罗布麻纤维结构、针织加工与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
罗布麻一般为野生原料,即使种植也无须喷施肥料与杀虫剂,且可被生物降解,是生态友好的“绿色纤维”之一,其产品具有一定的医疗保健功能和抗菌作用,同时罗布麻纤维是一种具有优良物理机械性能和服用性能的纤维,被誉为“野生纤维之王”,用其制作的抗菌纺织品深受国内外消费者的喜爱。但是据目前国内外的研究现状而言,人们对罗布麻纤维的研究尚不深入,主要停留在对罗布麻纤维的物理机械性能的研究上,对罗布麻单纤维形态结构以及聚集态结构的研究极少见诸报道。各种材料的性能决定了其用途,而各种材料的性能又是由其结构所决定的。形态结构是决定材料是否具有可纺性以及产品性能好坏的重要因素,同时聚集态结构是决定高聚物本体性质的主要因素,因此,本文对罗布麻单纤维的形态结构以及聚集态结构进行了深入研究,为解释罗布麻纤维及产品外在特性提供理论依据奠定基础。随着社会的发展,人类已跨步迈入21世纪,本世纪社会发展的主题是绿色环保、节约能源、可持续发展,因此,生物技术在各领域必将备受关注,进而缓解因化学加工带来的种种环境及能源问题。目前罗布麻初加工企业大都借鉴于较成熟的苎麻脱胶工艺,采用化学脱胶的方法对罗布麻进行初加工而生物脱胶尚处于起步阶段。由于化学加工有其不可避免的缺点,因此,本文对利用生物方法对罗布麻进行初加工进行了深入研究,并从多糖化学以及生物能力学的角度对罗布麻生物脱胶的机理进行了研究。罗布麻具有抑菌性已有大量文献报道,而人们对罗布麻的抑菌性能和抑菌机理还没有得到一个明确的答案和准确的认识。本课题在前人研究的基础上,对罗布麻的抑菌性能及抑菌机理进行了深入研究。此外本文还对罗布麻纤维纺纱、针织工艺及产品开发进行回顾与评述。针对以上几个问题本研究做了如下工作:
     首先对罗布麻的生长分布、生态特征、栽培技术、用途、纤维的特点及其纺织品的优异性能、纤维的制取方法及发展概况等进行了概述。
     其次利用光学显微镜对罗布麻纤维的形态结构进行了研究,结果表明,罗布麻纤维整体均呈细长梭状,纵向表面上,有清晰的节点;具有中腔,且中腔随纤维的位置不同,宽度也不同;纤维具有特殊的末端。利用透射电子显微镜(TEM)对罗布麻纤维的多重原纤结构进行了深入研究,罗布麻纤维微纤具有分子叉结构。利用X—射线衍射、红外光谱、拉曼光谱以及DSC对罗布麻纤维的结晶结构、取向结构以及分子组成进行了研究。按照GB/T5889—1986《苎麻化学成分定量分析方法》,对罗布麻的化学组成进行了分析,结果表明罗布麻与其它麻类的化学组成差异很大,其纤维素含量较少仅占罗布麻麻皮的45%左右,而半纤维素、木质素、水溶物和果胶的含量很高,高达55%左右,这使得罗布麻的脱胶难度较大。
     在此基础上,分析了罗布麻胶质的特点并得出罗布麻微生物脱胶的主要去除对象是除纤维素和本质素之外的多缩戊搪,多缩己糖及其杂聚多糖,而木质素则难以为微生物所降解。同时对微生物对胶质的降解原理及过程进行了深入研究,得出罗布麻胶质在有氧条件下经微生物降解的主要途径是:多糖胶质水解成戊糖、己糖;戊糖、己糖通过HMP和己糖互换途径转化为6-磷酸果糖;6-磷酸果糖经过EMP途径转化为丙酮酸;丙酮酸经三羧酸循环和氧化呼吸链彻底氧化为二氧化碳和水。
     接下来,在本试验条件下对好氧性微生物脱胶的影响因素进行了研究。结果表明影响罗布麻好氧微生物脱胶的因素主要有脱胶初始pH值、浴比、脱胶温度、脱胶时间、初始菌量、振荡器转速、液体细菌培养时间。通过试验逐一研究了这些因素的作用规律,并通过正交试验筛选出对脱胶影响较大的因素。进而利用二次通用旋转组合设计和优化得出生物脱胶的最优工艺参数:脱胶温度在41~42℃、初始pH值在8.8、菌液量为每4克罗布麻45~50mL,振荡器转速150r/min、菌液培养时间48h、脱胶时间24h、浴比1:25。
     此外还对微生物脱胶后的罗布麻进行简单的化学后处理,并与纯化学脱胶得到的精干麻进行了品质指标的对比测试,结果表明采用微生物化学联合脱胶法达到了脱胶的目的和要求,得到的精干麻综合指标K_1=0.63471优于纯化学方法得到的精干麻的综合指标K_2=0.54366。
     最后,本文对罗布麻纤维及其针织产品的抑菌性能进行分析研究。经测定罗布麻根、茎、叶的抗菌力,结果表明罗布麻根和叶在相同的测试条件下,可以杀灭绝大部分细菌或者把所有细菌杀死,麻皮的抑菌率比较弱。并通过分析其化学结构提出其抗菌效力不同的原因:罗布麻根中的酚类和甙类物质,茎中的酚类和鞣质类,叶中的酚类和β—谷甾醇和鞣质类对细菌的抑制和杀灭起主要作用。由于鞣质类的存在,罗布麻纤维对革兰染色阳性菌与革兰染色阴性菌的作用是不一样的,对后者的抑制力相对强一些。经测定罗布麻纤维对不同细菌和真菌的抑菌效力,结果显示罗布麻纤维属于轻度杀菌,与棉纤维相比,它能抑制细菌的生长,并能在足够的作用时间内杀灭部分细菌;罗布麻纤维对革兰染色阳性菌与革兰染色阴性菌的抑制能力是不一样的,对后者的抑制力相对强一些;罗布麻纤维对真菌的抑制作用不明显。并从微生物角度分析罗布麻纤维对不同致病菌具有不同抑菌率的原因与机理。根据不同标准运用不同的实验方法测定罗布麻纤维以不同的混纺比与棉纤维混纺织物的抗菌效力,结果显示随着罗布麻含量的降低混纺织物的抗菌力减弱。
Apocynum Venetum, a wild plant, is regarded as the environment-friendly fiber because no fertilizer is used during growth and it can be degraded biologically. Since apocynum venetum has antibacterial function, good mechanical properties and wearing characteristics, it is also named as 'the king of wild fiber', which can be used to produce popular antibacterial textiles.
