著相关性:个体小于10cm的黄鳍鲷的δ13C和δ15N值分别比个体大于10cm的黄鳍鲷高出5.99‰和3.4‰;小个体黄鳍鲷高的营养级位置表明其捕食特性,而随着个体生长,其食性发生转变,主要碳源也由互花米草转变为微藻。
     (4)对福建湄洲湾(N25°14.552’,E118°53.314')、闽江口(N26°01.934’,E119°37.707')和漳江口大洲岛三地互花米草及1年秋茄修复样地大型底栖动物群落结构进行了调查,发现前期物理处理手段和红树种植对大型底栖动物的群落结构造成了影响,主要是改变了底上生活型甲壳类和腹足类的密度和生物量,底下生活型多毛类密度和生物量并未受到影响,小个体生物更易于适应新环境。对大洲岛互花米草、1年修复秋茄样地、10年秋茄林和40年秋茄成熟林内底栖动物群落结构和多样性水平的比较结果显示:各多样性指数在个样地之间均无显著差异,但底栖动物群落组成可能受到了修复过程的影响。四个样地之间总密度虽未表现出显著差异(P>0.05),但10年秋茄林内多毛类密度最高,而软体动物密度最低(P<0.05)。总生物量方面,10年秋茄林总生物量最低,显著低于互花米草(P<0.05),而与1年修复样地和40年成熟秋茄林之间差异不显著(均为P>0.05)。
     (5)利用稳定同位素技术比较湄洲湾、闽江口和大洲岛互花米草及不同修复年份秋茄林内底栖动物食物来源,结果表明:红树替代互花米草前期工程处理并未改变其食物源,1年修复样地内底栖动物有机碳源依旧以互花米草为主;随修复年份增加,互花米草对底栖动物的食物贡献水平逐渐下降,但修复10年后,林内底栖动物食物源组成与40年成熟林之间仍有差异,表明红树林替代互花米草修复过程中底栖动物食物源改变较为缓慢。不同摄食类型的底栖动物食物源变化对秋茄替代互花米草修复过程响应的时间存在差异,植食性物种的食物源随秋茄修复互花米草在3年左右已有较大变化,随着修复进行,互花米草在6年修复秋茄林内平均碳源贡献度可以降至50%以下;而底栖碎屑食性的腹足类和蟹类在3年修复秋茄林内互花米草来源有机物质对其有机碳源贡献依旧为100%,在6年秋茄林内碎屑食性侧足厚蟹中来自互花米草的有机碳降低至70%以下。
     综上,互花米草入侵红树林生态系统后不仅对大型底栖动物的食物源造成了影响,也改变了周边水体中浮游动物和游泳动物的有机碳来源;利用本土红树植物替代控制互花米草可以修复大型底栖动物群落结构及其食物源,使其由单一碳源向多有机碳来源转变,增加了食物多样性程度,虽然修复的过程较为缓慢,但表明了该方法控制互花米草的合理性及可行性。
Mangrove ecosystems can support high biodiversity and complicated trophic structure due to its high primary production and habitat heterogeneity, but previous studies have shown that the invasion Spartina alterniflora into mangrove wetlands could significantly change the food sources of benthic macro-invertebrates. However, there is still no study on such effect of S. alterniflora invasion on zooplankton and nekton communities. In this dissertation research, I investigated possible effects of S. alterniflora invasion on the organic carbon sources of aquatic animals in the adjacent water of mangrove including zooplankton and nekton. I also monitored changes in the structure of macrofaunal community and food sources of main macro-invertebrates species in the invased S. alterniflora stands following replacement by native mangrove species Kandelia obovata. The main results of these studies could be summarized as follows:
     (1) The chlorophyll a (Chi a) concentration of water in Zhangjiangkou Estuary (N23°55.719', E117°26.436') demonstrated large spatial-temporal variations. The highest Chi a concentrations were found in summer or spring, while the lowest values occurred in winter. A negative relationship existed between Chi a concentration and salinity (P<0.05). In winter, the compositions of particulate organic matter (POM) remained relatively stable, and the average contribution from mangrove carbon to POM decreased from30.6%to24.1%the upstream to offshore areas, while the contribution from marine phytoplankton increased from23%to28%. Benthic microalgae (BMA) averagely contributed33%-35%to the POM and the average contribution from invasive S. alterniflora was less than15%. In summer, the compositions of POM showed much larger variations. The average contribution of mangrove carbon ranged from62.1%in the upstream area to33.5%in the offshore area. Contrary to the mangrove carbon, the average contributions from marine phytoplankton (10.9%-20.9%), BMA (21.4%-31.4%) and invasive S. alterniflora (5.7%-10.7%) increased from the upstream to offshore areas. In general, the autochthonous materials including mangrove and BMA were the major carbon sources for the POM, while the invasive S. alterniflora showed much less contribution to the POM even when considering the variation range of different sources.
     (2) Total density of zooplankton showed significant seasonal variations (P<0.05). The highest density was found in summer while the lowest in winter. The stable isotopic analyses of zooplankton and autotroph species indicated that, in winter, mangrove forests contributed less than21%to the organic carbon of zooplankton, while the total contribution from POM and BMA ranged from15%to35%and from the S. alterniflora varied between15%-35%. The carbon sources of zooplankton demonstrated large spatial variations in summer. The average contribution from terrestrial mangrove was as high as65.6%in the upstream area, but it decreased greatly from the upstream to offshore areas, where the average contribution from mangrove was only14.5%. The average contribution from POM and BMA varied from14%to28%, while the average contribution from S. alterniflora ranged broadly from4%to45%. Major carbon sources to the zooplankton were autochthonous carbon from the mangrove forests and POM/BMA. While considering the variation range of different sources, S. alterniflora could also be the major contributor to organic carbon of zooplankton.
