压电驱动器的迟滞非线性建模与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
迟滞现象是一种输入-输出关系呈多重分支的非线性,且分支的切换发生在输入达到极值的时刻,广泛地存在于压电材料、机械间隙系统、光学、电子束、经济等领域。由于这种现象十分普遍,而且涉及到多个学科,受到了许多研究者的关注。本课题研究了压电驱动器的建模方法,并基于模型设计了控制器。
     压电陶瓷驱动器是一种高性能的功能器件,具有体积小、响应快、功耗低、位移分辨率高等优点,在智能结构、精密加工、纳米技术、微电子工程、精密光学、生物工程等领域有广泛地应用前景,如压电式微位移机构、扫描探针显微镜的探头定位、天文望远镜定位系统等。然而,压电陶瓷驱动器作为一种铁电材料,本身所固有的非线性迟滞特性是制约驱动精度的瓶颈。这种迟滞非线性不仅削弱闭环控制的反馈作用,而且有可能造成系统的不稳定。随着智能结构、精密加工以及微电子等技术的不断进步,对定位精度的要求也越来越高。本课题设计了一种前馈与反馈复合的控制策略,用于提高压电驱动器的定位精度。前馈控制器在Preisach迟滞模型理论的基础上,采用神经网络描述压电驱动器迟滞非线性的逆过程。与经典的Preisach迟滞模型相比,神经网络模型所需的参数更少,而且参数易于识别。反馈控制器根据传感器测量的位移信号,修正驱动电压,并补偿积累的误差。实验结果显示,这种控制方法能够有效的提高压电驱动系统跟踪控制的精度。
     双曲函数模型能够用较少的参数描述压电叠堆驱动器的迟滞非线性,但是仅遵循记忆擦除性而不符合次环一致性。根据经典的Preisach模型理论,改进了双曲函数模型用来描述压电双晶片的迟滞过程。逆控制器采用改进的双曲函数模型描述迟滞的逆,与压电双晶片的迟滞过程相互抵消。通过分析压电双晶片与逆控制器构成的伪线性系统的幅频与相频特性,设计前馈控制器减小系统固有频率对定位精度的影响,同时设计了反馈控制器补偿压电双晶片的蠕变效应并进一步提高定位精度。实验结果显示,在单频率变幅值信号的驱动下,最大定位误差由控制前的0.0863mm减小到控制后的0.0095mm;在多频叠加信号的驱动下,最大定位误差由控制前的0.0825mm减小到控制后的0.0536mm。该系统能够有效的提高压电双晶片驱动器的定位精度,可用于宽频域的微定位系统中。
     经典的Prandtl-Ishlinskii模型是不同阈值的线性Play算子或Stop算子的加权叠加。由于线性Play算子的迟滞环是关于中心对称的,经典Prandtl-Ishlinskii模型也只能描述关于中心对称的迟滞现象,而压电驱动器的迟滞非线性通常是一个非对称的过程。根据经典Prandtl-Ishlinskii迟滞模型的基本迟滞单元,设计了上升算子与下降算子,使改进后的模型能够模拟非对称的迟滞非线性过程。采用这种改进的Prandtl-Ishlinskii模型与逆系统控制理论,设计了用于压电驱动器的精密定位控制器。实验结果显示,采用这种控制器的跟踪定位的应用上是行之有效的。
     为了提高压电式二维微定位平台的控制精度,本课题基于改进型Prandtl-Ishlinskii模型补偿平台的迟滞与耦合,设计了复合控制系统。在分析x与y方向输入电压与响应位移之间迟滞非线性关系的基础上,前馈控制器通过改进型Prandtl-Ishlinskii模型描述迟滞的逆过程,分别补偿了x与y方向的迟滞。解耦控制器通过改进型Prandtl-Ishlinskii模型估算出耦合位移值,然后修正驱动电压,抵消耦合位移。复合控制系统结合了前馈控制器与解耦控制器的优势,并加入PID反馈控制进一步提高定位精度。实验结果表明,复合控制方法能够补偿非线性的迟滞,减小耦合效应对定位的影响,有效的提高跟踪定位的精度。
The hysteresis system is characterized by its input-output relationship that is a multibranchnonlinearity for which branch-to-branch transitions occur after input extrema. The phenomenon ofhysteresis is ubiquitous and has been attracting the attention of many investigators for a long time.It is encountered in many different areas of science. Examples include magnetic hysteresis,piezoelectric actuator, mechanical hysteresis, optical hysteresis, electron beam hysteresis,economic hysteresis, etc. In this research, the hysteresis of piezoelectric actuators was investigatedwith different mathematical models, and the controllers were designed to compensate thehysteresis.