     Although research on mechanical properties of apocynum venetum fibers has been done, there is only a few reports about morphological structure and structure of aggregating state of single fibers till now. The usage of textile materials depends on their performances while the performance relies on their own structures. The morphological structure is a significant factor in determining the spinnability of fibers and properties of products, and the structure of aggregating state works as one of the key factor in determining the characteristics of high polymer. So the morphological structure and the structure of aggregating state of apocynum venetum fibers will be studied in this paper in order to provide theoretical foundation in explaining the performance of apocynum venetum fibers and their products. With the improvement of society, the environmental protection, energy conservation and sustainable development have become even more important in this century. Thus the biological technology has greatly caught people's attention to relieve pollution and energy shortage brought by chemical process industry.
     Until now, the preliminary treatment on apocynum venetum usually refers to degumming processes of ramie and thus chemical degumming is frequently adapted. But the chemical degumming has some inevitable disadvantages. So in this project, study on the biological degmming has been done and mechanism of the process is discussed from the point of polyoses chemistry and biological dynamics. In spite of the report of antibacterial function of apocynum venetum fibers, the antibacterial efficiency and mechanism of apocynum venetum fibers has not been expressed exactly. In this paper, the performance of antibiosis of apocynum venetum fibers and its mechanism has been studied. The main research work has been done as follows:
     In the first chapter, the growth, distribution, habit, cultivation techniques and usage of apocynum venetum and performance and development of apocynum venetum fibers and textiles are investigated and summarized. In chapter two, the morphological structure of apocynum venetum fibers are studied by means of optical microscope. On the whole, apocynum venetum fibers are like slight shuttles and clear knots are found on the lengthways surfaces. Different width lumens lie on different places of fibers. Moreover, multiple fibrillar structure of apocynum venetum is researched via TEM to find its primitive fibers have fiberils with bifurcation structure. Crystal structure, orientation and molecular composition of apocynum venetum fibers are also studied with X-ray diffraction, infra-red spectrum, Raman spectrum and DSC.
     In chapter three, the chemical constitution of apocynum venetum is tested and analyzed in accordance to GB/T5889-1986,《Method for the quantitative analysis of chemical components of ramie》and the results show that the bast fiber of apocynum venetum is different from hemp and ramie and composed of 45% cellulose and 55% non-cellulose components such as semicellulose, lignin, water soluble matter and pectin. It is difficult to achieve good degumming effect due to the high content of non-cellulose in apocynum venetum.
