基于DSP的偏振模色散补偿系统逻辑控制模块
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的资助来源为:国家863计划重点项目“光纤偏振模色散自适应补偿技术”,编号:2001AA122041;国家自然科学基金项目“偏振模色散缓解技术与补偿技术动态结合的研究”,编号:60577046;北京市教委共建项目“高速光纤通信系统中若干重要技术的研究”,编号:XK100130537。
     偏振模色散被认为是限制10Gb/s以上光纤通信系统长距离传输的重要因素之一,是目前光纤通信领域的一个研究热点。本论文讨论了偏振模色散基本理论,初步讨论了补偿技术,详细地分析了自适应偏振模色散补偿系统中基于DSP的逻辑控制模块的硬件设计和制作,以及使用控制模块完成的PMD补偿实验和PSO算法的移植,本论文的主要工作包含以下几个方面:
     一、PMD的基本理论和检测方法
     ·介绍了偏振光和偏振器件的表示方法,以及偏振器件的琼斯传输矩阵;分析了光纤中偏振模色散的起因。
     ·介绍了偏振模色散取样检测方法和信号的提取,重点分析了单偏振态偏振度法,电域频率分量电功率法以及偏振态椭球法的特点和检测方法。
     二、基于DSP的偏振模色散补偿系统逻辑控制模块硬件设计和制作
     ·介绍了DSP技术基础以及DSP系统设计的一般方法。
     ·分析了现有的PMD补偿系统控制模块的硬件配置和性能,给出了基于DSP的硬件系统的总体设计。
     ·重点设计了基于DSP的逻辑控制模块硬件系统,包括:DSP最小系统设计,A/D采集部分电路设计,D/A控制部分电路设计,并给出了DSP系统的系统资源分配。
     三、基于DSP的偏振模色散补偿方案与实验
     ·介绍了偏振模色散补偿技术的分类,一阶、二阶偏振模补偿的方案。
     ·重点设计了验证DSP系统性能的光路实验,详细介绍了PSO算法,并结合实验,完成了对PSO算法移植到DSP系统的可行性验证。
     ·详细讨论了使用DSP系统作为逻辑控制模块完成的一阶和二阶PMD补偿实验。并分析了实验结果。
The research work in this dissertation is supported by National 863 High Technology Important Project, No. 2001AA122041, "Technologies of Adaptive Compensation for Polarization Mode Dispersion", National Natural Science Foundation of China, No. 60577046, "The research on dynamically combining relaxed technology with compensation technology for Polarization Mode Dispersion Systems", and Corporate Building Project of Beijing Educational Committee No.XK100130537, "The research on some important technologies in high-speed optical fiber communication systems ".
     Polarization mode dispersion (PMD) is considered to be one of the main obstacles for long-haul optical fiber communication systems with the speed beyond 10Gb/s. Therefore, it has been a hot topic in recent years. The basic theory of PMD and PMD compensation method is discussed in this paper. And we systematically investigate the design and operating system of the logic control unit based on DSP. PMD compensation experiments and the transplant of PSO are completed successfully, using the logic control unit.
     Above all, the research work in the dissertation is summed up as following:
     1 The basic theory about PMD and the monitoring techniques
     The expressions about polarization light, the Jones transmission Matrix of polarization device are introduced, and the origin of PMD is discussed.
     The measurement techniques of PMD is reviewed. And three kinds of PMD monitoring techniques are especially discussed, including Degree of Polarization, DOP ellipsoid and the power of data's spectral frequency components.
     2 The design of logic control unit design based on DSP, for PMD compensation systems
     The basis of DSP technology and the general method for DSP system design are introduced.
     The configuration and capability of the current hardware unit for PMD compensation systems is analyzed and the collectivity scheme for the hardware system which is based on DSP is designed.
     The hardware system for logic control unit based on DSP is designed concentratively, including the minimum DSP system, A/D acquisition circuit design, D/A control circuit design and so on. And the system resource of DSP system is been taken on.
     3 The PMD compensation methods and the experiment using the logic control unit based on DSP
     Techniques to mitigate or to compensate PMD are reviewed and the compensation methods of the first order PMD and the second order PMD is introduced.
     More efforts are spent on the optical link system experiments for confirming the validity of the logic control unit based on DSP. PSO algorithm is introduced emphasizily. Combining with optical experiments, PSO algorithm is successfully migrated to the DSP system.
