传染病动力学模型性态分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了几个寄生虫宿主数学模型的动力学性态。我们首先在第二部分研究了一类具有一般传染率寄生虫宿主模型的全局性态,此传染率是在双线性与标准传染率之间连续变化的。我们利用微分方程定性理论证明了只有在标准传染率时,宿主和寄生虫可能绝灭;我们还得到了宿主和寄生虫共存即系统正平衡点存在的条件,证明了正平衡点只要存在一定是全局稳定的。
     本文第三部分对一类具有S形函数非线性传染率的传染病模型进行了分支分析,我们得到了两个正平衡点存在的阈值条件,通过分析平衡点的稳定性我们给出系统存在Allee效应的条件,我们证明了在一定条件下,系统经历超临界Hopf分支和次临界Hopf分支;还证明了在一定条件下系统经历Bogdanov-Takens分支,通过数值模拟分析,我们发现,系统可能出现两个极限环并且两个极限环可能由不同情况引起:一种是一个极限环从Hopf分支出现,而另一个极限环由同宿轨分支引起;第二种是首先从Hopf分支分支出第一个极限环,接着从退化的极限点出现第二个极限环,并且发现从退化的极限点出现极限环有三种方式,通过数值模拟表明S形函数的倾角如果有微小的变化,可能会导致系统完全不同的分支结构。
     本文第四部分分析了第二部分的模型加空间效应后系统的斑图动力学性态,我们利用线性稳定性分析得到具有双线性传染率的反应扩散系统的均匀定态解是稳定的;具有标准传染率的反应扩散系统在一定条件下是稳定的,在一定条件下会出现图灵斑图,我们通过分析系统的振幅方程,给出图灵斑图出现点状和条状及其稳定的条件。进一步,利用中心流形法确定振幅方程的系数,给出在固定参数值时系统出现图灵斑图及图灵斑图形状变化的数值分析。
     本文第五部分研究了具有Allee效应的反应扩散系统的斑图动力学性态,首先,我们利用线性稳定性理论给出图灵不稳定和Hopf分支发生的条件且分析了图灵斑图的稳定性,进一步,我们对照不加扩散的系统与加扩散的系统的性态,进行了数值模拟,通过数值模拟,我们发现系统可能出现图灵斑图、缺口状斑图、迷宫斑图、螺旋波斑图、静态斑图及混沌斑图。若寄生虫剂量作为分支参数,发现随着寄生虫剂量的增加,有两种情况发生:一种是当易感者宿主的扩散率超过临界值时系统依次出现图灵斑图、缺口状斑图和迷宫斑图,意味着染病者宿主的分布会由疏到密接着再变疏;另一种是当易感者宿主的扩散率低于临界值时系统依次出现螺旋波斑图、静态斑图和迷宫斑图。若取易感者宿主的扩散率作为分支参数,发现易感者宿主的扩散率大于或小于染病者宿主的扩散率都可能发生稳定的螺旋波,并且随着染病者宿主扩散率的增加,系统螺旋波缺陷数增加导致混沌发生。
In the paper, the dynamical behaviors of several epidemic models for host-parasite are investigated. In the second part of this paper, we consider the global dynamics of a microparasite model with more general incidences. The incidence characterize continuous transitions from the bilinear incidence to the standard incidence. Firstly, the extinction of both host population and parasite population occurs only under standard incidence by the methods of differential qualitative theory. Furthermore, we obtain the existence conditions of the endemic equilibrium and prove it is global whenever it exists.
     In the third part of this paper, we consider an epidemic model with the nonlinear incidence of a sigmoidal function. Firstly, a threshold condition of the endemic equilibria is obtained. The dynamical analysis of the model shows that the non-linearity of the incidence rate may lead to Allee effect. Secondly, it is shown that the epidemic model undergoes a supercritical Hopf bifurcation a subcritical Hopf bifurcation under the some conditions. Furthermore, it is shown that the model undergoes a Bogdanov-Takens bifurcation which means that it exhibits a saddle-node bifurcation, a Hopf bifurcation and a homoclinic bifurcation. Thirdly, by numerical simulations, We find two approaches that the model admits two limit cycles. First, a limit cycle emerges from a Hopf bifurcation, while another limit cycle occurs from a homoclinic bifurcation. Secondly, a branch of limit cycles is born from a Hopf bifurcation at first. Then there exists a second bifurcation from a degenerate limit cycle such that two limit cycles emerge. We find also three patterns of limit cycle bifurcations from a degenerate limit cycle. Our analysis shows that a little change of parameter shape of the incidence could lead to quite different bifurcation structures.