     Based on the chemical constitution of apocynum venetum and characteristics of gum, the conclusion is drawn that the biological degumming aims to remove pentosan, hexanose, and heteropolymeric polyoses while lignin is difficult to be degraded by the microbe. According to the analysis on the degradation process of gum, the principle of biological degumming is that the gum produces bacterial, bacteria produces enzyme and the enzyme degrades gum. The main approach of degumming is as following: the polyoses gum is hydrolyzed to be pentose and hexose, which is transformed to 6-phosphofructose by HMP and exchange of hexose, and then with the help of EMP, the 6-phosphofructose transforms to acetyl formic acid, which is oxidized to carbon dioxide via tricarboxylic acid cycle and oxidation respiration chain.
     Factors influencing aerobic biological degumming are also studied and the following factors are involved in experiments: the initial pH value, bath ratio, temperature, time, initial amount of bacterial, ascillation speed, time cultivating liquid bacterial. A series of experiments had been done to analyze how these factors influence bacterial degumming and several crucial factors are picked out via orthogonal test. Through the quadratic general rotary unitized design, the processing parameters of biological degumming are optimized and the optimum parameters are as follows: the degumming temperature is 41~42℃, the initial pH value falls at 8.8, the amount of bacterial is 11.25~12.5mL per gram of apocynum venetum, the ascillation speed is 150r/min and the period cultivating bacterial is 48h with 24h degumming period and 1:25 bath ratio.
     In the fourth chapter, an investigation into the textile technology with some emphasis on knitting has been reported. The study on the antibacterial properties is also mentioned.
     Firstly, the antibacterial efficiency of root, stem and leaf of apocynum venetum are measured respectively and the results show that in the same test condition, the root and leaf can kill most of bacteria but the bast has weak bacteriostasis. Reasons of different antibacterial efficiency are analyzed in terms of chemical construction. The phenols and glycoside in root, the phenols and tannis in stem and phenols,β-sitosterol and tannis in leaf mainly contribute to control and kill bacteria. Because of tannis, apocynum venetum fibers have better control on Gram-positive bacteria than Gram-negative bacteria.
     Secondly, the different proficiencies of apocynum venetum in controlling various bacteria are measured and the results show that apocynum venetum fibers have slight antibacterial effect. Compared with cotton, apocynum venetum can control the growth of bacteria and can kill some of them after a long period. Moreover, apocynum fibers show different antibacterial efficiencies on Gram-positive bacteria and Gram-negative bacteria but they cannot kill fungi. The reasons and mechanism of different antibacterial effects are analyzed from the viewpoint of microbe.