     The first-order and the second-order PMD compesation experiments are successfully completed using the logic control unit based on DSP. The results of the experiments show that the DSP system has the better performance in PMD compensation systems.
引文
[1] 刘颂豪,“光纤通信技术的新发展”,光电子技术与信息,2001,Apr.15(2)
    [2] 原荣,“光纤通信网络”,电子工业出版社,1999
    [3] 张成云.何振江.徐慧梁.石尔.光通信技术的发展现状和趋势.激光与光电子学进.2004,03:26-29.
    [4] C. D. Poole and R. E. Wagner, "Phenomenologicai approach to polarization dispersion in long single mode fibers," Electron. Lett., vol. 22, pp. 1029-1030, 1986.
    [5] G. J. Foschini, L. E. Nelson, R. M. Jopson, et al., "Probability densities of second order polarization mode dispersion including polarization dependent chromatic fiber dispersion", IEEE Photon. Technol. Lett., 2000, v12, n3, pp293-295
    [6] G. Shtengel, E. Ibragimov, M. Rivera and S. Suh, "Statistical dependence between first and second-order PMD", OFC'2001, MO3-1
    [7] N. Gisin, "Statistics of polarization dependent losses", Opt. Commun. 1995, 114, pp399-405
    [8] A. El Amari, N. Gisin, B. Perny, et al, "Statistical prediction and experimental verification of concatenations of fiber optic components with polarization dependent loss", J. Lightwave Technol., 1998, v16, n3, pp332-339
    [9] L. Chen, J. Cameron and X. Bao, "Statistics of polarization mode dispersion in presence of the polarization dependent loss in single mode fibers", Opt. Commun. 1999, 169, pp69-73
    [10] R. M. Jopson, L. E. Nelson, H. Kogelnik, et al., "Probability densities of depolarization associated with second-order pmd in optical fibers", OFC'2001, ThA4-1
    [11] G. J. Foschini, C. D. Poole, "Statistical theory of polarization dispersion in single mode fibers", J. Lightwave Technol., v9, n11, 1991, pp1439-1456
    [12] B. Olsson, M. Karlsson, P. A. A. Anderson, "Polarization mode dispersion Measurement using a Sagnac interferometer and a comparison with the fixed analyzer method", IEEE Photon. Tech. Lett, 1998, v10, pp997-999
    [13] D. Andresciani, F. Curti, F. Matera, B. Daino, "Measurement of the group delay difference between the principle states of polarization on a low birefringence terrestrial fiber cable", Opt. Lett., 1987, v12, pp844-846
    [14] R. E. Schuh, A. S. Siddiqui, "Single channel polarimetric OTDR for measurment of backscattered SOP evolution along a fibre with twist", Electron. Lett., 1997, v33, pp2153-2154
    [15] S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, "Observation of BER degradation due to fading in long-distance optical amplifier system," Electron. Lett., vol. 29, no. 2, pp. 209-210, 1993.
    [16] F. Bruyere and O. Audouin, "Penalties in long-haul optical amplifier ystems due to polarization dependent loss and gain," IEEE Photon. Technol. Lett., vol. 6, pp. 654-656, 1994.
    [17] L. S. Yan, Q. Yu, Y. Xie, and A. E. Willnew, "Experimental demonstrationof the system performance degradation due to the combined effectof polarization dependent loss with polarization mode dispersion," IEEEPhoton. Technol. Lett., vol. 14, no. 2, pp. 224-226, 2002.
    [18] B. Huttner, C. Geiser, and N. Gisin, "Polarization-induced distortions inoptical fiber networks with polarization-mode dispersion and polarization-dependent losses," IEEE J. Select. Topics Quantum Electron., vol. 6, pp. 317-329, Mar. /Apr. 2000.
    [19] H. F. Haunstein and H. M. Kallert, "Influence of PMD on the performance of optical transmission systems in the presence of PDL," in Proc. Conference on Optical Fiber Communication, vol. 3, 2001, pp. 17-22. paper WT4.
    [20] P. Lu, L. Chen, and X. Ban, "System outage probability due to the combinedeffect of PMD and PDL," J. Lightwave Technol., vol. 20, pp. 1805-1808, Oct. 2002.