     (3) I analyzed the stable carbon and nitrogen isotope ratios of six common fish species, including detritus feeding Osteomugil ophuyseni, omnivorous Coilia grayii, Parachaeturichthys polynern and Sparus latus and carnivorous Lateolabrax japonicas and Ophichthus apicalis, in the tidal creek of Zhangjiang Estuaryto assess the relative nutritional contributions from invasive S. altemiflora and native autotrophs. The results indicated that S. alterniflora was a major contributor to all fish species. For S. latus, the minimum proportion of carbon sources from S. altemiflora was28%. For the other species, S. alterniflora contributed at least50%of organic carbon to them. Among the above6fish species, only S. Latus showed significantly negative correlation between carbon isotope ratio and its body length, demonstrating the transference of main food sources and trophic levels during growth.
     (4) The benthic macrofaunal community in S. alterniflora and1year restored K. obovata forest were investigated in Meizhou Bay (N25°14.552', E118°53.314'), Minjiang Estuary (N26°01.934', E119°37.707') and Dazhou island. Results indicated that the preliminary physical treatment and plantation activities significantly changed the benthic community. The density and biomass of large-sized epifauna including crustacean and gastropod were impacted by the preliminary treatment, while no such effect were found on the infaunal Polychaeta, demonstrating that the small-sized organisms could be adapted to the change of habitat rapidly. The community structure and biodiversity of benthic macrofauna in S. alterniflora,1year restored K. obovata,10years K. obovata forest and40years mature K. obovata forest were compared in Dazhou island. Although no significant differences were found for the biodiversity indexes among4habitats, the community structure might be impacted by the restoration. Total density showed no significant differences among different habitats (P>0.05), but the10years K. Obovata forest had highest density of Polychaeta and lowest density of mollusk.10years K. obovata also had lower total biomass than S. alterniflora (P<0.05), but no significant differences were found between the other habitats.
     (5) Based on the stable isotope analyses, the variations of food sources of main gastropod and crab species in S. alterniflora and K. obovata with different ages were investigated in Meizhou Bay, Minjiang Estuary and Dazhou Island. The preliminary engineering activities did not change the food sources of macro-invertebrates, while the major carbon source for gastropod and crab species came from the remains of S. alterniflora. The relative carbon contribution from S. alternifolra to macro-invertebrates decreased with the age of K. obovata forest. However, obvious discrepancy still existed between the10year old K. obovata forest between40year old mature K. obovata forest, suggesting that it take a long period for the restoration of food source of macro-invertebrates in mangrove forests following the invasion of S. alterniflora. Furthermore, macrofaunal species with different feeding types showed different change in their food sources in response to the restoration of mangrove. The food sources of herbivorous gastropods and crab species already changed significantly in3year old K. obovata forest and their carbon contribution from S. alternifora decreased to less than50%in6year K. obovata forest. However, the detritus-feeding invertebrates did not change their food sources and derived most100%organic carbon from S. alterniflora in3year old K. obovata forest. The carbon sources from S. alterniflora to detritivorous H. latimera decreased to less than70%in6years K. obovata forest, indicating that these kind of species need at least5-6years to begin obvious change in their food sources.
     In general, the invasive S. alterniflroa also significantly changed the food sources of zooplankton and nekton. However, the restoration using native mangrove species to control the S. alterniflroa could restore the benthic macrofaunal community and food sources of macro-invertebrates. Although the restoration takes a long time, it feasible and beneficial to use this method to controle the spread the S. alterniflora and reverse the ecological effect.
引文
[1]Alongi, D.M. Present state and future of the world's mangrove forests[J]. Environmental Conservation,2002,29(3):331-349.
    [2]赵晟,洪华生,张珞平,陈伟琪.中国红树林生态系统服务的能值价值[J].资源科学,2007:148-154.
    [3]王文卿,王瑁,中国红树林[M].2007,北京:科学出版社.
    [4]林鹏,中国红树林生态系[M].1997,北京:科学出版社.
    [5]Manson, F., Loneragan, N., Skilleter, G., Phinn, S. An evaluation of the evidence for linkages between mangroves and fisheries:a synthesis of the literature and identification of research directions[J]. Oceanography and Marine Biology:An Annual Review,2005,43:483-513.
    [6]Pimm, S.L., Lawton, J.H., Cohen, J.E. Food web patterns and their consequences[J]. Nature, 1991,350(6320):669-674.
    [7]王思凯,盛强,储忝江,李博,陈家宽,吴纪华.植物入侵对食物网的影响及其途径[J].生物多样性,2013,21(3):249-259.
    [8]沈瑞生,冯砚青,牛佳.中国海岸带环境问题及其可持续发展对策[J].地域研究与开发,2005,24(3):124-128.
    [9]Pasquaud, S., Lobry, J., Elie, P. Facing the necessity of describing estuarine ecosystems:a review of food web ecology study techniques[J]. Hydrobiologia,2007,588(1):159-172.
    [10]Nagelkerken, I., Blaber, S., Bouillon, S., Green, P., Haywood, M., Kirton, L., Meynecke, J.-O., Pawlik, J., Penrose, H., Sasekumar, A. The habitat function of mangroves for terrestrial and marine fauna:a review[J]. Aquatic Botany,2008,89(2):155-185.
    [11]Lee, S.Y. Mangrove outwelling:a review[J]. Hydrobiologia,1995,295(1):203-212.
    [12]Bouillon, S., Connolly, R.M., Lee, S.Y. Organic matter exchange and cycling in mangrove ecosystems:Recent insights from stable isotope studies[J]. Journal of Sea Research,2008, 59(1-2):44-58.
    [13]王瑁.中澳红树林自然保护区管理之比较[J].湿地科学与管理,2013(2):45-48.