     At last, apocynum venetum fibers are mixed with cotton fibers with various blending ratios and antibacterial efficiencies of blended yarns of different proportion are tested with different methods and evaluation criterion. The results show that apocynum venetum/cotton yarns hardly have antibacterial function.HAN Guang-ting(Textile Engineering) Supervised by FENG Xun-wei
引文
1 古腾飞、沙也夫、巴杭,等.新中药用植物资源和民族药概况闭天然产物研究与开发,1996,12(2):99-101.
    2 董正钧.罗布麻[M].北京:科技出版社,1958
    3 郭秉臣,阎景云,张毅.中国罗布麻的开发和利用.天津纺织工学院学报,1991,10(2):70~76
    4 罗布麻综合利用编写组.罗布麻的综合利用.科学出版社,1978
    5 李中抽.罗布麻的开发利用.实用技术,1992(4):11~12
    6 张绍武.我国罗布麻分布区的地理区划.西北植物学报,2002,22(7):1~5
    7 翱云毕丽格.罗布麻的认识.纤维标准与检验,1998(7):34
    8 李桂珍,野生纤维—罗布麻概况与开发前景(1),中国棉麻流通经济,2000(5):31-32
    9 揭雨成 冷鹃等,罗布麻生态特征与产业化研究进展,中国麻业,2001,23(3):34-37
    10 方学良.塔里木盆地大叶白麻土壤生长环境类型.植物生态学与地植物学学报,1986,10(1):48-52.
    11 中国科学院植物志编委会.中国志(第63卷).北京:北京科学出版社,1977:87.
    12 周笃裙,褚金鳌.柴达木盆地的罗布麻植物资源与开发利用.青海科技,1998,5(2),47-48
    13 张秀玲,盐碱植物罗布麻的栽培技术,中国林副特产,2005,(4):5-6
    14 丁立威 丁乡,罗布麻规范化栽培技术,北京农业,2006(3):15-15
    15 赵秀芳 赵彦杰,罗布麻的开发利用价值及栽植技术,中国水土保持,2005(10):42-42,45
    16 张广伦 钱学射 顾龚平,晋冀豫鲁罗布麻资源及栽培技术,中国野生植物资源,2005,24(6):26-27,50
    17 白璐 罗明柏 殷录成 王树廉 阿米娜,罗布麻人工栽培技术,研究简报,2005,24(5):65-65,68
    18 孙伟,董天昌,刘玉章,罗布麻种植技术,2005,8(8):23-23
    19 贾永佳 段学庆,野生罗布麻人工管理技术措施,1997,19(3):32-33
    20 楚金萍 颜秀芝,罗布麻人工栽培技术措施,1997,19(2):33-34
    21 国家医药管理局中草药情报中心站,植物药有效成分手册,北京:北京人民卫生出版社,1986:832-1032.
    22 康平.药用植物罗布麻.知识就是力量,2003(2):29
    23 复旦大学医学院.罗布麻棉混纺内衣保健作用的观察.1~7
    24 Veronika Butterweck, Kirsten Simbrey, Shujiro Seo. Tsutomu Sasaki and Sansei Nishibe. Long-term effects of an Apocynum venetum extract on brain monoamine levels and β-AR density in rats. Pharmacology Biochemistry and Behavior, Volume 75, Issue 3, 2003(6): 557~564
    25 周荣汉.药用植物化学分类学.上海科学技术出版社,1988,(7):86
    26 徐任生,陈仲良.中草药有效成分提取与分离,上海:上海科学技术出版社,1981:144.
    27 姚新生等。天然药物化学[M],北京:人民卫生出版社.1988.194-195.
    28 Lin Ta-chen and Hsu Feng-Lin. Tannin and related compounds from parviflora[J],J. Chin. Chem. Soc, 1999,46(4):613-618.
    29 侯晋军,韩利文,杨官娥,李青山.罗布麻研究进展.中国药学会2004年学术会议论文
    30 Toshiyuki Murakami, Akinobu Hishi, Hisashi Matsuda, et. al. Medicinal Foodstufs. X X I V. Chemical Constituents of the Processed Leaves ofApocynum L.: Absolute Stereostructions of Apocynosides Ⅰ and Ⅱ. Chem. Pharm. Bull, 2001,49(7):845-848
    31 王明时,刘静涵,刘卫国.罗布麻化学成分的研究,南京药学院学报,1985,16(4):35-37
    32 Takako Yokozawa, Yoshiki Kashiwada, Masao Hatori, et al. Study on the Components of Luobuma with Peroxynitrite-Scavenging Activity. Biol. Pharm. Bull, 2002,25(6):748-752
    33 Lei Z, Yahara S, rai B, et al. Study on the constituents of Chinese medicine "Luobumaye" phenolic compounds of Poacynum hendersonii leaves. Nat Med, 1995, 49(4): 475-477
    34 Nishibe Set al. The Flavone Compounds of Poacynum Pictum L. Foreign Med-Tridit Chin Med(国外医学:中医中药分册),2002,24(3):182
    35 Yokzawa T, Kashiwada Y, et al. Study on the component of luobuma wish peroxynitrite scavenging activity. Biol Pharm Bull, 2002, 25(6): 748-752
    36 陕西省冠心病防治研究省市协作组.罗布麻叶的药理试验.新医药学杂志1975,(2):45-49
    37 Kim D W.罗布麻叶水提物对大鼠高胆固醇血症的作用.Phytother Res,1998,12(1):46-48