     Due to their characteristics of high displacement resolution, high stiffness, and highfrequency response, piezoelectric actuators have been widely used in high-precision positioningdevices and tracking systems, such as scanning tunneling microscopy, and diamond turningmachines. However, the piezoelectric actuators have the drawback of hysteretic behavior, whichseverely limits system precision and may cause the control system instability. In order to mitigatethe hysteresis influence to system, the inverse control schemes have been proposed, which is alsothe popular method used in controller design. The idea of inverse control is to construct an inversemodel to cancel out the hysteresis nonlinearity. There surely exist several models to describehysteresis nonlinearity such as Preisach model, but they are all difficult to identify parameters. Aninverse control method which is a combination of a feedforward loop and a feedback loop isdeveloped to compensate the hysteresis of piezoelectric actuator. In the feedforward loop,hysteresis nonlinearity is compensated by inverse neural network model. Feedback loop is used toreduce the static error and possible creep in the piezoelectric actuator. Experiment results showthat the neural networks can precisely model the hysteresis of piezoelectric actuator, and issuitable for controller design.
     A precision positioning control system for the piezoelectric bimorph actuator was designedwith inverse hysteresis model. Based on the wiping-out and congruency property of classicPreisach hysteresis model, a hyperbola model is developed to describe the hysteresis ofpiezoelectric bimorph actuator. Since the inverse controller and the piezoelectric hysteresiscanceled each other out, the combination can be considered as a pseudo linear system. With theamplitude-frequency and Phase-frequency characteristic analysis, a feedforward and a feedbackcontroller were designed to reduce the tracking control error and compensate the creep of thepiezoelectric bimorph. For single frequency tracking control, the maximum error is0.0863mmwithout control, and reduced to0.0095mm with control; for multi-frequency tracking control, the maximum error is0.0825mm, and reduced to0.0536mm with control. The experimental resultshows that the precision control system have potential applications for wide-bandmicro-positioning devices.
     Classical Prandtl-Ishlinskii model is a linearly weighted superposition of many play operatorswith different threshold and weight values, which inherits the symmetric property of the backlashoperator at about the center point of the loop formed by the operators. To describe the asymmetrichysteresis of piezoelectric stack actuators, two modified operators were developed, one forascending branches and another for descending branches. Based on this modified model, afeedforward controller was designed to compensate the hysteresis. Since the modified modeldescribes the inverse of hysteresis, the feedforward controller and the hysteresis of piezoelectricstack actuator canceled each other. To attenuate the creep effect and reduce tracking error, afeedback controller was proposed to work with the feedforward controller. Experimental resultsshow that this control scheme that combines feedforward and feedback controllers greatlyimproves the tracking of the piezoelectric actuator and the error is less than0.15mm.
     To improve the accuracy of piezoelectrically driven micro positioning stage, a compoundcontrol system was developed to compensate for the hysteresis of piezoelectric actuator andattenuate the coupling effect between different actuating directions. With modifiedPrandtl-Ishlinskii hysteresis models, two feedforward controllers were designed to compensate forthe hysteresis respectively in X and Y direction. To attenuate the coupling effect, the decouplingcontroller estimated the coupling shift, and then manipulated the voltage to cancel this shift. Thecompound control system incorporated feedforward, decoupling and PID feedback controllers toreduce the tracking error. Experimental result shows that the compound control system can wellcompensate for the hysteresis and coupling effect.
引文
[1] Antonio Arnau Vives. Piezoelectric transducers and applications. Germany: Springer-VerlagBerlin Heidelberg,2008:
    [2] Warren P. Mason. Piezoelectric crystals and their application to ultrasonics. Toronto; New York:Van Nostrand,1950:
    [3] Woldemar Voigt. Lehrbuch der kristallphysik. Leipzig, Berlin: B. G. Teubner,1910:
    [4] W. P. Mason. The elastic, piezoelectric, and dielectric constants of potassium dihydrogenphosphate and ammonium dihydrogen phosphate. Physical Review,1946,69(5-6):173-194.
    [5] Warren P. Mason. Physical acoustics and the properties of solids. Princeton, N.J.: Van Nostrand,1958:
    [6] D. Rugar, O. Züger, S. Hoen, C. S. Yannoni, H. M. Vieth, R. D. Kendrick. Force detection ofnuclear magnetic resonance. Science (New York, N.Y.),1994,264(5165):1560-1563.
    [7] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A.Y. Chtchelkanova, D. M. Treger. Spintronics: A spin-based electronics vision for the future.Science,2001,294(5546):1488-1495.
    [8] P. K. Hansma, V. B. Elings, O. Marti, C. E. Bracker. Scanning tunneling microscopy and atomicforce microscopy: Application to biology and technology. Science (New York, N.Y.),1988,242(4876):209-216.
    [9] Chang-Woo Lee, Seung-Woo Kim. An ultraprecision stage for alignment of wafers in advancedmicrolithography. Precision Engineering,1997,21(2–3):113-122.
    [10] Samir Mittal, Chia-Hsiang Menq. Hysteresis compensation in electromagnetic actuators throughpreisach model inversion. IEEE-ASME Transactions on Mechatronics,2000,5(4):394-409.
    [11] Heui Jae Pahk, Dong Sung Lee, Jong Ho Park. Ultra precision positioning system for servomotor-piezo actuator using the dual servo loop and digital filter implementation. InternationalJournal of Machine Tools and Manufacture,2001,41(1):51-63.
    [12] Bi Zhang, Z. Zhu. Developing a linear piezomotor with nanometer resolution and high stiffness.Mechatronics, IEEE/ASME Transactions on,1997,2(1):22-29.
