介电晶体光波导和纳米颗粒中的微荧光及非线性效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光波导是折射率较高的区域被折射率较低的区域包裹的微型结构,可将光限制在微米量级的结构内传输,从而达到很高的光密度。基于波导结构的荧光和非线性效应,是实现波导激光、波导倍频元件等集成光子学器件的基础。在波导结构上集成多个光学元件,可以形成的具有整体功能的集成光子芯片,从而实现小型化、稳定化和高性能化的光学系统。作为集成光子学芯片的最基本单元,光波导的性能直接决定了整个集成器件的性能。因此,研制高性能的波导结构是实现集成光子学芯片的基础,也一直是集成光学、光电子学和现代光通讯领域的一个研究热点。
     迄今为止,人们已经用多种方法实现了光波导的制备,主要有载能离子束辐照(注入)、飞秒激光写入、离子交换、金属离子热扩散和薄膜沉积等。其中载能离子束辐照和飞秒激光写入方便、快捷,适用的材料广泛,引起了人们的广泛关注。载能离子束辐照技术包括离子注入、快重离子辐照和聚焦离子束写入等。离子注入作为一种成熟的材料表面改性技术,已经在包括光学晶体、陶瓷、玻璃、半导体及多种聚合物在内的100多种光学材料上成功制备了光波导结构。传统的离子注入,离子与材料中的原子发生碰撞,通过核能量沉积在射程末端形成一个折射率降低的“光位垒”;而在射程内,注入离子主要与靶原子中的电子发生碰撞,产生电离,折射率会发生微小变化。通过这种折射率变化,样品表面与光位垒之间的区域就形成波导结构。快重离子辐照,采用较重的离子(一般原子序数大于等于8),能量大于1MeV/amu,依靠电子损伤(单个离子的非晶径迹或者多个离子的高损伤重叠效应)改变衬底材料的折射率,可以在更低的剂量条件下形成有效的波导。聚焦离子束写入,是通过把离子束尺寸聚焦到微米量级,将聚焦离子束注入到材料中的特定深度,诱导特定位置折射率发生变化,从而实现波导结构的直接写入。一般采用的写入离子为质子或氦离子。飞秒激光写入主要是用高光密度的近红外飞秒激光脉冲,诱导光学材料发生双光子或多光子非线性吸收过程,通过雪崩电离引起材料的结构变化,并引起相应的折射率变化,在特定区域形成光波导。飞秒激光写入具有快速、清洁等优点,空间分辨率极高,而且基片材料的选取不受限制,已经越来越多地应用于光波导的制备。
     由于生物医学研究和临床治疗上的需求,荧光成像技术在生物成像方面的应用迅猛发展,探究各种功能强大的荧光探针(如半导体纳米粒子、荧光蛋白、荧光有机分子等)成为一个重要的课题。镧系元素掺杂的上转换荧光纳米颗粒,引起了研究人员的广泛关注。这些纳米颗粒,可以采用近红外激光进行激发,吸收多个近红外光子,发射可见光子或近红外光子。重要的是,生物组织对近红外波段(700-900nm)的光吸收极低,是人体的透明窗口,这样可用于探测更深层的生物组织情况。与量子点和有机荧光染料相比,上转换荧光纳米材料具有化学稳定性好、荧光量子产率高、毒性低、信噪比好等特点。此外,红外激光器小巧紧凑、功率高、价格低廉,为上转换荧光纳米颗粒的实际应用提供了良好的条件。以上这些优点使得上转换荧光纳米颗粒在生物成像方面有广阔的应用前景。