    38 Xiong Q, Fan W, Yokozaw T et al. Hepatoprotective effect of Apocynum venetum and its active constitudents. Planta Med, 2000,66(2):127-133.
    39 Butterweck V, Nishibe S, Sasaki T, et al. Antidepressant effect of Apocunum venetum leaves in a Forced Swimming Test. Biol Pharm Bull, 2001,24(7): 848-851.
    40 Kim D, Yokozaw T, Hattor M, et al. Efects of aqueous extracts ofApocynum venetum leaves on Spotanrously hypertensive,renal hypertensive and NaCl-fed-hypertensive rats. J. Ethnopharmacol., 2000,72(1-2): 53-59.
    41 严秀珍,胡昌奇,周军良,等.白麻和红麻化学成分的测定.中成药研究,1987,(12):27-29
    42 戴斌.大花罗布麻叶的生药鉴定.中药材,1991,14(9):19-23
    43 徐礼粲.罗布麻中金丝桃苷含量测定.药物分析杂志,1986,6(2):81-82
    44 Cao YH, Zhang X, Fang YZ, et al. Determination of active ingredients of Apocynum venetum by Caillary Eletrophoresis with Eletrachemical Detection. Mikrochim. Acta.,2001, 137:57-62
    45 韩利文,中药罗布麻叶及其有效部位的质量控制方法研究,山西医科大学硕士学位论文,2005,1-2
    46 Baker, A. A., Helbert, W., Sugiyanut, J., Miles, M. J. New Insight into Cellulose Structure by Atomic Force Microscopy Shows the la Crystal Phase at Near-Atomic Resolution. Biophys. J. 2000,79:1139-1145
    47 周国裕.开发罗布麻保健用纺织品大有可为(J),产业用纺织品,1996(6):26
    48 新潮实业.罗布麻保健内衣.服装科技,1999(6):62~63
    49 王宁,陈斌.柴达木盆地资源植物—罗布麻的开发利用.青海科技,2005,(12)6,15-17
    50 邢声远,天然医疗保健纤维一罗布麻[7],北京纺织,200,22(2):15
    51 Sari Hakkinen, Seppo Auriola. HPLC with electrospray, ionization mass spectrometry and diode array ultraviolet detection in the identification of flavonol aglycones and glycosides in berries in berries[J], Journal of Chromatography A, 1998,829:91-100.
    52 倪建中.对罗布麻产品综合开发的再探索.上海针织动态,1996(2),1~10
    53 顾名淦等,麻纤维开发利用,纺织工业出版社,1993
    54 刘志远.全身是宝的罗布麻.新疆林业,2001(4):38
    55 肖芝平.五类麻纤维前景诱人.新农业,2003(11):111
    56 白璐,李毅,殷刚,王广斌,王慕军.罗布麻混纺纱研制.新疆纺织.2003(2):7-10,21
    57 高国良,罗布麻剥麻机的研制.新疆纺织.1996(1):17-18
    58 唐大为,宋洪友,罗布麻剥皮机设计浅析.1989(3):49-51
    59 Ramaswamy G N, Ruff C G, Boyd C R, et al. Effect of bacterial and chemical retting on kenaf fiber quality. Textile Res J, 1994, No. 5,305-308
    60 刘正初,周裔彬.罗布麻韧皮非纤维素生物降解的工艺基础.中国麻业,2002,24(1):30~33
    61 鲍明东,陈卓等.罗布麻生物脱胶研究初报.山东农业科学,2002(6):11~13
    62 周带娣.苎麻生物脱胶研究进展.作物研究,2003,17(1):60~62
    63 汪测生.苎麻生物脱胶工艺技术的创新.四川纺织科技,2001(1):4~6
    64 刘正初,彭源德等.苎麻生物脱胶新技术工业化生产应用研究.纺织学报,2001,22(2):27~29
    65 郑喜群,刘晓兰等.亚麻生物脱胶新方法及其比较.纺织学报,2001,22(4):231~233
    66 陶涛.苎麻的生物脱胶.工业微生物,1992,22(1):35~36
    67 刘正初,罗才安.苎麻生物脱胶技术应用研究.纺织学报,1991,12(10):18~20,27
    68 胡延素,朱国华.苎麻微生物-化学联合脱胶方法.纺织科技进展.2006(1):63-64
    69 王平,范雪荣.生物技术在纺织品前处理加工中的应用.上海纺织科技.2005,33(4):4-6
    70 郑来久,刘剑宇.黄红麻微生物脱胶影响因素及机理研究,东华大学学报:自然科学版,2004,30(3):66-70
    71 桂明珠,潘春山.亚麻站立脱胶技术初探.中国麻作.1995,17(2):36-39
    72 韩光亭,郑丽莎,苏冬梅,王玮红,孙德明.罗布麻纤维抗菌性能研究.中国纺 织经济.2004,1,157-159
    73 柳世龙,周贻华.抗菌纤维及其在针织上的应用.上海纺织科技.2005,(33)1,27-28.41
    74 周明京.大麻及其抗菌纺织品.麻纺织技术.1998,(21)3,45-48
    75 史加强,刘晓平.亚麻织物抗菌性能的实验研究.黑龙江纺织.2002,3,9-10
    76 史加强,王占伟.亚麻纤维抗菌机理的探讨.黑龙江纺织.2001,4,6-7
    77 孟繁杰.亚麻纤维的内部结构及其服用性能的探讨.黑龙江纺织.1997,4,10-11
    78 冷娟,肖爱平.苎麻纤维品质评价研究.中国纤检,2003(6):31~33
    1 高洁,汤烈贵.纤维素科学.科学出版社.1996,1
    