    [13] Eiji Shamoto, Toshimichi Moriwaki. Rigid xyθ table for ultraprecision machine tool driven bymeans of walking drive. CIRP Annals-Manufacturing Technology,1997,46(1):301-304.
    [14] Kenji Uchino. Piezoelectric actuators and ultrasonic motors. Boston: Kluwer AcademicPublishers,1997:
    [15] Jung-Ho Park, Kazuhiro Yoshida, Shinichi Yokota. Resonantly driven piezoelectric micropump:Fabrication of a micropump having high power density. Mechatronics,1999,9(7):687-702.
    [16] Sebastian B hm, Wouter Olthuis, Piet Bergveld. A plastic micropump constructed withconventional techniques and materials. Sensors and Actuators A: Physical,1999,77(3):223-228.
    [17] M. Sasaki, T. Suzuki, E. Ida, F. Fujisawa, M. Kobayashi, H. Hirai. Track-following control of adual-stage hard disk drive using a neuro-control system. Engineering Applications of ArtificialIntelligence,1998,11(6):707-716.
    [18] K. H. Park, J. H. Lee, S. H. Kim, Y. K. Kwak. High speed micro positioning system based oncoarse/fine pair control. Mechatronics,1995,5(6):645-663.
    [19] S. Aoshima, N. Yoshizawa, T. Yabuta. Compact mass axis alignment device with piezoelementsfor optical fibers. Photonics Technology Letters, IEEE,1992,4(5):462-464.
    [20] A. Henke, M. A. Kümmel, J. Wallaschek. A piezoelectrically driven wire feeding system for highperformance wedge-wedge-bonding machines. Mechatronics,1999,9(7):757-767.
    [21] S. Gonda, T. Doi, T. Kurosawa, Y. Tanimura, N. Hisata, T. Yamagishi, H. Fujimoto, H. Yukawa.Accurate topographic images using a measuring atomic force microscope. Applied SurfaceScience,1999,144–145(0):505-509.
    [22] H. Haitjema. Dynamic probe calibration in the μm region with nanometric accuracy. PrecisionEngineering,1996,19(2–3):98-104.
    [23] Brij N. Agrawal, M. Adnan Elshafei, Gangbing Song. Adaptive antenna shape control usingpiezoelectric actuators. Acta Astronautica,1997,40(11):821-826.
    [24] D. R. Meldrum. A biomechatronic fluid-sample-handling system for DNA processing.Mechatronics, IEEE/ASME Transactions on,1997,2(2):99-109.
    [25] Sandeep Krishnan, Laxman Saggere. Design and development of a novel micro-clasp gripper formicromanipulation of complex-shaped objects. Sensors and Actuators A: Physical,2012,176(0):110-123.
    [26]陶宝祺.智能材料结构.北京:国防工业出版社,1997:
    [27] Hong Hu. Compensation of hysteresis in piezoceramic actuators and control of nanopositioningsystem,[Doctor Thesis]. University of Toronto,2003.
    [28] P. Ge, M. Jouaneh. Tracking control of a piezoceramic actuator. IEEE Transactions on ControlSystems Technology,1996,4(3):209-216.
    [29]赵新龙,谭永红,董建萍.基于扩展输入空间法的压电执行器迟滞特性动态建模.机械工程学报,2010,46(20):169-174.
    [30] Matthew L. Trawick, Mischa Megens, Dan E. Angelescu, Christopher Harrison, Daniel A. Vega,Paul M. Chaikin, Richard A. Register, Douglas H. Adamson. Correction for piezoelectric creepin scanning probe microscopy images using polynomial mapping. Scanning,2003,25(1):25-33.
    [31] A. Kawamata, Y. Kadota, H. Hosaka, T. Morita. Self-sensing piezoelectric actuator usingpermittivity detection. Ferroelectrics,2008,368(1):194-201.
    [32]魏燕定.压电驱动器的非线性模型及其精密定位控制研究.中国机械工程,2004,15(7):565-568.
    [33] Jung-Kyu Park, Gregory Washington, Hwan-Sik Yoon. A hybrid approach to model hystereticbehavior of pzt stack actuators. Journal of Intelligent Material Systems and Structures,2009,20(4):467-480.
    [34]崔玉国,孙宝元,董维杰,杨志欣.压电陶瓷执行器迟滞与非线性成因分析.光学精密工程,2003,11(3):270-275.
    [35]唐凤,黄尚廉,刘光聪.Pzt非线性特性的研究.压电与声光,1997,19(3):180-183.
    [36]荣伟彬,徐敏,张世忠.基于电流与电压复合控制的压电陶瓷驱动器.压电与声光,2009,31(4):496-199,503.
    [37] Ralph C. Smith. Smart material systems: Model development. Philadelphia, PA: Society forIndustrial and Applied Mathematics,2005:
    [38] C. V. Newcomb, I. Flinn. Improving the linearity of piezoelectric ceramic actuators. ElectronicsLetters,1982,18(11):442-444.
    [39]荣伟彬,曲东升,孙立宁,徐晶,蔡鹤皋.压电陶瓷微位移器件迟滞模型的研究.压电与声光,2003,25(1):22-25,35.