    [14]覃盈盈,红树林生境中互花米草的生态学研究[D].2009,广西师范大学硕士论文.
    [15]Zhang, Y., Huang, G., Wang, W., Chen, L., Lin, G. Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China[J]. Ecology,2012,93(3): 588-597.
    [16]An, S., Gu, B., Zhou, C., Wang, Z., Deng, Z., Zhi, Y., Li, H., Chen, L., Yu, D., Liu, Y. Spartina invasion in China:implications for invasive species management and future research[J]. Weed Research,2007,47(3):183-191.
    [17]陈中义,李博,陈家宽.米草属植物入侵的生态后果及管理对策[J].生物多样性,2004,12(2):280-289.
    [18]Li, B., Liao, C.Z., Zhang, X.D., Chen, H.L., Wang, Q., Chen, Z.Y., Gan, X.J., Wu, J.H., Zhao, B., Ma, Z.J., Cheng, X.L., Jiang, L.F., Chen, J.K. Spartina alterniflora invasions in the Yangtze River estuary, China:An overview of current status and ecosystem effects[J]. Ecological Engineering,2009,35(4):511-520.
    [19]Ehrenfeld, J.G. Ecosystem consequences of biological invasions[J]. Annual review of ecology, evolution, and systematics,2010,41:59-80.
    [20]彭逸生,周炎武,陈桂珠.红树林湿地恢复研究进展[J].生态学报,2008,(2):786-797.
    [21]Alongi, D.D. A simple mass balance framework for estimating limits to sustainable mangrove production:some examples from managed forests in southeast Asia[J]. International Journal of Ecology and Environmental Sciences-pages:31:147-155,2005.
    [22]陈雅萍,叶勇.红树林凋落物生产及其归宿[J].生态学杂志,2013,32(1):204-209.
    [23]Kristensen, E., Bouillon, S., Dittmar, T., Marchand, C. Organic carbon dynamics in mangrove ecosystems:A review[J]. Aquatic Botany,2008,89(2):201-219.
    [24]Odum, W., Heald, E., Cronin, L., The detritus-based food web of an estuarine community [M], in Estuarine Research.1975,265-286.
    [25]Odum, W.E., Heald, E.J. Trophic analyses of an estuarine mangrove community [J]. Bulletin of Marine Science,1972,22(3):671-738.
    [26]Lee, S. The importance of sesarminae crabs Chiromanthes spp. and inundation frequency on mangrove (Kandelia candel (L.) Druce) leaf litter turnover in a Hong Kong tidal shrimp pond[J]. Journal of experimental marine biology and ecology,1989,131(1):23-43.
    [27]Robertson, A.I., Daniel, P.A. Decomposition and the annual flux of detritus from fallen timber in tropical mangrove forests[J]. Limnology and Oceanography,1989,34(3):640-646.
    [28]林光辉.稳定同位素生态学:先进技术推动的生态学新分支[J].植物生态学报,2010,34(2):119-122.
    [29]Thompson, D., Bury, S., Hobson, K., Wassenaar, L., Shannon, J. Stable isotopes in ecological studies[J]. Oecologia,2005,144(4):517-519.
    [30]王建柱,林光辉,黄建辉,韩兴国.稳定同位素在陆地生态系统动-植物相互关系研究中的应用[J].科学通报,2004,49(21):2141-2149.
    [31]林光辉,黄建辉,陈世苹,生态学中的稳定同位素技术[M]//生态学家面临的挑战——问题与途径,陈吉泉,李博,马志军,赵斌,2005,高等教育出版社:北京.103-144.
    [32]Farquhar, G., O'leary, M., Berry, J. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Functional Plant Biology,1982, 9(2):121-137.
    [33]Rodelli, M., Gearing, J., Gearing, P., Marshall, N., Sasekumar, A. Stable isotope ratio as a tracer of mangrove carbon in Malaysian ecosystems[J]. Oecologia,1984,61(3):326-333.
    [34]Phillips, D. Mixing models in analyses of diet using multiple stable isotopes:a critique[J], Oecologia,2001,127(2):166-170.
    [35]Peterson, B., Howarth, R., Garritt, R. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs[J]. Science,1985,227:1361-1363.
    [36]Post, D.M. Using stable isotopes to estimate trophic position:models, methods, and assumptions[J]. Ecology,2002,83(3):703-718.
    [37]冯建祥,黄敏参,黄茜,郭婕敏,林光辉.稳定同位素在滨海湿地生态系统研究中的应用现状与前景[J].生态学杂志,2013,32(4):1065-1074.
    [38]Schwarcz, H.P. Some theoretical aspects of isotope paleodiet studies[J]. Journal of Archaeological Science,1991,18(3):261-275.
    [39]Phillips, D., Gregg, J. Source partitioning using stable isotopes:coping with too many sources[J]. Oecologia,2003,136(2):261-269.
    [40]Phillips, D., Newsome, S., Gregg, J. Combining sources in stable isotope mixing models: alternative methods[J]. Oecologia,2005,144(4):520-527.
    [41]Phillips, D.L., Koch, P.L. Incorporating concentration dependence in stable isotope mixing models[J]. Oecologia,2002,130(1):114-125.
    [42]Moore, J.W., Semmens, B.X. Incorporating uncertainty and prior information into stable isotope mixing models[J]. Ecology Letters,2008,11(5):470-480.
    [43]Jackson, A.L., Inger, R., Bearhop, S., Parnell, A. Erroneous behaviour of MixSIR, a recently published Bayesian isotope mixing model:a discussion of Moore & Semmens (2008)[J]. Ecol Lett,2009,12(3):E1-E5.