     In the fourth part of this paper, pattern dynamical behaviors of the model with space effect in the second part are analyzed. Applying the standard linear stability analysis, we" obtain the given steady state is stable in the reaction-diffusion system with bilinear incidence. However, the stability of the given steady state with standard incidence is obtained under the some conditions and Turing instability is given under the other conditions in the reaction-diffusion system. Furthermore, analyzing the behaviors of the amplitude equations of the model, we get the conditions of Turing pattern occurrence in the fixed parameter values.
     In the firth part of this paper, we analyze the spatiotemporal patterns in an epidemic model with the Allee effect. Using the linear stability theory, we obtain the conditions of existence for Turing instability and Hopf bifurcation. By means of analytic analysis and numerical simulations, we show that the model exhibits Turing peaks, Turing holes, labyrinths, spiral waves, standing waves and chaotic pattern. There are two cases if we increase the infectious dose. One case is that Turing peaks, holes and labyrinths occur if diffusion rate is greater than a certain value, and the patterns undergo transitions from spots, stripes to holes and labyrinths, which indicates that the spatial distribution of infected individuals changes from sparse to dense, then to sparse. The other case is that spiral waves, standing waves and labyrinths happen if diffusion rate is less than the value, and the patterns range from traveling wave to static wave and labyrinths. If the diffusion rate of susceptible individuals is taken as bifurcation parameter, we find that stable spiral waves occur whenever the diffusion rate is more than or less than the diffusion rate of infectious individuals and the increase of number of defects for spiral waves leads to chaotic pattern.
引文
[1]全国中等卫生学校试用教材《微生物学及寄生虫学》编写组委,微生物学及寄生虫学.山东科学技术出版社,1979.
    [2]马知恩,周义仓,王稳地等.传染病动力学的数学建模与研究.科学出版社,北京,2004.
    [3]陈兰荪,宋新宇,陆征一.数学生态学模型与研究方法.四川科学技术出版社,成都,2003.
    [4]靳祯.在脉冲作用下的生态和流行病模型研究.西安交通大学博士学位论文,2001.
    [5]原三领.含时滞流行病模型的研究.西安交通大学博士学位论文,2001.
    [6]王稳地.传染病数学模型的稳定性和分枝.西安交通大学博士学位论文,2002.
    [7]韩丽涛.两种群相互作用的传染病模型的研究.西安交通大学博士学位论文,2002.
    [8]李健全.具有预防接种流行病的模型.西安交通大学博士学位论文,2003.
    [9]刘贤宁.脉冲微分方程理论及其在种群动力学中的应用研究.中国科学院博士学位论文,2003.
    [10]金瑜.传染病模型的全局性态与分支结构.西南师范大学硕士学位论文,2004.
    [11]王开发.病毒感染动力学模型分析.西南大学博士学位论文,2007.
    [12]聂品,寄生虫种群生态研究的综述,水生生物学报,4(1990),359-367.
    [13]Crofton H.D.,A quantitative approach to parasitism.Parasitology,62(1971),179-194.
    [14] Anderson R. M., The regulation of host population growth by parasitic speies. Parasitology, 76 (1978), 119-157.
    