    [40] Katsushi Furutani, Mitsunori Urushibata, Naotake Mohri. Displacement control of piezoelectricelement by feed-back of induced charge. Nanotechnology,1998,9(2):93-98.
    [41] C. D rlemann, P. Mu, M. Schugt, R. Uhlenbrock. New high speed current controlled amplifierfor pzt multilayer stack actuators. in8th International Conference on New Actuators, Bremen,2002,
    [42] Katsushi Furutani, Mitsunori Urushibata, Naotake Mohri. Improvement of control method forpiezoelectric actuator by combining induced charge feedback with inverse transfer functioncompensation. in Proceedings. IEEE International Conference on Robotics and Automation,Leuven, Belgium,1998,2:1504-1509
    [43] Y. Okazaki. A micro-positioning tool post using a piezoelectric actuator for diamond turningmachines. Precision Engineering,1990,12(3):151-156.
    [44] G. Schitter, P. Menold, H. F. Knapp, F. Allg wer, A. Stemmer. High performance feedback forfast scanning atomic force microscopes. Review of Scientific Instruments,2001,72(8):3320-3327.
    [45] PI (Physik Instrumente) L.P. http://www.pi-usa.us/products/Microscopy_Imaging/pinano.php
    [46] Dynamic Structures&Materials, LLC. http://www.dynamic-structures.com/stages/
    [47] CVI Melles Griot and Auburn SeeWolf, LLC. https://www.cvimellesgriot.com/Products/High-Resolution-Positioning-Stages.aspx
    [48] Michigan Aerospace Corporation. http://products.michiganaerospace.com/nanopositioners.html
    [49] F. A. Garmón, W. T. Ang, P. K. Khosla, C. N. Riviere. Rate-dependent inverse hysteresisfeedforward controller for microsurgical tool. in Proceedings of the25th Annual InternationalConference of the IEEE Engineering in Medicine and Biology Society2003,4:3415-3418.
    [50] The Institute of Electrical and Electronics Engineers, Ieee standard on piezoelectricity,1987.
    [51] Michael Goldfarb, Nikola Celanovic. Modeling piezoelectric stack actuators for control ofmicromanipulation. IEEE Control Systems,1997,17(3):69-79
    [52] R. C. Smith, A. Hatch, T. De, Model development for piezoceramic nanopositioners, Decisionand Control,2003. Proceedings.42nd IEEE Conference on,2003, pp.2638-2643.
    [53] Jordan E. Massad, Ralph C. Smith. A domain wall model for hysteresis in ferroelastic materials.Journal of Intelligent Material Systems and Structures,2003,14(7):455-471.
    [54] Ralph C. Smith, Andrew G. Hatch, Binu Mukherjee, Shifang Liu. A homogenized energy modelfor hysteresis in ferroelectric materials: General density formulation. Journal of IntelligentMaterial Systems and Structures,2005,16(9):713-732.
    [55] Thomas Hegewald, Barbara Kaltenbacher, Manfred Kaltenbacher, Reinhard Lerch. Efficientmodeling of ferroelectric behavior for the analysis of piezoceramic actuators. Journal ofIntelligent Material Systems and Structures,2008,19(10):1117-1129.
    [56] F. Preisach. ber die magnetische nachwirkung. Zeitschrift für Physik A Hadrons and Nuclei,1935,94(5):277-302.
    [57] D. H. Everett, W. I. Whitton. A general approach to hysteresis. Transactions of the FaradaySociety,1952,48:749-757.
    [58] Puduhai N. Sreeram, Nagi G. Naganathan. Hysteresis prediction for piezoceramic actuatorsystems using preisach models. in Smart Structures and Materials1994: Smart Materials,1994,2189:14-25.
    [59] Ping Ge, Musa Jouaneh. Modeling hysteresis in piezoceramic actuators. Precision Engineering,1995,17(3):211-221.
    [60] G. Song, Jinqiang Zhao, Xiaoqin Zhou, J. Alexis De Abreu-García. Tracking control of apiezoceramic actuator with hysteresis compensation using inverse preisach model. IEEE/ASMETransactions on Mechatronics,2005,10(2):198-209.
    [61]魏燕定,吕永桂,陈子辰.基于压电驱动器的微动平台开环精密定位控制研究.机械工程学报,2004,40(12):81-85.
    [62]李黎,刘向东,侯朝桢,王伟.混合preisach迟滞模型及其性质研究.光学精密工程,2008,16(2):279-284.
    [63]李黎,刘向东,王伟,侯朝桢.压电陶瓷执行器迟滞特性的广义非线性preisach模型及其数值实现.光学精密工程,2007,15(5):706-712.
    [64]刘向东,刘宇,李黎.一种新广义preisach迟滞模型及其神经网络辨识.北京理工大学学报,2007,27(2):135-138.
    [65]张新良,谭永红.基于动态preisach算子的压电陶瓷动态迟滞智能建模.系统仿真学报,2009,21(9):2682-2686.
    [66] Isaak D. Mayergoyz. Mathematical models of hysteresis and their applications. Amsterdam;Boston: Elsevier Science,2003:
    [67]李春涛,谭永红.迟滞非线性系统的建模与控制.控制理论与应用,2005,22(2):281-287.