    [44]Kathiresan, K., Bingham, B.L. Biology of mangroves and mangrove ecosystems[J]. Advances in marine biology,2001,40:81-251.
    [45]Lee, S.Y. Ecological role of grapsid crabs in mangrove ecosystems:a review[J]. Marine and Freshwater Research,1998,49(4):335-343.
    [46]Giddins, R. Feeding ecology of the mangrove crab Neosarmatium smithi (Crustacea: Decapoda:Sesarmidae)[J]. Marine Ecology Progress Series,1986,33:147-155.
    [47]Camilleri, J.C. Leaf-litter processing by invertebrates in a mangrove forest in Queensland[J]. Marine Biology,1992,114(1):139-145.
    [48]Skov, M., Hartnoll, R. Paradoxical selective feeding on a low-nutrient diet:why do mangrove crabs eat leaves?[J]. Oecologia,2002,131(1):1-7.
    [49]Bouillon, S., Koedam, N., Raman, A., Dehairs, F. Primary producers sustaining macro-invertebrate communities in intertidal mangrove forests[J]. Oecologia,2002,130(3): 441-448.
    [50]Mazumder, D., Saintilan, N. Mangrove Leaves are Not an Important Source of Dietary Carbon and Nitrogen for Crabs in Temperate Australian Mangroves[J]. Wetlands,2010,30(2): 375-380.
    [51]Kon, K., Kurokura, H., Tongnunui, P. Effects of the physical structure of mangrove vegetation on a benthic faunal community[J]. Journal of Experimental Marine Biology and Ecology, 2010,383(2):171-180.
    [52]Kon, K., Kurokura, H., Tongnunui, P. Influence of a microhabitat on the structuring of the benthic macrofaunal community in a mangrove forest[J]. Hydrobiologia,2011,671(1): 205-216.
    [53]Lee, S. Potential trophic importance of the faecal material of the mangrove sesarmine crab Sesarma messa[J]. Marine Ecology Progress Series,1997,159:275-284.
    [54]Werry, J., Lee, S. Grapsid crabs mediate link between mangrove litter production and estuarine planktonic food chains[J]. Marine Ecology Progress Series,2005,293:165-176.
    [55]Kristensen, D.K., Kristensen, E., Mangion, P. Food partitioning of leaf-eating mangrove crabs (Sesarminae):Experimental and stable isotope (13C and 15N) evidence[J]. Estuarine, Coastal and Shelf Science,2010,87(4):583-590.
    [56]杨宇峰,王庆,陈菊芳,庞世勋.河口浮游动物生态学研究进展[J].生态学报,2006(2):576-585.
    [57]Schwamborn, R., Ekau, W., Voss, M., Saint-Paul, U. How important are mangroves as a carbon source for decapod crustacean larvae in a tropical estuary?[J]. Marine Ecology-Progress Series,2002,229:195-205.
    [58]Chew, L.-L., Chong, V.C. Copepod community structure and abundance in a tropical mangrove estuary, with comparisons to coastal waters[J]. Hydrobiologia,2011,666(1): 127-143.
    [59]Klumpp, D., McKinnon, A., Mundy, C. Motile cryptofauna of a coral reef:Abundance, distribution and trophic potential[J]. Marine ecology progress series,1988,45(1):95-108.
    [60]Roman, M., Rublee, P.A. A method to determine in situ zooplankton grazing rates on natural particle assemblages[J]. Marine Biology,1981,65(3):303-309.
    [61]Stoner, A.W., Zimmerman, R.J. Food pathways associated with penaeid shrimps in a mangrove-fringed estuary[J]. Fishery Bulletin,1986,86:543-551.
    [62]Bouillon, S., Mohan, P.C., Sreenivas, N., Dehairs, F. Sources of suspended organic matter and selective feeding by zooplankton in an estuarine mangrove ecosystem as traced by stable isotopes[J]. Marine ecology progress series,2000,208:79-92.
    [63]Sierszen, M.E., Morrice, J.A., Moffett, M.F., West, C.W. Benthic versus planktonic foundations of three Lake Superior coastal wetland food webs[J]. Journal of Great Lakes Research,2004,30(1):31-43.
    [64]Dehairs, F., Rao, R.G., Mohan, P.C., Raman, A.V., Marguillier, S., Hellings, L. Tracing mangrove carbon in suspended matter and aquatic fauna of the Gautami-Godavari Delta, Bay of Bengal (India)[J]. Hydrobiologia,2000,431:225-241.
    [65]徐姗楠,陈作志,李适宇.红树林水生动物栖息地功能及其渔业价值[J].生态学报,2010,(1):186-196.
    [66]Morton, R. Community structure, density and standing crop of fishes in a subtropical Australian mangrove area[J]. Marine Biology,1990,105(3):385-394.
    [67]Fry, B., Ewel, K.C. Using stable isotopes in mangrove fisheries research-A review and outlook[J]. Isotopes in Environmental and Health Studies,2003,39(3):191-196.
    [68]Melville, A.J., Connolly, R.M. Spatial analysis of stable isotope data to determine primary sources of nutrition for fish[J]. Oecologia,2003,136(4):499-507.
    [69]Blaber, S.J. Mangroves and fishes:issues of diversity, dependence, and dogma[J]. Bulletin of Marine Science,2007,80(3):457-472.
    [70]Nyunja, J., Ntiba, M., Onyari, J., Mavuti, K., Soetaert, K., Bouillon, S. Carbon sources supporting a diverse fish community in a tropical coastal ecosystem (Gazi Bay, Kenya)[J]. Estuarine Coastal and Shelf Science,2009,83(3):333-341.
    [71]Newell, R., Marshall, N., Sasekumar, A., Chong, V. Relative importance of benthic microalgae, phytoplankton, and mangroves as sources of nutrition for penaeid prawns and other coastal invertebrates from Malaysia[J]. Marine Biology,1995,123(3):595-606.