    2 Lynd, L. R., C. E. Wyman, and T. U. Gemgross. Biocommodity engineering. Biotechnol. Prog. 1999.15:777-793.
    
    3 Lynd, L. R. Weimer, P. J., ZylW H., Pretorius I. S. Microbial Cellulose Utilization: Fundamentals and Biotechnology Microbial. Mole. Biol. Rev. 2002, 66: 506-577
    
    4 Marchessault, R. H., and P. R. Sundararajan. Cellulose, p. 11-95 In G. O. Aspinall (ed.), The polysaccharides, vol.2. 1993. Academic Press, Inc., New York, N
    
    5 Van Soest, P. J. Nutritional ecology of the ruminant, 2nd ed. 1994. Cornell University Press, Ithaca, N. Y.
    
    6 Wilson, J. R. Organization of forage plant tissues, p. 1. 32. In H. G. Jung, D. R. Buxton, R. D. Hatfield, and J. Ralph (ed.), Forage cell wall structure and digestibility. 1993. American Society of Agronomy Crop Science Society of America Soil Science Society of America, Madison, Wisc.
    
    7 Brown R. M., Jr., and I. M. Saxena. Cellulose biosynthesis : a model for understanding the assembly of biopolymers. Plant Physiol. Biochem 2000.38:57-67.
    
    8 Atalla, R. H., J. M. Hackney, L. Uhlin, and N. S. Thompson. Hemicelluloses as structure regulators in the aggregation of native cellulose. Int. J. Biol. Macromol. 1993. 15:109-112
    
    9 Marchessault, R. H., and J. A. Howsmon. Experimental evaluation of the lateral order distribution in cellulose. Text. Res. J. 957.27:30-41.
    
    10 Bayer, E. A., Chanzy, H., Lamed R. Shoham Y., Cellulose, cellulases and cellulosomes. Curt. Opin. Struct. Biol. 1998a, 8:548-557
    
    11 Horii, F. ; Yamamoto, H. ; Kitamaru, R. ; Tanahashi, M. ; Higuchi, T. Macromolecules 1987, 20, 2946.
    
    12 Sugiyama J, Vuong R, Chanzy H: Electron diffraction study of thetwo crystalline phases occuring in native cellulose from an algal cell wall. Macromolecules 1991b, 24:4168-4175.
    13 Sugiyama, 1. ; Persson, J.; Chanzy, H. Macromolecules 1991 a, 24, 2461
    
    14 Belton, P. S. ; Tanner, S. F. ; Cartier, N. ; Chanzy, H. Macromolecules 1989,22, 1615.
    
    15 Lamson, P. T. ; Westermark, U. ; Iversen, T. Carbohydr. Res. 1995, 278, 339.
    
    
    16 Imai, T. ; Sugiyama, J. ; Itoh, T. ; Horii, F. J. Struct. Biol. 1999, 127,
    
    17 Nishiyama, Y., Langan, P., Chanzy, Henri. Crystal structure and hydrogen-bonding system in cellulose 1 β from synchrotron X-ray and neutron fiber difraction. J. Am Chem. Soc. 2002, 124: 9074-9082
    
    18 Nishiyama, Y., Sugiyama, J., Chanzy, H., Langan, P. Crystal structure and hydrogen bonding system in cellulose 1 α from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 2003, 125: 14300-14306
    
    19 Marechal, Y., Chanzy H. The hydrogen bond netword in I β cellulose as observed by infrared spectrometry. J. mole Strut. 2000, 523:183-196
    
    20 Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N: High resolution observations of cellulose microfiibriis. Mokuzai Gakkaishi 1984,30:98-99.
    
    21 Revol JF, Goring DAL Directionality of the fibre c-axis of cellulose crystallites in microfibrils of Valonia ventricosa. Polymer 1983, 24:1547-1550.
    
    22 Brown MR Jr: The biosynthesis of cellulose. J Macromol Sci —Pure Appl Chem 1996, A33:1345-1373
    
    23 Chanzy H: Aspects of celulose structure. In Cellulose Sources and Exploitation. Industrial Utilization, Biotechnology and Physiscochemical Properties. Edited by Kennedy JF, Phillips GO; Williams PA. New York: Ellis Horwood; 1990:3-12.
    
    24 Larsson PT, Wickholm K, Iversen T A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohydr Res. 1997, 302:19-25
    
    25 Koyama M, Helber W, Imai T, Sugiyama J, Henrissat B: Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci USA 1997,94:9091-9095.
    