    [15] Anderson R. M., Whitefield P. J. and Dobson A. P., Experimental studies of infection dynamics: infection of the definitive host by the cercariae of Transversotrema patialense. Parasitology, 77 (1978), 189-200.
    
    [16] Anderson R. M., Population dynamics of snail infection by microcidia. Parasitology, 77 (1978), 201-224.
    
    [17] Keymer A. E., Anderson R. M., The dynamics of infection of Triboliurn confusum by Hymenolopis diminuta: the influence of infective-stage density and spatial distribution. Parasitology, 79 (1979), 195-207.
    
    [18] Keymer A. E., The dynamics of infection of Tribolium confusum by Hymenolopis diminuta, the influence of exposure time and host density. Parasitology, 84 (1982), 157-166.
    
    [19] Wakelin D., Genetic control of susceptibility and resistence to parasite infection. In W. H. R. Lumsden, R. Muller and J. R. Baker (eds), Advances in Parasitology, 16 (1978), 219-308. Academic Press: London.
    
    [20] Behnke J. M., Wakelin D., The survival of Trichuris muris in wild populations of its natural hosts. Parasitology, 67 (1973), 157-164.
    
    [21] Wassom D. L., Dewitt C. W. and Grundmann A. W., Immunity to Hy-menolepis citelli by Peromyscus maniculatus: genetic control and ecological implications. Journal of Parasitology, 60 (1978), 47-52.
    
    [22] Keymer A. E., Population dynamics of Hymenolepis diminuta in the intermediate host. Journal of Animal Ecology, 50 (1981), 941-950.
    
    [23] Anderson R. M., and Crombie J., Experimental studies of age-prevalence curves of Schistosoma mansoni infection in populations of Biomphalaria glabrata. Parasitology, 89 (1984), 79-104.
    [24] Anderson R. M., Whitefield P. J. and Mills C. A., An experimental study of the population dynamics of an ectoparasitic digenean Transversotrema patialense (Soparker): cercarial and adult stages. Journal of Animal Ecology,46 (1977), 555-580.
    
    [25] Anderson R. M., May R. M., Population biology of infectious diseases: Part I. Nature, 2 (1979), 361-367.
    
    [26] D. Ebert, M. Lipsitch, K.L. Mangin, The effect of parasites on host population density and extinction: experimental epidemiology with Daphnia and six microparasites, American Naturalist, 156 (2000), 459-477.
    
    [27] T. W. Hwang and Y. Kuang, Deterministic extinction effect of parasites on host populations. J. Math. Biol, 46 (2003), 17-30.
    
    [28] Anderson R. M. and May R. M., The population dynamics of microparasites and their invertebrate hosts. Phil. Trans. R. Soc. Lond. B, 291 (1981),451 - 524.
    
    [29] R.R. Regoes, D. Ebert, A. Bonhoeffer, Dose-dependent infection rates of parasites produce the Allee effect in epidemiology, Proc. R. Soc. Lond. B,269 (2002), 271-279.
    
    [30] Price P. W., Evolutionary Biology of Parasites. Princeton, New Jersey:Princeton University Press, 1980.
    
    [31] Anderson R. M. and May R. M., Regulation and stability of host-parasite population interactions. I: Regulatory processes. Journal of Animal Ecology,47 (1978), 219 - 247.
    
    [32] Anderson R. M. and May R. M., Prevalence of schistosome infections with molluscan population: observed patterns and theoretical predictions. Para-sitology, 79 (1979), 63-94.
    