    [68] Hughes Declan, T. Wen John. Preisach modeling of piezoceramic and shape memory alloyhysteresis. Smart Materials and Structures,1997,6(3):287.
    [69]魏燕定,陶惠峰.压电驱动器迟滞特性的preisach模型研究.压电与声光,2004,26(5):364-367.
    [70] Yunhe Yu, Zenngchu Xiao, Nagi G. Naganathan, Rao V. Dukkipati. Dynamic preisach modellingof hysteresis for the piezoceramic actuator system. Mechanism and Machine Theory,2002,37(1):75-89.
    [71] H. Hu, R. Ben Mrad. On the classical preisach model for hysteresis in piezoceramic actuators.Mechatronics,2002,13(2):85-94.
    [72] Alfredo Dubra, John S. Massa, Carl Paterson. Preisach classical and nonlinear modeling ofhysteresis in piezoceramic deformable mirrors. Optics Express,2005,13(22):9062-9070.
    [73] Yunhe Yu, Nagi Naganathan, Rao Dukkipati. Preisach modeling of hysteresis for piezoceramicactuator system. Mechanism and Machine Theory,2002,37(1):49-59.
    [74] Xinlong Zhao, Yonghong Tan. Neural network based identification of preisach-type hysteresis inpiezoelectric actuator using hysteretic operator. Sensors and Actuators A: Physical,2006,126(2):306-311.
    [75]李帆,赵建辉,李焱嘉.迟滞非线性的一种离散preisach函数辨识法.系统仿真学报,2007,19(17):4065-4067.
    [76] Weiping Guo, Diantong Liu, Wei Wang. Neural network hysteresis modeling with an improvedpreisach model for piezoelectric actuators. Engineering Computations,2012,29(3):248-259.
    [77] Wikimedia Foundation Inc. http://en.wikipedia.org/wiki/Preisach_model_of_hysteresis
    [78] M. A. Krasnosel ski, A. V. Pokrovski. Systems with hysteresis. Berlin; New York:Springer-Verlag,1989:
    [79] P. Krejcí. Hysteresis memory preserving operators. Applications of Mathematics,1991,36(4):305-326.
    [80] S. Bobbio, G. Milano, C. Serpico, C. Visone. Models of magnetic hysteresis based on play andstop hysterons. Magnetics, IEEE Transactions on,1997,33(6):4417-4426.
    [81] Ruili Dong, Yonghong Tan. A modified prandtl–ishlinskii modeling method for hysteresis.Physica B: Condensed Matter,2009,404(8–11):1336-1342.
    [82] Mohammad Al Janaideh, Subhash Rakheja, Chun-Yi Su. A generalized prandtl–ishlinskii modelfor characterizing the hysteresis and saturation nonlinearities of smart actuators. Smart Materialsand Structures,2009,18(4):045001.
    [83]张栋,张承进,魏强.压电微动工作台的动态迟滞模型.光学精密工程,2009,17(3):549-556.
    [84]张栋,张承进,魏强.压电工作台快速动态定位建模及其控制器设计.中国机械工程,2009,20(6):673-377,682.
    [85] Hartmut Janocha, Klaus Kuhnen. Real-time compensation of hysteresis and creep inpiezoelectric actuators. Sensors and Actuators A: Physical,2000,79(2):83-89.
    [86] W. T. Ang, P. K. Khosla, C. N. Riviere. Feedforward controller with inverse rate-dependentmodel for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Transactionson Mechatronics,2007,12(2):134-142.
    [87] J.-Ch. Shen, W.-Y. Jywe, H.-K. Chiang, Y.-L. Shu. Precision tracking control of apiezoelectric-actuated system. Precision Engineering,2008,32(2):71-78.
    [88] Xinkai Chen, Takeshi Hisayama. Adaptive sliding-mode position control for piezo-actuated stage.IEEE Transactions on Industrial Electronics,2008,55(11):3927-3934.
    [89] Martin Brokate, J. Sprekels. Hysteresis and phase transitions. New York: Springer,1996:
    [90] Augusto Visintin. Differential models of hysteresis. Berlin; New York: Springer,1994:
    [91] Y. S. Chen, J. Palacios, E. C. Smith, J. H. Qiu. Tracking control of piezoelectric stack actuatorusing modified prandtl-ishlinskii model. in ASME2011Conference on Smart Materials,Adaptive Structures and Intelligent Systems, Scottsdale, Arizona, USA,2011,2:35-41.
    [92] U. Xuan Tan, Win Tun Latt, Ferdinan Widjaja, Cheng Yap Shee, Cameron N. Riviere, Wei TechAng. Tracking control of hysteretic piezoelectric actuator using adaptive rate-dependentcontroller. Sensors and Actuators A: Physical,2009,150(1):116-123.
    [93] Adrien Badel, Jinhao Qiu, Tetsuaki Nakano. A new simple asymmetric hysteresis operator and itsapplication to inverse control of piezoelectric actuators. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,2008,55(5):1086-1094
    [94] A. Mielke. Generalized prandtl–ishlinskii operators arising from homogenization and dimensionreduction. Physica B: Condensed Matter,2012,407(9):1330-1335.