    [21] N. Gisin and B. Huttner, "Combined effects of polarization mode dispersionand polarization dependent loss," Opt. Commun., vol. 142, no. 1-3, pp. 119-125, 1997.
    [22] F. Heismann, D. A. Fishman, and D. L. Wilson, "Automatic compensation of first order polarization mode dispersion in a 10 Gb/s transmission system," in Proc. European Conference on Optical Communication, vol. 1, 1998, pp. 529-530.
    [23] L. -S. Yah, Q. Yu, and A. E. Willner, "Demonstration of in-line monitoring and compensation of polarization-dependent loss for multiple channels," IEEE Photon. Technol. Lett., vol. 14, pp. 864-866, June 2002.
    [24] C. H. Prola Jr., J. A. P. da Silva, A. O. Dal Forno, R. Passy, J. P. yon derWeid, and N. Gisin, "PMD emulators and signal distortion in 2.48-Gb/s IM-DD lightwave systems," IEEE Photon. Technol. Lett., vol. 9, pp. 842-844, June 1997.
    [25] H. Y. Pua, K. Peddanarappagari, B. Zhu, C. Allen, K. Demarest, and R. Hui, "An adaptive first-order polarization-mode dispersion compensation system aided by polarization scrambling: Theory and demonstration," J. Lightwave Technol., vol. 18, pp. 832-841, June 2000.
    [26] H. Rosenfeldt, C. Knothe, R. Ulrich, E. Brinkmeyer, U. Feiste, C. Schubert, J. Berger, R. Ludwig, H. G. Weber, and A. Ehrhardt, "Automatic PMD compensation at 40 Gbit/s and 80 Gbit/s using a 3-dimensional DOP evaluation for feedback," in Proc. Conference on Optical Fiber Communication, vol. 4, 2001, pp. PD27-1-PD27-3.
    [27] O. Karlsson, J. Brentel, and P. A. Andrekson, "Long-term measurement of PMD and polarization drift in installed fibers,",J. Lightwave Technol., vol. 18, pp. 941-951, July 2000,
    [28] G. J. Foschini and C. D. Poole, "Statistical theory of polarization dispersion in single mode fibers," J. Lightwave Technol., vol. 9, pp. 1439-1456, Nov. 1991.
    [29] G. J. Foschini, L. E. Nelson, R. M. Jopson, and H. Kogelnik, "Probability densities of second-order polarization mode dispersion including polarization dependent chromatic fiber dispersion," IEEE Photon. Technol. Lett., vol. 12, pp. 293-295, Mar. 2000.
    [30] G. Shtengel, E. Ibragimov, M. Rivera and S. Suh, "Statistical dependence between first and second-order PMD", OFC'2001, MO3-1
    [31] M. Karlsson and J. Brentel, "Autocorrelation function of the polarization mode dispersion vector," Opt. Lett., vol. 24, pp. 939-941, 1999.
    [32] N. Gisin, R. Passy, J. C. Bishoff, and B. Perny, "Experimental investigations of the statistical properties of polarization mode dispersion in single mode fibers," IEEE Photon. Technol. Lett., vol. 5, pp. 819-821, July 1993.
    [33] D. Q. Chowdhury and L. Bhagavatula, "Polarization dependent loss induced gain ripple statistics in erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett., vol. 13, pp. 1301-1303, 2001.
    [34] N. Gisin, "Polarization effects in optical fibers: Measurement issues", OFC'2002, THA5
    [35] B. L. Heffner, "Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis", IEEE Photo. Tech. Lett., 1992, v4, pp1066-1069
    [36] H. Bulow, D. Schlump, J. Weber, B. Wedding, and R. Heidemann, "Electronic equalization of fiber PMD-induced distortion at 10 Gbit/s," in Proc. Conference on Optical Fiber Communication, 1998, pp. 151-152.
    [37] H. Bulow, R. Ballentin,W. Baumert, G. Maisonneuve, G. Thielcke, and T. Wehren, "Adaptive PMD mitigation at 10 Gbit/s using an electronic SiGe equaliser IC," in Proc. European Conference on Optical Communication, 1999, pp. 138-139.