    [33] Anderson, R. M. and May, R. M., Coevolution of hosts and parasites. Par-asitology, 85 (1982), 411 - 426.
    [34]Hassell M.P.,Comins H.N.and May R.M.,Species coexistence and selforganizing spatial dynamics,Nature,370(1994),290-292.
    [35]Dieckmann U.,Law R.and Metz.J.A.J.,The Geometry of ecological interactions:simplifying spatial complexity.(Cambridge University Press,Cambridge,UK;New York,USA,2000).
    [36]Boerlijst M.C.and Hogeweg P.,Attractors and spatial patterns in hypercycles with negative interactions,J.Theor.Biol.,176(1995),088-109.
    [37]Savill N.J.,Rohani P.and Hogeweg P.,Self-reinforcing spatial patterns enslave evolution in a host-parasitoid system,J Theo.Biol.,188(1997),11-20.
    [38]Turing A.M.,The chemical basis of morphogensis,Phil.Trans.R Soc.Lond.B,237(1952),37-72.
    [39]Ouyang Q.and Swinney H.L.Transition from a uniform state to hexagonal and striped turing patterns.Nature,352(1991),610-612.
    [40]Petrov V.,Ouyang Q.and Swinney H.L.,Resonant pattern formation in a chemical system.Nature,388(1997),655-657.
    [41]Liu Q.X.,Jin Z.and Liu M.X.,Spatial organization and evolution period of the epidemic model using cellular automata,Phys.Rev.E,2006,74(2006).,031110.
    [42]Gurney W.S.C.,Veitch A.R.,Cruickshank I.and McGeachin G.,Circles and spirals:Population persistence in a spatially explicit predator-prey model.Ecology,79(1998),2516-2530,
    [43]Savill N.J.and Hogeweg P.Spatially induced speciation prevents extinction:the evolution of dispersal distance in oscillatory predator-prey models.Proc.R Soc.Lond.B,265(1998),25-32.
    [44]Petrovskii S.,Morozov A.and Li B.L.,Regimes of biological invasion in a predator-prey system with the allee effect.Bull.Math.Biol.,67(2005),637-661.
    [45]Britton N.F.Essential mathematical biology.Springer undergraduate mathematics series,(Springer,London;New York,2003).
    [46]Murray J.D.,Mathematical biology Ⅱ,Spatial models and biomedical applications (Springer,2003).
    [47]White K.A.J.and Gilligan C.A.,Spatial heterogeneity in three-species,plant-parasite-hyperparasite,systems.Phil.Trans.R Soc.Lond.B,353(1998),543-557.
    [48]Medvinsky A.B.,Petrovskii S.V.,Tikhonova I.A.,Malchow H.and Li B.L.,Spatiotemporal complexity of plankton and fish dynamics.SIAM Review,44(2002),311-370.
    [49]Wang W.M.,Liu Q.X..and Jin Z.Spatiotemporal complexity of a ratiodependent predator-prey system.Phys.Rev.E,75(2007),051913.
    [50]Johnson C.R.and Boerlijst M.C.,Selection at the level of the community:the importance of spatial structure,Trends Ecol.Evol.,17(2002),83-90.
    [51]Klomp N.and Lunt I.D.,Frontiers in ecology:building the links(Elesevier Science,Oxford,1997).Edited by Nicholas Klomp,Ian Lunt.
    [52]欧阳颀,反应扩散系统中的斑图动力学.上海科技教育出版社,上海,2000.
    [53]Levin S.A.,Grenfell B.,Hastings A.and Perelson A.S.Mathematical and Computational Challenges in Population Biology and Ecosystems Science.Science,275(1997),334-343.
    [54]Rovinsky A.B.and Menzinger M.,Chemical instability induced by a differential flow,Phys.Rev.Lett.,69(1992),1193-1196
    [55]Rovinsky A.B.and Menzinger M.,Self-organization induced by the differential flow of activator and inhibitor,Phys.Rev.Lett.,70(1993),778-781.
    [56]Satnoianu R.A.and Menzinger M.,Non-turing stationary patterns in flowdistributed oscillators with general diffusion and flow rates,Phys.Rev.E,62(2000),113-119.
    [57] Andresen P., Bache M., Mosekilde E., Dewel G. and Borckmanns P., Stationary space-periodic structures with equal diffusion coefficients, Phys. Rev.E, 60 (1999), 297-301.
    
    [58] Kuznetsov S.P., Mosekilde E., Dewel G. and Borckmans P., Absolute and convective instabilities in a one-dimensional brusselator flow model, The J.Chem. Phys., 106 (1997), 7609-7616.
    
    [591 Klausmeier C.A., Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), 1826-1828.
    
    [60] Pascual M., Diffusion-induced chaos in a spatial predator-prey system, Proc.R Soc. Lond. B, 251 (1993), 1-7.
    
    [61] Provata A. and Tsekouras G.A., Spontaneous formation of dynamical patterns with fractal fronts in the cyclic lattice lotka-volterra model, Phys. Rev.E, 67 (2003), 056602.
    
    [62] Tsekouras G.A. and Provata A., Fractal properties of the lattice lotka- volterra model, Phys. Rev. E, 65 (2001), 016204.
    
    [63] Provata A., Nicolis G. and Baras F., Oscillatory dynamics in low-dimensional supports: A lattice lotka-volterra model, The J. Chem. Phys.,110 (1999), 8361-8368.
    
    [64] Morozov A., Petrovskii S. and Li B.L., Spatiotemporal complexity of patchy invasion in a predator-prey system with the allee effect, J. Theor. Biol., 238(2006), 18-35.
    
    [65] Petrovskii S., Malchow H. and Li B.L., An exact solution of a diffusive predator-prey system, Proc. R. Soc. A, 461 (2005), 1029-1053.
    