    [95] D. Roylance. Engineering viscoelasticity. Course Note, Department of materials science andengineering, Massachusetts Institute of Technology, Cambridge, MA,2001,
    [96]秦月霞,胡德金.压电驱动器的非线性建模.上海交通大学学报,2004,38(8):1334-1336,1341.
    [97] S.-H. Lee, M. B. Ozer, T. J. Royston. Piezoceramic hysteresis in the adaptive structural vibrationcontrol problem. Journal of Intelligent Material Systems and Structures,2002,13(2-3):117-124.
    [98] Paul Mayhan, K. Srinivasan, Sarawoot Watechagit, Gregory Washington. Dynamic modeling andcontroller design for a piezoelectric actuation system used for machine tool control. Journal ofIntelligent Material Systems and Structures,2000,11(10):771-780.
    [99] A. Badel, J. H. Qiu, G. Sebald, D. Guyomar. Self-sensing high speed controller for piezoelectricactuator. Journal of Intelligent Material Systems and Structures,2008,19(3):395-405.
    [100] László Juhász, Jürgen Maas, Branislav Borovac. Parameter identification and hysteresiscompensation of embedded piezoelectric stack actuators. Mechatronics,2011,21(1):329-338.
    [101] Martin T. Hagan, Howard B. Demuth, Mark H. Beale. Neural network design. Boston; London:PWS Pub,1996:
    [102] The MathWorks Inc. http://www.mathworks.com/products/neural-network/
    [103] Jyh-Da Wei, Chuen-Tsai Sun. Constructing hysteretic memory in neural networks. IEEETransactions on Systems, Man, and Cybernetics—Part B: Cybernetics,2000,30(4):601-609
    [104] Nguyen Trong Tai, Kyoung Kwan Ahn. A hysteresis functional link artificial neural network foridentification and model predictive control of sma actuator. Journal of Process Control,2012,22(4):766-777.
    [105] D. Moussaoui, A. Bendjerad, M. Oussalah, H. Houassine. A neural network approach fordetermination of preisach model parameters under a sinusoidal induction at various frequencies.Physica B: Condensed Matter,2006,372(1-2):106-110.
    [106] Maurizio Cirrincione, Rosario Miceli, Giuseppe Ricco Galluzzo, Marco Trapanese. Preisachfunction identification by neural networks. IEEE Transactions on Magnetics,2002,38(5):2421-2423
    [107] J. P. Lien, Tiegang Fang, Gregory D. Buckner. Hysteretic neural network modeling ofspring-coupled piezoelectric actuators. Smart Materials and Structures,2011,20(6):065007.
    [108] Chih-Lyang Hwang, Chau Jan, Ye-Hwa Chen. Piezomechanics using intelligentvariable-structure control. IEEE Transactions on Industrial Electronics,2001,48(1):47-59.
    [109] F. Sixdenier, R. Scorretti, R. Marion, L. Morel. Quasistatic hysteresis modeling withfeed-forward neural networks: Influence of the last but one extreme values. Journal ofMagnetism and Magnetic Materials,2008,320(20):e992-e996.
    [110] Ruili Dong, Yonghong Tan, Hui Chen, Yangqiu Xie. A neural networks based model forrate-dependent hysteresis for piezoceramic actuators. Sensors and Actuators A: Physical,2008,143(2):370-376.
    [111] D. Makaveev, L.c Dupré, M. D. Wulf, J. Melkebeek. Modeling of quasistatic magnetic hysteresiswith feed-forward neural networks. Journal of Applied Physics,2001,89(11):6737-6739.
    [112] Dimitre Makaveev, Luc Dupré, Marc De Wulf, Jan Melkebeek. Dynamic hysteresis modellingusing feed-forward neural networks. Journal of Magnetism and Magnetic Materials,2003,254-255:256-258.
    [113] Glenn V. Webb, Dimitris C. Lagoudas, Andrew J. Kurdila. Hysteresis modeling of sma actuatorsfor control applications. Journal of Intelligent Material Systems and Structures,1998,9(6):432-448.
    [114] H. T. Banks, A. J. Kurdila, G. Webb. Identification of hysteretic control influence operatorsrepresenting smart actuators, part ii: Convergent approximations. Journal of Intelligent MaterialSystems and Structures,1997,8(6):536-550.
    [115] H. T. Banks, A. J. Kurdila, G. Webb. Identification of hysteretic control influence operatorsrepresenting smart actuators part i: Formulation. Mathematical Problems in Engineering,1997,3(4):287-328.
    [116] W. Steven Galinaitis, Robert C. Rogers. Control of a hysteretic actuator using inverse hysteresiscompensation. in Proceedings of The SPIE,1998,3323:267-277.
    [117] Dongwoo Song, C. James Li. Modeling of piezo actuator's nonlinear and frequency dependentdynamics. Mechatronics,1999,9(4):391-410.
    [118] R. Bouc, Forced vibration of mechanical systems with hysteresis, Proceedings of the FourthConference on Nonlinear Oscillation,315,1967.
    [119] R. Bouc. Modèle mathématique d'hystérésis: Application aux systèmes à un degré de liberté.Acustica,1969,24:16-25.
    [120] Yi-Kwei Wen. Method for random vibration of hysteretic systems. Journal of the EngineeringMechanics Division,1976,102(2):249-263.