    26 Zhang, YZ. J. liu, D. S. Sshi, P. J. Gao, S. J. Pang, size and arrangement of elementary fibrils in crystalline cellulose studied with scanning tunneling microscopy. I.Vac.Sci. Tech. 815(4), 1997:1502-1505
    27 Zhang, Y.Z., ]Liu, PJ. Gao, S.J. Pang, Structure inverstigation of cellobiohydrelase I from Trichoderma pseudokoningii S38 with scanning tunneling microscope, Applied Physics A, 67,1998b:483-485
    28 Zhang, YZ., J. Liu, PJ. Gao, S.J. Pang, Study on the ultrastructure of microcrystalline cellulose with scanning tunneling microscopy. 1. Chinese Electron Microscopy society, 16,1998a:736-738
    29 Gao, BJ., J. liu, Y Z. Zhang, YB. Qu, S.J.Pang, Stmcture changes in macromolecules of native cellulose during biodegradtion. Progress in Nature Science, 8,1998:117-124
    30 于伟东,储才元.纺织物理,上海:东华大学出版社,2002,1-34
    31 董炎明.高分子分析手册.北京:中国石化出版社.2004,245-298,338-355,436-465,514-535
    32 腾凤恩等,X射线结构分析与材料性能表征,北京:科学出版社,1997,12,236-345
    33 胡凤霞,张健,盛家镛.新型蚕丝材料的纤维取向结构,纺织学报,2005,26
    34 朱自莹,顾仁敖,陆天虹.拉曼光谱在化学中的应用.东北大学出版社,1998
    35 徐卫林.红外技术与纺织材料,化学工业出版社
    36 Cerhard Stock, et al. Upgrading rycycled pulps using enzymatic treatment. 1995,78(2):9
    37 Marianne marx-figini, et al. Enzymatic degradation of cotton cellulose by separated endo-and exo-cellulase. Cellulose chemistry and technology, 1997,31,155
    38 Krishna S H, et al. Studies on the production and application of cellulose from Trichoderma reesei QM-9414. Bioprocess Enginering, 2000,22,467
    39 牟秋红,韦春,虞锦洪.剑麻纤维的处理方法对其热性能和形态结构的影响,桂林工学院学报,2004(24)
    40 梁小波,杨桂成,曾汉民,表面处理对剑麻纤维表面状况及热性能的影响,广东化工,2004(1)
    41 钱微君,冯新星,许丹,陈建勇,酶Bioprep对大麻脱胶的研究,浙江理工大学学报 2005(22),3
    42 静电复印纸的FT-Raman光谱检验,吕建中,江苏造纸 2005(1)
    1 姜繁昌,邵宽,周岩.苎麻纺纱学.北京:纺织工业出版社,1990.18-47
    2 鞠丹.罗布麻快速化学脱胶工艺初探.青岛大学硕士学位论文,2002,21
    3 欧阳曙,姚刚.苎麻化学脱胶新技术的评述与应用.苎麻纺织科技,1993,75(1):23-26
    4 Thomas D Brock. Biology of microorganisms. New Jersey:Michael T Madigan Prentice-hall Inc, 1988.46-49, 113-139, 326-327,586
    5 Anthony Gaudy, Elizabeth Gaudy. Microbiology for Environmental Scientists and Engineers—New York:McGraw-Hill Book Co, 1980. 195-203,382—406,418-421
    6 王家玲.环境微生物学.北京:高等教育出版社,1988.66.71,124-133
    7 胡家俊,周群英.环境工程微生物学.北京:高等教育出版社,1988.92,144-149
    8.复旦大学,武汉大学.微生物学.北京:人民教育出版社,1979.90-102
    9 许保玖.当代给水与废水处理原理.北京:高等教育出版社,1991.275—278
    10 高廷耀.水污染控制工程(下册).北京:高等教育出版社,1989.166—180
    11 管筱武,张价耀,罗宇煌.木质素降解酶及其调控机理研究的进展.上海环境科学,1998,17(11):46-49
    12 罗纪盛.生物化学.上海:华东师范大学出版社,1997.234-235,266—288
    13 樊庆笙,陈华葵.微生物学进展.北京:农业出版社,1984.179-221
    14 李建武.生物化学.北京:北京大学出版社,1993.82,148-170