    [66] Petrovskii S., Morozov A. and Li B.L., Regimes of biological invasion in a predator-prey system with the allee effect, Bull. Math. Biol., 67 (2005),637-661.
    [67]Alonso D.,Bartumeus F.and Catalan J.,Mutual interference between predators can give rise to turing spatial patterns,Ecology,83(2002),28-34.
    [68]Petrovskii S.V.and Li B.L.Exactly solvable models of biological invasion (Chapman & Hall CRC,Boca Raton;London,2005).
    [69]Petrovskii S.,Li B.L.and Malchowc H.,Transition to spatiotemporal chaos can resolve the paradox of enrichment,Ecological Complexity,1(2004),37-47.
    [70]Tsyganov M.A.,Brindley J.,Holden A.V.and Biktashev V.N.,Quasisoliton interaction of pursuit-evasion waves in a predator-prey system,Phys.Rev.Lett.,91(2003),218102.
    [71]Tsyganov M.A.and Biktashev V.N.,Half-soliton interaction of population taxis waves in predator-prey systems with pursuit and evasion,Phys.Rev.E,70(2004),031901.
    [72]Biktashev V.N.,Brindley J.,Holden A.V.and Tsyganov M.A.,Pursuitevasion predator-prey waves in two spatial dimensions,Chaos,14(2004),988-994.
    [73]Abraham E.R.,The generation of plankton patchiness by turbulent stirring,Nature,391(1998),577-580.
    [74]Scheffer S.Fish and nutrients interplay determines algal biomass:A minimal model.Oikos,62(1991),271-282.
    [75]Garvie M.R.and Trenchea C.,Optimal control of a nutrient-phytoplanktonzooplankton-fish system,SIAM J Cont.Opt.,46(2007),775-791.
    [76]Medvinsky A.B.,Tikhonova I.A.,Aliev R.R.,Li B.L.,Lin Z.S.and Malchow H.,Patchy environment as a factor of complex plankton dynamics,Phys.Rev.E,64(2001),021915.
    [77] Liu Q.X., Jin Z. and Li B.L., Emergence of spatiotemporal chaos driven by far-field breakup of spiral waves in the plankton ecological systems,arXiv:0704.0322, 2007, Preprint.
    
    [78] Bar M. and Brusch L., Breakup of spiral waves caused by radial dynamics:Eckhaus and finite wavenumber instabilities, New J. Physics, 6 (2004), 5.
    
    [79] Reigada R., Hillary R.M., Bees M.A., Sancho J.M. and Sagues F., Plankton blooms induced by turbulent flows, Proc. R Soc. Lond B, 270 (2003), 875-880.
    
    [80] Reigada R., Sagues F. and Sancho J.M., Kinetics and spatial organization in reactive systems with nonpassively advected reactants, J Phys-Cond. Matt.,19 (2007), 065132.
    
    [81] von Hardenberg J., Meron E., Shachak M. and Zarmi Y., Diversity of vegetation patterns and desertification, Phys. Rev. Lett., 87 (2001), 198101.
    
    [82] Lejeune O., Tlidi M. and Couteron P., Localized vegetation patches: A self-organized response to resource scarcity, Phys. Rev. E, 66 (2002), 010901.
    
    [83] Webster R. and Maestre F.T., Spatial analysis of semi-arid patchy vegetation by the cumulative distribution of patch boundary spacings and transition probabilities, Envir. and Ecol. Stat., 11 (2004), 257-281.
    
    [84] Guttal V. and Jayaprakash C, Self-organization and productivity in semi-arid ecosystems: Implications of seasonality in rainfall, J. Theor. Biol., 248(2007), 490-500.
    
    [85] Sherratt J.A. and Lord G.J., Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments, Theor. Popul.Biol, 71 (2007), 1-11.
    