    [121] Fay al Ikhouane, José Rodellar. Systems with hysteresis: Analysis, identification and controlusing the bouc-wen model. Chichester, England; Hoboken, NJ: John Wiley,2007:
    [122] Oriol Gomis-Bellmunt, Fay al Ikhouane, Pere Castell-Vilanova, Joan Bergas-Jané. Modeling andvalidation of a piezoelectric actuator. Electrical Engineering (Archiv fur Elektrotechnik),2007,89(8):629-638.
    [123] M. Rakotondrabe. Bouc-wen modeling and inverse multiplicative structure to compensatehysteresis nonlinearity in piezoelectric actuators. Automation Science and Engineering, IEEETransactions on,2011,8(2):428-431.
    [124] Chih-Jer Lin, Sheng-Ren Yang. Precise positioning of piezo-actuated stages usinghysteresis-observer based control. Mechatronics,2006,16(7):417-426.
    [125] Fay al Ikhouane, José Rodellar. On the hysteretic bouc–wen model. Nonlinear Dynamics,2005,42(1):63-78.
    [126]贾宏光,吴一辉,宣明,王立鼎.一种新的压电驱动器非线性数学模型.中国机械工程,2002,13(11):929-932.
    [127]崔玉国,孙宝元,董维杰,杨志欣.基于坐标变换的压电陶瓷执行器迟滞非线性模型研究.大连理工大学学报,2004,44(2):249-254.
    [128]曲东升,荣伟彬,孙立宁,徐晶,蔡鹤皋.压电陶瓷微位移器件控制模型的研究.光学精密工程,2002,10(6):602-607.
    [129] Phuong-Bac Nguyen, Seung-Bok Choi. Compensator design for hysteresis of a stacked pztactuator using a congruency-based hysteresis model. Smart Materials and Structures,2012,21(1):015009.
    [130] U-Xuan Tan, Win Tun Latt, Cheng Yap Shee, Cameron N. Riviere, Wei Tech Ang. Feedforwardcontroller of ill-conditioned hysteresis using singularity-free prandtl-ishlinskii model.IEEE/ASME Transactions on Mechatronics,2009,14(5):598-605.
    [131] P. Krejci, K. Kuhnen. Inverse control of systems with hysteresis and creep. IEE Proceedings-Control Theory and Applications,2001,148(3):185-192.
    [132]汝长海,王科俊,叶秀芬.基于迟滞模型压电陶瓷跟踪控制方法.仪器仪表学报,2006,27(6):536-538.
    [133] Shao-Kang Hung, En-Te Hwu, Ing-Shouh Hwang, Li-Chen Fu. Postfitting control scheme forperiodic piezoscanner driving. Japanese Journal of Applied Physics,2006,45(3B):1917–1921.
    [134] Xiaobo Tan, John S. Baras. Adaptive identification and control of hysteresis in smart materials.IEEE Transactions on Automatic Control,2005,50(6):827-839.
    [135] Chih-Hsiang Yang, Kuo-Ming Chang. Adaptive neural network control for piezoelectrichysteresis compensation in a positioning system. in IEEE International Symposium onIndustrial Electronics, Montreal, Que,2006:829-834.
    [136] Faa-Jeng Lin, Hsin-Jang Shieh, Po-Kai Huang. Adaptive wavelet neural network control withhysteresis estimation for piezo-positioning mechanism. IEEE Transactions on Neural Networks,2006,17(2):432-444.
    [137] ChunTao Li, YongHong Tan. Neural model-based adaptive control for systems with unknownpreisach-type hysteresis. Journal of Control Theory and Applications,2004,2(1):51-59.
    [138] Chun-Tao Li, Yong-Hong Tan. Adaptive output feedback control of systems preceded by thepreisach-type hysteresis. IEEE Transactions on Systems, Man, and Cybernetics—Part B:Cybernetics,2005,35(1):130-135
    [139] Chun-Yi Su, Qingqing Wang, Xinkai Chen, Subhash Rakheja. Adaptive variable structure controlof a class of nonlinear systems with unknown prandtl-ishlinskii hysteresis. IEEE Transactions onAutomatic Control,2005,50(12):2069-2074.
    [140] B. Kim, G. N. Washington, H.-S. Yoon. Hysteresis-reduced dynamic displacement control ofpiezoceramic stack actuators using model predictive sliding mode control. Smart Materials andStructures,2012,21(5):055018.
    [141]赖志林,刘向东,耿洁,李黎.压电陶瓷执行器迟滞的滑模逆补偿控制.光学精密工程,2011,19(6):1281-1290.
    [142]孙慷,张福学.压电学.北京:国防工业出版社,1984:
    [143]许煜寰.铁电与压电材料.北京:科学出版社,1978:
    [144] Chuntao Li, Yonghong Tan. A neural networks model for hysteresis nonlinearity. SENSORSAND ACTUATORS A,2004,112(1):49-54.