    [72]Lugendo, B.R., Nagelkerken, I., van der Velde, G., Mgaya, Y.D. The importance of mangroves, mud and sand flats, and seagrass beds as feeding areas for juvenile fishes in Chwaka Bay, Zanzibar:gut content and stable isotope analyses[J]. Journal of Fish Biology,2006,69(6): 1639-1661.
    [73]Thimdee, W., Deein, G., Nakayama, N., Suzuki, Y., Matsunaga, K.δ13C and δ15N indicators of fish and shrimp community diet and trophic structure in a mangrove ecosystem in Thailand[J]. Wetlands Ecology and Management,2008,16(6):463-470.
    [74]Giarrizzo, T., Schwamborn, R., Saint-Paul, U. Utilization of carbon sources in a northern Brazilian mangrove ecosystem[J]. Estuarine, Coastal and Shelf Science,2011:447-457.
    [75]Zagars, M., Ikejima, K., Arai, A. Importance of different primary producers in supporting a mangrove fish community in Sikao Creek, Thailand[C]. in Proceedings of the 7th International Symposium on SEASTAR2000 and Asian Bio-logging Science (The 11th SEASTAR2000 workshop) 2012. Bangkok, Thailand.
    [76]Grosholz, E. Ecological and evolutionary consequences of coastal invasions[J]. Trends in Ecology & Evolution,2002,17(1):22-27.
    [77]Levin, L.A., Neira, C., Grosholz, E.D. Invasive cordgrass modifies wetland trophic function[J]. Ecology,2006,87(2):419-432.
    [78]王卿,安树青,马志军,赵斌,陈家宽,李博.入侵植物互花米草——生物学、生态学及管理[J].植物分类学报,2006(05):559-588.
    [79]Yuhas, C.E., Hartman, J., Weis, J. Benthic Communities in Spartina alterniflora and Phragmites australis Dominated Salt Marshes in the Hackensack Meadowlands, New Jersey[J]. Urban Habitats,2005,3(1):158-191.
    [80]Lopez, G.R., Levinton, J.S. Ecology of deposit-feeding animals in marine sediments[J]. Quarterly Review of Biology,1987,62(3):235-260.
    [81]Chen, Z., Guo, L., Jin, B., Wu, J., Zheng, G. Effect of the exotic plant Spartina alterniflora on macrobenthos communities in salt marshes of the Yangtze River Estuary, China[J]. Estuarine, Coastal and Shelf Science,2009,82(2):265-272.
    [82]Zhou, H.X., Liu, J., Qin, P. Impacts of an alien species (Spartina alterniflora) on the macrobenthos community of Jiangsu coastal inter-tidal ecosystem[J]. Ecological Engineering, 2009,35(4):521-528.
    [83]仇乐,刘金娥,陈建琴,王国祥,常青.互花米草扩张对江苏海滨湿地大型底栖动物的影响[J].海洋科学,2010,(8):50-55.
    [84]侯森林,余晓韵,鲁长虎.射阳河口互花米草入侵对大型底栖动物群落的影响[J].海洋湖沼通报,2012(1):137-146.
    [85]虞蔚岩,李朝晖,华春,沈永明,马玲,郭娜,李智星.江苏盐城东台互花米草滩涂底栖无脊椎动物的多样性分析[J].海洋湖沼通报,2009(01):123-128.
    [86]Neira, C., Levin, L.A., Grosholz, E.D. Benthic macrofaunal communities of three sites in San Francisco Bay invaded by hybrid Spartina, with comparison to uninvaded habitats [J]. Marine Ecology Progress Series,2005,292:111-126.
    [87]杨泽华,童春富,陆健健.盐沼植物对大型底栖动物群落的影响[J].生态学报,2007(11):4387-4393.
    [88]Grosholz, E.D., Levin, L.A., Tyler, A.C., Neira, C., Changes in community structure and ecosystem function following Spartina alterniflora invasion of Pacific estuaries[M], in Grosholz, and MD Bertness, editors. Human impacts on salt marshes:a global perspective. 2009, University of California Press:Berkley, California, USA.23-40.
    [89]赵永强,曾江宁,陈全震,高爱根,寿鹿,廖一波,徐晓群,刘晶晶.不同互花米草(Spartina alterniflora Loisel)密度生境中大型底栖动物群落格局[J].自然资源学报,2009(04):630-639.
    [90]Cui, B., He, Q., An, Y. Spartina alterniflora invasions and effects on crab communities in a western Pacific estuary[J]. Ecological Engineering,2011,37(11):1920-1924.
    [91]周晓,九段沙湿地自然保护区大型底栖动物生态学研究[D].2006,华东师范大学硕士论文.
    [92]Qin, H., Chu, T., Xu, W., Lei, G., Chen, Z., Quan, W., Chen, J., Wu, J. Effects of invasive cordgrass on crab distributions and diets in a Chinese salt marsh[J]. Marine Ecology Progress Series,2010,415:177-187.
    [93]秦海明,长江口盐沼潮沟大型浮游动物群落生态学研究[D].2011,复旦大学博士论文.
    [94]Quan, W., Fu, C., Jin, B., Luo, Y., Li, B., Chen, J., Wu, J. Tidal marshes as energy sources for commercially important nektonic organisms:stable isotope analysis[J]. Marine Ecology Progress Series,2007,352:89-99.
    [95]郭婕敏,漳江口红树林湿地大型底栖动物的食物来源及其意义研究[D].2012,厦门大学 硕士论文.
    [96]Hindell, J., Warry, F. Nutritional support of estuary perch (Macquaria colonorum) in a temperate Australian inlet:Evaluating the relative importance of invasive Spartina[J]. Estuarine, Coastal and Shelf Science,2010,90(3):159-167.