    15 McCarty P L. Thermodynamics of biological synthesis and growth. International Journal of Air and Water Pollution, 1965, 9(10):621—639
    16 Leslie C P, Grady Jr, and Henry C Lim. Biological wastewater treatment, theory and application. New York and Basel:Marcel Dekker, Inc, 1980. 230-255,269-300
    17 Droste R L. Effect of nitrogen on yield using bioenergetic theory. Journal of Environmental Engineering, 1992, 118(5):815-820
    18 倪长春.新微生物杀菌剂—枯草芽孢杆菌新菌株的特性和使用方法.世界农药,2005,(27)2,47-49
    19 诸葛健.工业微生物资源开发应用与保护.北京:化学工业出版社 2002:31-32
    20 施巧琴,吴松刚.工业微生物育种学北京:科学出版社.2002:100-102
    21 宋箭,沈司勤.苎麻微生物脱胶菌株初筛.生物学杂志,1998,15(5):15~16
    22 何绍江,刘勇.苎麻厌氧脱胶菌研究:Ⅰ.脱胶菌的筛选和产酶条件试验.中国 麻作,1995,17(3):34~38
    23 章银梅,李心治.枯草杆菌(Bacillus subtilis)产果胶酶的研究:Ⅰ.菌种选育,鉴定及其酶学特征分析.工业微生物,2000,30(1):25~27
    24 何绍江,冯新梅.苎麻厌氧脱胶菌研究:Ⅲ.脱胶菌种的鉴定.中国麻作,1997,19(1):33~35
    25 栾军.现代试验设计优化方法.上海:上海交通大学出版社,1995.51~66
    27 汪荣鑫.数理统计.西安交通大学出版社,2000(9):33~48
    28 陈魁,试验设计与分析,清华大学出版社,1996
    29 朱伟勇等,最优设计理论与应用,辽宁人民出版社,1981
    30 茆诗松等,回归分析及其试验设计,华东师范大学出版社,1981
    31 郁崇文、汪军、王新厚.工程参数的最优化设计.上海:东华大学出版社.2003,108~121
    1 姚穆,周锦芳,黄淑珍.纺织材料学[M].第二版,北京:纺织工业出版社,1988.
    2 汪学骞.模糊数学在纺织工业中的应用.香港:开益出版社,1992,12:120~127
    3 韩学政.精棉/罗布麻/远红外粘胶三合一混纺纱的开发.毛纺科技.2006,2,33-35
    4 支永金,缪文琴.罗布麻/彩色棉混纺针织纱的生产.新纺织.2003,12,27-29
    5 黄翠蓉,向新柱.罗布麻与棉混纺纱的试制.棉纺织技术.2002,30(10),41-42
    6 华力.罗由麻纺纱的生产实践.天津纺织科技.2001,39(3),36-38
    7 吴鸿烈,李小彪,裴茹冰,邬晓静.罗布麻、彩色棉针织内衣的研制.针织工业.2003,3,26-27
    8 黄翠蓉,王宝根.罗布麻/棉混纺织物的研制开发.上海纺织科技.2003,31(3),27-29
    9 张会青,盛爱军.罗布麻/棉混纺汗布的染整工艺设计.山东纺织科技.2005,46(3),25-27
    10 王秀燕.罗布麻针织产品染整工艺实践.针织工业.2004,3,75-77
    11 范梅,李忠伟.罗布麻针织产品的开发与生产.针织工业.2002,5,26-27
    12 张会青,盛爱军.罗布麻/棉混纺汗布的染整工艺设计.山东纺织科技.2005,46(3),25-27
    13 江佩芬,刘建国.罗布麻叶中鞣质的提取、分离和含量测定.中药通报,1998(9):36~37
    14 黄湘兰,增凡.罗布麻叶化学成分测定.时珍国医国药,1998,9(6):539~540
    15 李曼玲,刘美兰.罗布麻叶氨基酸成分研究,中成药研究.
    16 陈妙华,刘凤山.罗布麻叶镇静化学成分的研究.中国中药杂志,1991(10):609~611
    17 严秀珍,梅兴国等.罗布麻茎的化学成分研究.上海第一医学院学报.1985(4):12~14
    18 周荣汉.药用植物化学分类学.上海科学技术出版社,1988,(7):86
    19 徐礼桑,刘爱茹.罗布麻中金丝桃甙含量测定.药物分析杂志,1986(2):81~82
    20 陈奇云.比色法测定罗布麻制剂中黄酮类化合物的含量.中成药研究,30~32
    21 沈萍.微生物学.高等教育出版社,2000
    22 郭秀君.微生物学.山东大学出版社.1994
    23 王俊起,王友斌等.纺织品抗菌功能方法研究.中国卫生工程学,2003,2(3):129~132
    24 楼纯菊,吴复华.微生物的生活.科学出版社,1988
    25 姜润喜,张厚智等.纤维及纺织品的抗菌性能评价方法研究.合成技术及应用,1999(4):7~9
    26 消毒技术规范[S](第四版)北京:中华人民共和国卫生部.2002
    27 王俊起,邹海青,张旭东.抗菌织物测试方法的研究.纺织标准与质量,2002(6):15~16
    28 王俊起,邹海青,张旭东.抗菌织物测试方法的研究(续).纺织标准与质量,2003(1):26~28
    29 杨瑞玲,宋瑾,马国玉.抗菌纤维制品的抗菌力评价.精细石油化工,1999(6):5~7
    30 织物抗菌性能测试方法.日本工业标准JIS L 1902:1998.日本工业标准协会,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700