    [145] Hongli Ji, Jinhao Qiu, Kongjun Zhu, Yuansheng Chen, Adrien Badel. Multi-modal vibrationcontrol using a synchronized switch based on a displacement switching threshold. SmartMaterials&Structures,2009,18(3)
    [146] M. B. Trabia, W. Yim, M. Saadeh. Modeling of hysteresis and backlash for a smart fin with apiezoelectric actuator. Journal of Intelligent Material Systems and Structures,2011,22(11):1161-1176.
    [147] F. Landolsi, F. H. Ghorbel. Design of a duo-biomorph-based afm cantilever suitable fornanomanipulation. Smart Materials and Structures,2010,19(6):065028.
    [148] S. A. Wilson, R. P. Jourdain, S. Owens. Pre-stressed piezoelectric bimorph micro-actuators basedon machined40μm pzt thick films: Batch scale fabrication and integration with mems. SmartMaterials and Structures,2010,19(9):094001.
    [149]范尊强,刘建芳,阚君武,杨志刚,李建桥.压电叠堆泵驱动的精密步进驱动电机.中国电机工程学报,2010,30(15):106-111.
    [150] Jing-jun Wei, Zhi-cheng Qiu, Jian-da Han, Yue-chao Wang. Experimental comparison researchon active vibration control for flexible piezoelectric manipulator using fuzzy controller. Journalof Intelligent&Robotic Systems,2010,59(1):31-56.
    [151]王湘江,王兴松,毛燕.基于普艾模型的迟滞系统自适应滑模控制.机械工程学报,2008,44(4):171-178.
    [152]李春涛,谭永红.基于状态观测器的迟滞非线性系统输出反馈控制.控制与决策,2004,19(9):967-972.
    [153] Babak Mokaberi, Aristides A. G. Requicha. Compensation of scanner creep and hysteresis forafm nanomanipulation. IEEE Transactions on Automation Science and Engineering,2008,5(2):197-206.
    [154] Abu Sebastian, Srinivasa M. Salapaka. Design methodologies for robust nano-positioning. IEEETransactions on Control Systems Technology,2005,13(6):868-876
    [155] Hao Jiang, Hongli Ji, Jinhao Qiu, Yuansheng Chen. A modified prandtl-ishlinskii model formodeling asymmetric hysteresis of piezoelectric actuators. IEEE Transactions on UltrasonicsFerroelectrics and Frequency Control,2010,57(5):1200-1210.
    [156] Mohammad Al Janaideh, Chun-Yi Su, Subash Rakheja. Development of the rate-dependentprandtl-ishlinskii model for smart actuators. Smart Materials and Structures,2008,17:035026.
    [157] Xuanju Dang, Yonghong Tan. Neural networks dynamic hysteresis model for piezoceramicactuator based on hysteresis operator of first-order differential equation. Physica B: CondensedMatter,2005,365(1-4):173-184.
    [158] Yuansheng Chen, Jinhao Qiu, Hongli Ji, Kongjun Zhu. Tracking control of piezoelectric actuatorsystem using inverse hysteresis model. International Journal of Applied Electromagnetics andMechanics,2010,33(3-4):1555-1564.
    [159] Soon-Hong Lee, Thomas J. Royston, Gary Friedman. Modeling and compensation of hysteresisin piezoceramic transducers for vibration control. Journal of Intelligent Material Systems andStructures,2000,11(10):781-790.
    [160] Ram V. Iyer, Xiaobo Tan. Control of hysteretic systems through inverse compensation. IEEEControl Systems,2009,29(1):83-99.
    [161] Bao Kha Nguyen, Kyoung Kwan Ahn. Feedforward control of shape memory alloy actuatorsusing fuzzy-based inverse preisach model. IEEE Transactions on Control Systems Technology,2009,17(2):434-441.
    [162]魏强,吴顺伟,曹会国,胡承忠,李现明.基于迟滞观测器的压电工作台自适应控制.纳米技术与精密工程,2011,9(2):145-151.
    [163] Yangmin Li, Qingsong Xu. A totally decoupled piezo-driven xyz flexure parallelmicropositioning stage for micro/nanomanipulation. IEEE Transactions on Automation Scienceand Engineering,2011,8(2):265-279.
    [164]李国,王波,董申,王石磊.超精密机床宏/微双驱动微位移机构的设计与控制.光学精密工程,2009,17(6):1426-1430.
    [165]王华,张宪民,邓俊广.基于压电陶瓷驱动的精密定位平台研究.测试技术学报,2007,21(4):295-300.
    [166]阚君武,唐可洪,邵承会,朱国仁,郑晓培.压电液压马达的性能分析与测试.哈尔滨工程大学学报,2010,31(8):1073-1078.
    [167]王碧波,岳金福,周泽兵,彭益武.基于二维精密电容微位移传感器的二维纳米定位系统.纳米技术与精密工程,2005,3(2):137-141.
    [168] J. Lin, H. Chiang, C. C. Lin. Tuning pid control parameters for micro-piezo-stage by using greyrelational analysis. Expert Systems with Applications,2011,38(11):13924-13932.
    [169] Fang-Jung Shiou, Chao-Jung Chen, Chia-Jui Chiang, Ke-Jhen Liou, Shu-Chung Liao,Huay-Chung Liou. Development of a real-time closed-loop micro-/nano-positioning systemembedded with a capacitive sensor. Measurement Science and Technology,2010,21(5):054007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700