    [86] Scanlon T.M., Caylor K.K., Levin S.A. and Rodriguez-Iturbe I., Positive feedbacks promote power-law clustering of kalahari vegetation, Nature, 449(2007), 209.
    [87]Sole R.,Ecology-scaling laws in the drier,Nature,449(2007),151-153.
    [88]Kefi S.,Rietkerk M.,Alados C.L.,Pueyo Y.,Papanastasis V.P.,Elaich A.and de Ruiter P.C.,Spatial vegetation patterns and imminent desertification in mediterranean arid ecosystems,Nature,449(2007),213-217.
    [89]van Ballegooijen W.M.and Boerlijst M.C.,Emergent trade-offs and selection for outbreak frequency in spatial epidemics,Proc.Natl.Acad.Sci.USA,101(2004),18246-18250.
    [90]Gubler D.J.,Epidemic dengue/dengue hemorrhagic fever as a public health,social and economic problem in the 21st century,Trends in Microbiology,10(2002),100-103.
    [91]Grassly N.C.,Fraser C.,Wenger J.,Deshpande J.M.,Sutter R.W.,Heymann D.L.and Aylward R.B.,New Strategies for the Elimination of Polio from India,Science,314(2006),1150-1153.
    [92]Williams B.G.,Lloyd-Smith J.O.,Gouws E.,Hankins C.,Getz W.M.,Hargrove J.,de Zoysa I.,Dye C.and Auvert B.,The potential impact of male circumcision on hiv in sub-saharan africa,Plos Medicine,3(2006),1032-1040.
    [93]Cummings D.A.T.,Irizarry R.A.,Huang N.E.,Endy T.P.,Nisalak A.,Ungchusak K.and Burke D.S.,Travelling waves in the occurrence of dengue haemorrhagic fever in thailand,Nature,427(2004),344-347.
    [94]Vecchio A.,Primavera L.and Carbone V.,Periodic and aperiodic traveling pulses in population dynamics:An example from the occurrence of epidemic infections,Phys.Rev.E,73(2006),031913.
    [95]Grenfell B.T.,Bjornstad O.N.and Kappey J.,Travelling waves and spatial hierarchies in measles epidemics,Nature,414(2001),716-723.
    [96]Liu Q.X.and Jin Z.,Formation of spatial patterns in an epidemic model with constant removal rate of the infectives,J.Star.Mech.-Theo.Exp.,arXiv:qbio/0610006,(2007),P05002.
    [97]Sun G.,Jin Z.,Liu Q.X.and Li L.,Pattern formation in a spatial s-i model with non-linear incidence rates,J.Stat.Mech.-Theo.Exp.,2007(2007)P11011.
    [98]R.M.May and R.M.Anderson,Population biology of infectious diseases.Ⅱ,Nature.280(1979),455-461.
    [99]F.Brauer,and C.Castillo-Chavez,Mathematical Models in Population Biology and Epidemics,Springer-Verlag,Berlin-Heidelberg-New York.
    [100]M.C.M.De Jong,O.Diekmann,J.A.P.Heesterbeek,How does transmission depend on population size?,In Human Infectious Diseases,Epidemic Models,Mollison D,ed.,Cambridge University Press,Cambridge,1995,84-94.
    [101]B.T.Grenfell and A.P.Dobson,eds,Ecology of Disease in Natural Populations,Cambridge University Press,Cambridge,1995.
    [102]H.McCallum,Modelling wildlife-parasite interactions to help plan and interpret field studies.Wildlife Research.22(1995),21-29.
    [103]H.R.Thieme,Stability change of the endemic equilibrium in age-structured models for the spread of S→I→R type infectious diseases.Differential Equations Models in Biology,Epidemiology and Ecology(Claremont,CA,1990),139-158,Lecture Notes in Biomath.,92,Springer,Berlin,1991.
    [104]W.Wang,Y.Li,H.W.Hethcote,Bifurcations in a host-parasite model with nonlinear incidence,Internat.J.Bifur.Chaos Appl.Sci.Engrg.,11(2006),3291-3307.
    [105]D.Xiao and S.Ruan,Global dynamics of a ratio-dependent predator-prey system.J.Math.Biol.43(2001),268-290.
    [106]Z.Zhang,T.Ding,W.Huang,Z.Dong,Qualitative Theory of Differential Equations,Translations of Mathematical Monographs 101,Amer.Math.Soc.,Providence.1991.
    [107]H.W.Hethcote,The mathematics of infectious diseases.SIAM Review.42(2000),599-653.