    [38] R. Noe, D. Sandel, M. Yoshida-Dierolf, S. Hinz, C. Glingener, C.Sheerer, A. Schopflin, and G. Fisher, "Polarization mode dispersion compensation at 20 Gbit/s with fiber-based distributed equaliser," Electron. Lett., vol. 34, pp. 2421-2422, 1998.
    [39] R. Noe, D. Sandel, S. Hinz, M. Yoshida-Dierolf, V. Mirvoda, G. Feise, H. Herrmann, R. Rieken, W. Sohler, F. Wehrmann, C. Glingener, A.Schopflin, A. Farbert, and G. Fisher, "Integrated optical LiNbO distributed polarization mode dispersion compensator at 20 Gbit/s transmission system," IEEE Photon. Technol. Lett., vol. 35, pp. 652-653, 1999.
    [40] T. Takahashi, T. Imai, and M. Aiki, "Automatic compensation technique for timewise fluctuating polarization mode dispersion in in-line amplifier systems," Electron. Lett., vol. 30, no. 4, pp. 348-349, 1994.
    [41] J. Patscher and R. Eekhardt, "Component for second-order compensation of polarization-mode dispersion," Electron. Lett., vol. 33, pp. 1157-1159, 1997.
    [42] R. Noe, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A. Schopflin, C. Glingener, E. Gottwald, C. Scheerer, G. Fisher, T. Weyrauch, and W. Haase, "Polarization mode dispersion compensation at 10, 20, and 40 Gbit/s with various optical equalizers," J. Lightwave Technol., vol. 17, pp. 1602-1616, 1999.
    [43] Q. Yu, L. S. Yan, Y. Xie, M. Hauer, and A. E. Willner, "Higher order polarization mode dispersion compensation using a fixed time delay followed by a variable time delay," IEEE Photon. Technol. Lett., vol. 13,no. 8, pp. 863-865, 2001.
    [44] F. Roy, C. Francia, F. Bruyere and D. Penninckx, "A simple dynamic polarization mode dispersion compensator", OFC99, TuS4-1
    [45] F. Heismann, D. A. Fishman, D. L. Wilson, "Automatic compensation of first-order polarization mode dispersion in a 10Gb/s transmission system" ECOC98, Vol.Ⅰ, pp529-530
    [46] H. Rosenfeldt, R. Ulrich, E. Brinkmeyer, U. Feiste, C. Schubert, J. Berger, R. Ludwig, H. G. Weber, and A. Ehrhardt, "Feedforward approach for automatic PMD compensation at 80 Gbit/s over 45 km installed single mode fiber," in Proc. European Conference on OpticalCommunication, vol. 6, 2001, pp. 68-69.
    [47] P. C. Chou, J. M. Fini, and H. A. Haus, "Real-time principal state characterization for use in PMD compensators," IEEEPhoton. Technol. Lett., vol. 13, pp. 568-570, June 2001.
    [48] Patrick C, Chou J M, Fini, Hermann A, Haus., "Demonstration of a feed-forward PMD compensation technique," IEEE Photon. Technol. Lett., vol. 14, pp. 161-163, Feb. 2002.
    [1] R. C. Jones. New calculus for the treatment of optical system: Ⅷ, Electromagnetic theory, Jounal of the optical Society of America, 1956, 46: 126-131.
    [2] R. Clark. Jones, A new calculus for the treatment of optical systems: I, Description and discussion of the calculus, J. Opt. Soc. Am., 1941, 31: 488-493.
    [3] G. G. Stokes, Mathematical and Physical Papers, Trans, Camb. Plil. Soc., 1852, 9, pp399.
    [4] G. G. Stokes, Mathematical and Physical Papers, Vol. 3, Cambridge University Press, 1901, pp233.
    [5] H. Poincare, Theorie mathematique de la Lumiere, Vol. 2, Chap. 12, Gauthiers-Villars, Paris, 1892.
    [6] R. E. Schuh, E. S. R. Sikora, N. G. Walker et al., "Theoretical analysis measurement of effects on polarization mode dispersion in optical fiber cables", IWCS'42, 1993: 647-653.