    [97]Hedge, P., Kriwoken, L.K. Evidence for effects of Spartina anglica invasion on benthic macrofauna in Little Swanport estuary, Tasmania[J]. Austral Ecology,2000,25(2):150-159.
    [98]Hedge, P., Kriwoken, L.K., Patten, K. A review of Spartina management in Washington State, US[J]. Journal of Aquatic Plant Management,2003,41:82-90.
    [99]Roberts, P.D., Pullin, A.S. The effectiveness of management interventions for the control of Spartina species:a systematic review and meta-analysis[J]. Aquatic Conservation:Marine and Freshwater Ecosystems,2008,18(5):592-618.
    [100]Gratton, C., Denno, R.F. Arthropod food web restoration following removal of an invasive wetland plant[J]. Ecological Applications,2006,16(2):622-631.
    [101]王蔚,张凯,汝少国.米草生物入侵现状及防治技术研究进展[J].海洋科学,2003(07):38-42.
    [102]Bonilla-Warford, C.M., Zedler, J.B. Potential for using native plant species in stormwater wetlands[J]. Environmental management,2002,29(3):385-394.
    [103]唐国玲,沈禄恒,翁伟花,章家恩,廖宝文,刘金苓,滕兴顺.无瓣海桑对互花米草的生态控制效果[J].华南农业大学学报,2007,28(1):10-13.
    [104]Chen, L., Wang, W., Zhang, Y., Lin, G. Recent progresses in mangrove conservation, restoration and research in China[J]. Journal of Plant Ecology,2009,2(2):45-54.
    [105]王睿照,张利权.水位调控措施治理互花米草对大型底栖动物群落的影响[J].生态学报,2009,(5):2639-2645.
    [106]Gratton, C., Denno, R.F. Restoration of arthropod assemblages in a Spartina salt marsh following removal of the invasive plant Phragmites australis[J]. Restoration Ecology,2005, 13(2):358-372.
    [107]Dibble, K.L., Pooler, P.S., Meyerson, L.A. Impacts of plant invasions can be reversed through restoration:a regional meta-analysis of faunal communities[J]. Biological Invasions,2013: DOI 10.1007/s 10530-012-0404-9.
    [108]Moreno-Mateos, D., Power, M.E., Comin, F.A., Yockteng, R. Structural and functional loss in restored wetland ecosystems[J]. PLoS biology,2012,10(1):e1001247.
    [109]Lugo, A.E. Mangrove forests:a tough system to invade but an easy one to rehabilitate[J]. Marine Pollution Bulletin,1999,37(8):427-430.
    [110]Chen, G.C., Ye, Y, Lu, C.Y. Changes of macro-benthic faunal community with stand age of rehabilitated Kandelia candel mangrove in Jiulongjiang Estuary, China[J]. Ecological Engineering,2007,31(3):215-224.
    [111]Howe, E.R., Simenstad, C.A. Isotopic determination of food web origins in restoring and ancient estuarine wetlands of the San Francisco Bay and Delta[J]. Estuaries and Coasts,2011, 34(3):597-617.
    [112]Chong, V., Low, C., Ichikawa, T. Contribution of mangrove detritus to juvenile prawn nutrition:a dual stable isotope study in a Malaysian mangrove forest[J]. Marine Biology,2001, 138(1):77-86.
    [113]Tue, N.T., Hamaoka, H., Sogabe, A., Quy, T.D., Nhuan, M.T., Omori, K. Food sources of macro-invertebrates in an important mangrove ecosystem of Vietnam determined by dual stable isotope signatures[J]. Journal of Sea Research,2012,72:14-21.
    [114]Tue, N.T., Quy, T.D., Hamaoka, H., Nhuan, M.T., Omori, K. Sources and Exchange of Particulate Organic Matter in an Estuarine Mangrove Ecosystem of Xuan Thuy National Park, Vietnam[J]. Estuaries and Coasts,2012,35(4):1060-1068.
    [115]Riera, P., Richard, P. Isotopic Determination of Food Sources ofCrassostrea gigasAlong a Trophic Gradient in the Estuarine Bay of Marennes-O1 eron[J]. Estuarine, Coastal and Shelf Science,1996,42(3):347-360.
    [116]Lorenzen, C., Jeffrey, S. Determination of chlorophyll in seawater[J]. Unesco Technical Papers In Marine Science,1980,35:1-20.
    [117]DeNiro, M.J., Epstein, S. Influence of diet on the distribution of carbon isotopes in animals[J]. Geochimica et Cosmochimica Acta,1978,42(5):495-506.
    [118]王虎,高航,周怀阳,郭卫东.珠江口淇澳岛红树林区海水中营养盐和叶绿素a研究初探[J].台湾海峡,2005(04):502-507.
    [119]陈长平,高亚辉,林鹏.福建漳江口红树林保护区浮游植物群落的季节变化研究[J].海洋科学,2007,31(7):25-31.
    [120]黄茜,福建漳江口两种养殖模式下缢蛏食物来源的稳定同位素研究[D].2013,厦门大学硕士论文.
    [121]吴浩,中国红树林区滨海围塘养殖的营养盐与重金属污染特征[D].2012,厦门大学博士论文.
    [122]陈坚,何斌源,梁士楚.广西英罗港红树林区水体浮游动物的种类[J].广西科学院学报,1993(02):43-44+36.
    [123]McKinnon, A., Klumpp, D. Mangrove zooplankton of north Queensland, Australia[J]. Hydrobiologia,1997,362:145-160.
    [124]Rezai, H., Yusoff, F.M., Arshad, A., Kawamura, A., Nishida, S., Ross, O.B.H. Spatial and temporal distribution of copepods in the Straits of Malacca[J]. Zoological studies,2004,43(2): 486-497.