    [108]S.Ruan;Wendi Wang;S.Levin,The effect of global travel on the spread of SARS.Mathematical Biosciences and Engineering.3(2006),205-218.
    [109]P.van den Driessche and James Watmough,Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,Math.Biosci.,180(2002),29-48.
    [110]W.Wang and G.Mulone,Threshold of disease transmission on a patch environment.J.Math.Anal.Appl.,285(2003),321-335.
    [111]W.Wang and Xiao-Qiang Zhao,An age-structured epidemic model in a patchy environment.SIAM J.Appl.Math.,65(2005),1597-1614.
    [112]W.Wang and Xiao-Qiang Zhao,an epidemic model with population dispersal and infection period.SIAM J.Appl.Math.,66(2006),1454-1472.
    [113]P.Agnew,J.C.Koella,Life-history interactions with environmental conditions in a host-parasite relationship and the parasite' s mode of transmission,Evol.Ecol.,13(1999),67-89.
    [114]D.Ebert,C.D.Zschokke-Rohringer,H.J.Carius,Dose effects and density-dependent regulation of two microparasites of Daphnia magna,Oecologia 122(2000),200-209.
    [115]T.J.Little,D.Ebert,The cause of parasitic infection in natural populations of Daphnia(Crustacea:Cladocera):the role of host genetics,Proc.R.Soc.Lond.B,267(2000),2037-2042.
    [116]A.R.McLean,C.J.Bostock,Scrapie infections initiated at varying doses:an analysis of 117 titration experiments,Phil.Trans.R.Soc.Lond.B,355(2000),1043-1050.
    [117]A.B.Gumel,S.M.Moghadas,A qualitative study of a vaccination model with non-linear incidence,Applied Mathematics and Computation,143(2003),409-419.
    [118]S.Ruan,W.Wang,Dynamical behavior of an epidemic model with a nonlinear incidence rate,J.Differential Equations,188(2003),135-163.
    [119]J.D.Murray,Mathematical Biology,Springer-Verlag,New York,1989.
    [120]L.Perko,Differential Equations and Dynamical Systems,Springer,New York,1996.
    [121]R.Bogdanov,Bifurcations of a limit cycle for a family of vector fields on the plan,Selecta Math.Soviet.,1(1981),373-388.
    [122]R.Bogdanov,Versal deformations of a singular point on the plan in the case of zero eigen-values,Selecta Math.Soviet.,1(1981),389-421.
    [123]F.Takens,Forced oscillations and bifurcation,in:Applications of Global Analysis I,Comm.Math.Inst.Rijksuniversitat Utrecht.,3(1974),1-59.
    [124]A.Dhooge,W.Govaerts and Y.A.Kuznetsov,Limit cycles and their bifurcations in MatCont.http://allserv.UGent.be/ajdhooge.
    [125]W.M.Liu,H.W.Hetchote,S.A.Levin,Dynamical behavior of epidemiological models with nonlinear incidence rates,J.Math.Biol.,25(1987),359-380.
    [126]W.M.Liu,H.W.Hetchote,S.A.Levin,Influnce of nonlinear incidence rates upon the behavior of SIRS epidemiological model,J.Math.Biol.,23(1986),187-204.
    [127]H.W.Hethcote,P.van den Driessche,Some epidemiological models with nonlinear incidence,J.Math.Biol.,29(1991),271-287.
    [128]D.M Xiao,S.Ruan,Global analysis of an epidemic model with nonmonotone incidence rate,Mathematical Biosciences,208(2007),419-429.
    [129]M.G.M.Gomes,A.Margheri,G.F.Medley,C.Rebelo,Dynamical behaviour of epidemiological models with sub-optimal immunity and nonlinear incidence,J.Math.Biol.,51(2005),414-430.
    [130]M.E.Alexander,S.M.Moghadas,Periodicity in an epidemic model with a generalized non-linear incidence,Math.Biosci.,189(2004),75-96.
    [131]S.H.Faeth,K.P.Hadeler,and H.R.Thieme,An apparent paradox of horizontal and vertical disease transmission,Journal of Biological Dynamics,1(2007),45-62.
    [132]W.Wang,Epidemic models with nonlinear infection forces,Mathematical Biosciences and Engineering,3(2006),267-279.
    [133]T.K.Callahan,E.Knobloch,Pattern formation in three-dimensional reaction-diffusion systems,Physica D,132(1999),339-362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700