    [7] A. M. Vengsarkar, A. H. Moesle, L. G. Cohen et al., "Polarization mode dispersion in dispersion-shifted fibers: An exact analysis", Opt. Lett., 1993, v18, pp1412-1414
    [8] S. Grindstaff, J. Hill, O. Daneshvar, "Extrinsic stress effects on polarization mode dispersion in optical fiber cables", IWCS'42, 1993, pp647-653
    [9] 张晓光,《光纤偏振模色散自适应补偿系统的研究》,北京邮电大学博士论文,2004年.
    [10] 苑铁成,于丽,张晓光,“增强RZ码DOP检测范围和灵敏度的方法”,光子技术,2004第四期.
    [11] 沈昱,《光纤通信系统偏振模色散自适应补偿中的取样反馈控制技术》,北京邮电大学硕士论文,2004年.
    [1] 张雄伟,曹铁勇.DSP芯片的原理与开发应用(第3版),电子工业出版社,2002.
    [2] 王念旭.DSP基础与应用系统设计北京航空航天大学出版社.2001年8月第2版.
    [3] 赵明忠,顾斌.DSP应用技术.西安电子科技大学出版社,2004.
    [4] 李刚.数字信号微处理器的原理及其开发应用.天津大学出版社,2000.
    [5] Digital Singal Processing Selection Guide. Texas Instruments. 1996.
    [6] TMS320C3x User's Guide. Texas Instruments Incorporated. 2000.
    [7] TMS320C3X General-purpose Applications User's Guide, U. S. A., Texas Instruments, 2000.
    [8] TMS320C3X Source Debugger User's Guide. Texas Instruments. 1994.
    [9] TMS320C3x'4x Code Generation Tools Getting Started Guide. Texas Instruments Incorporated. 1997.
    [10] TMS320C3x'4x Optimizing C Complier User's Guide. Texas Instruments Incorporated. 1998.
    [11] TMS320 Float-point DSP Assembly Language Tools User's Guide. Texas Instruments. 1991.
    [12] TMS320C3X'C4X Assembly Language Tools User's Guide, U. S. A., Texas Instruments, 2000.
    [13] TMS320VC33 Digital Processor, U. S. A. Texas Instruments, July 2000.
    [14] Texas Instruments Incorporated. TMS320VC33 DIGITAL SIGNAL PROCESSOR. 1999.
    [15] 曹广忠,邱建.高性能浮点DSP芯片TMS320VC33.国外电子元器件,2001年第10期.
    [1] 张晓光,《光纤偏振模色散自适应补偿系统的研究》,北京邮电大学博士论文,2004年.
    [2] 沈昱,《光纤通信系统偏振模色散自适应补偿中的取样反馈控制技术》,北京邮电大学硕士论文,2004年.
    [3] TMS320VC33 Digital Processor, U. S. A. Texas Instruments, July 2000.
    [4] Texas Instruments Incorporated. TMS320VC33 DIGITAL SIGNAL PROCESSOR. 1999.
    [5] 曹广忠,邱建.高性能浮点DSP芯片TMS320VC33.国外电子元器件,2001年第10期.
    [6] TMS320C3X'C4X Assembly Language Tools User's Guide, U. S. A., Texas Instruments, 2000.
    [7] MAXIM. MAX125-MAXI26 User's Guide. 1998.
    [8] 美信集成产品公司.MAXIM资料全集(CD-ROM版),2000.
    [9] 张新荣.ADC器件MAX125的功能及应用.陕西工学院学报.2003年9月第19卷第3期.
    [10] 袁春,袁国洲,喻寿益.DSP与MAX125/126在电力参数测量中的应用.电脑与信息技术.2001年第1期:41-43
    [11] 韩丰田,杨俊霞,付德报.TMS320C31与MAX125 A/D转换器的接口设计及应用.计算机测量与控制.2003.11(3):233-235
    [12] 李光辉,陈志英.DSP技术在电力系统谐波测量中的应用.福州大学学报(自然科学版).2005年2月第33卷第1期:34-37.
    [13] 陈蕾.TMS320C30信号采集系统.计算机自动测量与控制,2001,9(4):56-57.
    [14] 张玉麟,章鹏,廖昌荣.TMS320C32与串行A/D、D/A转换芯片的接口设计.计算机自动测量与控制,2001,9(4):50-51.
    [15] 12-Bit Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER DAC7724/DAC7725. DAC7724 Series Datasheets. Burr-Brown Corp.
    [16] 张士勇.混合磁悬浮系统的数字控制研究.西北大学学报:自然科学版.2003年33卷5:613-615.