    [125]郑惠东.福建东山湾浮游动物的种类组成与数量分布特点[J].福建水产,2009,2:11-17.
    [126]田丰歌,徐兆礼.福建中部近海浮游动物数量分布与水团变化的关系[J].生态学报,2012,32(4):1097-1104.
    [127]李强,崇明东滩潮间带潮沟浮游动物群落生态学研究[D].2010,华东师范大学硕士论文.
    [128]Tam, N., Wong, Y., Lan, C., Wang, L. Litter production and decomposition in a subtropical mangrove swamp receiving wastewater[J]. Journal of Experimental Marine Biology and Ecology,1998,226(1):1-18.
    [129]陈卉,中国两种亚热带红树林生态系统的碳固定、掉落物分解及其同化过程[D].2013,厦门大学博士论文.
    [130]Marques, S.C., Azeiteiro, U.M., Marques, J.C., Neto, J.M., Pardal, M.A. Zooplankton and ichthyoplankton communities in a temperate estuary:spatial and temporal patterns[J]. Journal of Plankton Research,2006,28(3):297-312.
    [131]Loneragan, N.R., Bunn, S.E., Kellaway, D.M. Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable-isotope study[J]. Marine Biology,1997,130(2):289-300.
    [132]李蕊,漳江口红树林潮沟及周边水域溶解无机碳来源及其时空动态研究[D].2013,厦门大学硕士论文.
    [133]Heithaus, E.R., Heithaus, P.A., Heithaus, M.R., Burkholder, D., Layman, C.A. Trophic dynamics in a relatively pristine subtropical fringing mangrove community[J]. Marine Ecology-Progress Series,2011,428:49-61.
    [134]Garcia, A., Hoeinghaus, D., Vieira, J., Winemiller, K. Isotopic variation of fishes in freshwater and estuarine zones of a large subtropical coastal lagoon[J]. Estuarine, Coastal and Shelf Science,2007,73(3-4):399-408.
    [135]Franca, S., Vasconcelos, R.P., Tanner, S., Maguas, C., Costa, M.J., Cabral, H.N. Assessing food web dynamics and relative importance of organic matter sources for fish species in two Portuguese estuaries:A stable isotope approach[J]. Marine Environmental Research,2011,72: 204-215.
    [136]Cui, B., Zhang, Q., Zhang, K., Liu, X., Zhang, H. Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China[J]. Environmental Pollution,2011,159(5):1297-1306.
    [137]Weinstein, M.P., Litvin, S.Y., Bosley, K.L., Fuller, C.M., Wainright, S.C. The role of tidal salt marsh as an energy source for marine transient and resident finfishes:A stable isotope approach[J]. Transactions of the American Fisheries Society,2000,129(3):797-810.
    [138]陈听韡,蔡立哲,吴辰,彭欣,曹婧,许鹏,刘莎,傅素晶.福建漳江口红树林和盐沼湿地的多毛类动物群落[J].应用生态学报,2012,23(4):931-938.
    [139]Kruitwagen, G., Nagelkerken, I., Lugendo, B.R., Mgaya, Y.D., Bonga, S.E.W. Importance of different carbon sources for macroinvertebrates and fishes of an interlinked mangrove-mudflat ecosystem (Tanzania)[J]. Estuarine Coastal and Shelf Science,2010,88(4):464-472.
    [140]Vander Zanden, M.J., Rasmussen, J.B. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies[J]. Limnology and Oceanography,2001:2061-2066.
    [141]张雅芝,陈锦坤.东山湾鱼类食物网研究[J].台湾海峡,1994,13(1):52-61.
    [142]McCutchan, J.H., Lewis, W.M., Kendall, C., McGrath, C.C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur[J]. Oikos,2003,102(2):378-390.
    [143]Abrantes, K., Sheaves, M. Food web structure in a near-pristine mangrove area of the Australian Wet Tropics [J]. Estuarine, Coastal and Shelf Science,2009,82(4):597-607.
    [144]France, R. Carbon-13 enrichment in benthic compared to planktonic algae:foodweb implications [J]. Marine ecology progress series,1995,124(1):307-312.
    [145]Freudenthal, T., Wagner, T., Wenzhofer, F., Zabel, M., Wefer, G. Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic:Evidence from stable nitrogen and carbon isotopes[J]. Geochimica et Cosmochimica Acta,2001,65(11):1795-1808.
    [146]Kwak, T., Zedler, J. Food web analysis of southern California coastal wetlands using multiple stable isotopes[J]. Oecologia,1997,110(2):262-277.
    [147]Bannon, R.O., Roman, C.T. Using stable isotopes to monitor anthropogenic nitrogen inputs to estuaries[J]. Ecological Applications,2008,18(1):22-30.
    [148]Mazumder, D., Saintilan, N., Williams, R.J., Szymczak, R. Trophic importance of a temperate intertidal wetland to resident and itinerant taxa:evidence from multiple stable isotope analyses[J]. Marine and Freshwater Research,2011,62(1):11-19.
    [149]Vaslet, A., Phillips, D.L., France, C., Feller, I.C., Baldwin, C.C. The relative importance of mangroves and seagrass beds as feeding areas for resident and transient fishes among different mangrove habitats in Florida and Belize:Evidence from dietary and stable-isotope analyses[J]. Journal of Experimental Marine Biology and Ecology,2012,434:81-93.
    [150]Brusati, E.D., Grosholz, E.D. Does invasion of hybrid cordgrass change estuarine food webs?[J]. Biological Invasions,2009,11(4):917-926.
    [151]Liao, C., Peng, R., Luo, Y., Zhou, X., Wu, X., Fang, C., Chen, J., Li, B. Altered ecosystem carbon and nitrogen cycles by plant invasion:a meta-analysis[J]. New Phytologist,2007, 177(3):706-714.
    [152]Wang, J., Zhang, X., Nie, M., Fu, C., Chen, J., Li, B. Exotic Spartina alterniflora provides compatible habitats for native estuarine crab Sesarma dehaani in the Yangtze River estuary [J]. Ecological Engineering,2008,34(1):57-64.
    [153]Kristensen, E. Mangrove crabs as ecosystem engineers:with emphasis on sediment processes[J]. Journal of Sea Research,2008,59:30-43.
    [154]Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., Tilman, D.G. Human alteration of the global nitrogen cycle:sources and consequences[J]. Ecological applications,1997,7(3):737-750.
    [155]叶功富,范少辉,刘荣成,张建生,洪志猛,崔丽娟,林宏斌.泉州湾红树林湿地人工生态恢复的研究[J].湿地科学,2005(01):8-12.
    [156]McKee, K.L., Rooth, J.E., Feller, I.C. Mangrove recruitment after forest disturbance is facilitated by herbaceous species in the Caribbean[J]. Ecological Applications,2007,17(6): 1678-1693.
    [157]Daehler, C.C., Strong, D.R. Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA[J]. Biological Conservation,1996,78(1):51-58.
    [158]Levin, L.A., Talley, T.S., Hewitt, J. Macrobenthos of Spartina foliosa (Pacific cordgrass) salt marshes in southern California:community structure and comparison to a Pacific mudflat and a Spartina alterniflora (Atlantic smooth cordgrass) marsh[J]. Estuaries and Coasts,1998, 21(1):129-144.
    [159]Lee, S.Y. Mangrove macrobenthos:assemblages, services, and linkages[J]. Journal of Sea Research,2008,59(1):16-29.
    [160]陈中义,付萃长,王海毅,李博,吴纪华,陈家宽.互花米草入侵东滩盐沼对大型底栖无脊椎动物群落的影响[J].湿地科学,2005(01):1-7.
    [161]Bosire, J., Dahdouh-Guebas, F., Walton, M., Crona, B., Lewis, R., Field, C., Kairo, J., Koedam, N. Functionality of restored mangroves:A review[J]. Aquatic Botany,2008,89(2): 251-259.
    [162]Chen, G., Ye, Y. Restoration of Aegiceras corniculatum mangroves in Jiulongjiang Estuary changed macro-benthic faunal community[J]. Ecological Engineering,2011,37(2):224-228.
    [163]韦受庆,陈坚,范航清.广西山口红树林保护区大型底栖动物及其生态学的研究[J].广西科学院学报,1993,9(2):45-47.
    [164]袁琳,张利权,肖德荣,张杰,王睿照,袁连奇,古志钦,陈曦,平原,祝振昌.刈割与水位调节集成技术控制互花米草(Spartina alterniflora)[J].生态学报,2008,28(11):5723-5730.
    [165]唐龙,刈割,淹水及芦苇替代综合控制互花米草的生态学机理研究[D].2008,复旦大学博士论文.
    [166]廖宝文,郑松发,陈玉军,李玫,李意德.外来红树植物无瓣海桑生物学特性与生态环境适应性分析[J].生态学杂志,2004,23(1):10-15.
    [167]Frid, C., Chandrasekara, W., Davey, P. The restoration of mud flats invaded by common cord-grass (Spartina anglica, CE Hubbard) using mechanical disturbance and its effects on the macrobenthic fauna[J]. Aquatic Conservation:Marine and Freshwater Ecosystems,1999,9(1): 47-61.
    [168]王参谋,红树林生态系统土壤有机碳动态及互花米草入侵的影响.2012,厦门大学硕士论文.
    [169]Alongi, D.M. Bacterial productivity and microbial biomass in tropical mangrove sediments[J]. Microbial Ecology,1988,15(1):59-79.
    [170]Alongi, D.M. Effect of mangrove detrital outwelling on nutrient regeneration and oxygen fluxes in coastal sediments of the Central Great Barrier Reef Lagoon[J]. Estuarine, Coastal and Shelf Science,1990,31(5):581-598.
    [171]Brusati, E.D., Grosholz, E.D. Native and introduced ecosystem engineers produce contrasting effects on estuarine infaunal communities[J]. Biological Invasions,2006,8(4):683-695.
    [172]Parker, J.D., Hay, M.E. Biotic resistance to plant invasions? Native herbivores prefer non-native plants[J]. Ecology Letters,2005,8(9):959-967.
    [173]Wozniak, A.S., Roman, C.T., Wainright, S.C., McKinney, R.A., James-Pirri, M.-J. Monitoring food web changes in tide-restored salt marshes:a carbon stable isotope approach[J]. Estuaries and Coasts,2006,29(4):568-578.
    [174]Currin, C., Wainright, S., Able, K., Weinstein, M., Fuller, C. Determination of food web support and trophic position of the mummichog, Fundulus heteroclitus, in New Jersey smooth cordgrass (Spartina alterniflora), common reed (Phragmites australis), and restored salt marshes[J]. Estuaries,2003,26(2):495-510.
    [175]Dibble, K.L., Meyerson, L.A. The effects of plant invasion and ecosystem restoration on energy flow through salt marsh food webs[J]. Estuaries and Coasts,2013:1-15.
    [176]Currin, C.A., Levin, L.A., Talley, T.S., Michener, R., Talley, D. The role of cyanobacteria in Southern California salt marsh food webs[J]. Marine Ecology,2011,32(3):346-363.
    [177]张瑜斌,曹卉,庄铁诚,林鹏.红树林固氮微生物研究进展[J].海洋通报,2003,22(6):79-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700