    [17] 万霞,徐龙祥.F2812在磁悬浮轴承控制器中的应用研究.机电工程技术.2005年34卷4:24-26,39.
    [18] 李伟鹏,黄海,赵国伟.基于DSP的自适应桁架振动控制器设计.航天控制,2006,02:94-98.
    [19] TMS320C3X'C4X Assembly Language Tools User's Guide, U. S. A., Texas Instruments, 2000.
    [1] 张雄伟,曹铁勇.DSP芯片的原理与开发应用(第3版).电子工业出版社,2002.
    [2] 王念旭.DSP基础与应用系统设计.北京航空航天大学出版社.2001年8月第2版.
    [3] 赵明忠,顾斌.DSP应用技术.西安电子科技大学出版社,2004.
    [4] 李刚.数字信号微处理器的原理及其开发应用.天津大学出版社,2000.
    [5] TMS320VC33 Digital Processor, U. S. A. Texas Instruments, July 2000.
    [6] 美信集成产品公司.MAXIM资料全集(CD-ROM版),2000.
    [7] MAXIM. MAXI232 User's Guide. 2000.
    [8] TPS767D318 User's Guide, U. S. A. Texas Instruments, 2000.
    [9] 39VF400A User's Guide, SST, 2000.
    [10] CY7C 1041 V33 User's Guide, Cypress, 2000.
    [11] MAXIM. MAX125-MAX126 User's Guide. 1998.
    [12] 袁春,袁国洲,喻寿益.DSP与MAX125/126在电力参数测量中的应用.电脑与信息技术.2001年第1期:41-43.
    [13] 12-Bit Quad Voltage Output DIGITAL-TO-ANALOG CONVERTER DAC7724/DAC7725. DAC7724 Series Datasheets. Burr-Brown Corp.
    [14] 张士勇.混合磁悬浮系统的数字控制研究.西北大学学报:自然科学版.2003年33卷5:613-615.
    [15] 万霞,徐龙祥.F2812在磁悬浮轴承控制器中的应用研究.机电工程技术.2005年34卷4:24-26,39.
    [16] 李伟鹏,黄海,赵国伟.基于DSP的自适应桁架振动控制器设计.航天控制,2006,02:94-98.
    [1] 沈昱,《光纤通信系统偏振模色散自适应补偿中的取样反馈控制技术》,北京邮电大学硕士论文,2004年.
    [2] 张晓光,《光纤偏振模色散自适应补偿系统的研究》,北京邮电大学博士论文,2004年.
    [3] 沈昱,周亚萍等,动态偏振模色散补偿的自适应算法及实现,光子学报.2003.
    [4] 张晓光,于丽等,高速光纤通信系统中偏振模色散自适应补偿的实验研究,网络电信.
    [5] R. M. Jopson, L. E. Nelson and H. Kogelnik, Measurement of Second-Order Polarization-Mode Dispersion Vectors in Optical Fibers, IEEE Photon. Technol. Lett., 1999, 11(9): 1153-1155.
    [6] E. Forestieri and L. Vincetti, Exact evaluation of the Jones matrix of a fiber in the presence of polarization mode dispersion of any order, J. Lightwave Teehnol. 2001, 19 1898.
    [7] R. C. Eberhart and Y. Shi, Comparison Inertia weights and constriction factors in particle swam optimization, Proc. 2000, ICEC, pp84-85.
    [8] J. Kennedy and R. Mendes, Population structure and particle swarm performance, Proc. 2002, ICEC, pp1671-1676.
    [9] Jinjun Zhu, Xiaoguang Zhang. PSO-Based Control Algorithm for Polarization Mode Dispersion Self-adaptive Compensation. Semiconductor Photonics and Technology, 2006, VOL. 12, No. 4, Total No. 46.
    [10] 朱进军,段高燕,王秋国等.使用PSO算法的二阶偏振模色散自适应补偿实验.光子技术,2006年第3期,总第13期.
    [11] Xiaogang Zhang, Jianzhong Zhang, Gaoyan Duan, Li Yu, Zhongyuan Yu, Bojun Yang, "An Experiment for Obtaining DOP Ellipsoid Using Particle Swarm Optimization Algorithm," Chinese Optics Letters, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700