     本文主要研究内容为采用载能离子辐照和飞秒激光写入技术在多种介电光学晶体(KTiOPO4、Nd3+:YAl3(BO3)4、Nd3+:YVO4、Nd3+:MgO:LiNbO3、 Yb3+:Y3Al5O12和Nd3+:Y2O3)中制备光波导结构,用端面耦合测试波导的光传输情况及传输损耗,通过热退火处理来优化波导;用棱镜耦合测试光波导的暗模特性,反射计算法(Reflectivity Calculation Method, RCM)计算平面光波导的折射率分布;根据折射率分布,用有限差分光束传播方法(Finite Difference Beam Propagation Method, FD-BPM)模拟波导的近场光强分布;用共聚焦显微镜研究波导中的微荧光、拉曼和二次谐波等特性的变化,进而分析波导区的晶格变化,探讨波导的形成机理;在自倍频或倍频晶体上实现波导中的倍频效应。对CaF2:Er3+,Yb3+和CaF2:Tm3+,Yb3+两种上转换荧光纳米颗粒进行比较,分析其实际应用前景。主要结果如下:
     磷酸钛氧钾(KTiOPO4,简称KTP)是一种性能优良的非线性光学晶体。采用飞秒激光写入在II类相位匹配KTP晶体上制备双线(double-line)型条形光波导,并实现了波导倍频效应。当脉冲1064nm激光的泵浦峰值功率为1.36kW时,绿光输出为0.15kW,光的转换效率为~11%。
     采用飞秒激光写入在Ⅱ类相位匹配KTP晶体上制备圆形和六角包层光波导,在1064nm和532nm下均可以形成多模波导。脉冲1064nm激光泵浦下实现了波导中倍频效应,转换效率达45%,这表明形成的包层波导是实现绿光激光器的优良结构。
     结合光刻和多能量He离子注入在KTP晶体上制备条形光波导。利用共聚焦显微镜分析二次谐波的特性,发现波导区没有明显的减弱(-90%),而在位垒区却降低了60%。这说明在波导区KTP晶体的非线性特性得到很好的保留,离子注入并没有对其产生很大的影响。
     钕掺杂四硼酸铝钇(Nd3+:YA13(BO3)4,简称Nd3+:YAB)晶体是一种光学性能和机械性能优良的自倍频晶体。我们采用飞秒激光写入方法在Nd3+:YAB晶体上制备条形光波导,波导区的荧光特性和二次谐波特性保留较好,通过808nm激光泵浦成功实现了1064nm的波导激光和532nm的倍频光。
     钕掺杂钒酸钇(Nd3+:YVO4)晶体是一种性能优良的激光晶体,具有吸收系数大、吸收带宽、受激发射截面大、激光阈值低、效率高等特点。采用飞秒激光写入技术在Nd3+:YVO4+KTP胶合晶体上制备条形光波导,发现在可见光和近红外波段TE、TM偏振下均可以对光进行限制,形成有效光波导。采用共聚焦显微镜分析波导的微荧光和微二次谐波特性,发现Nd3+:YVO4晶体的荧光特性和KTP晶体的非线性特性在波导区得到很好的保留,并未因飞秒激光写入而降低。这说明得到的波导结构具有实现自倍频的潜能。
     铌酸锂(LiNbO3)晶体是集电光、声光、光弹、非线性、光折变和激光活性等物理效应于一体的一种光学晶体,可以实施不同的稀土掺杂。采用离子注入在Nd3+:MgO:LiNbO3表面制备光波导,研究波导的荧光特性并分析不同质量离子注入对晶格的影响。对于H、C和O离子注入,波导内荧光强度基本保持不变。H离子注入后晶格变化集中在位垒区,核损伤占主导;O离子注入后晶格变化集中在波导区,电子损伤占主导;而C离子注入,晶格变化发生在波导和位垒之间,是电子损伤和核损伤共同作用的结果。
     采用快重Ar4+辐照Nd3+:MgO:SLN晶体,利用每个注入离子都会引起晶格非晶化形成平面光波导。微荧光特性、拉曼和二次谐波实验验证了非晶化径迹、损伤和晶格紧缩的存在,这也是折射率发生变化的原因。
     镱掺杂的钇铝石榴石(Yb3+:Y3Al5O12.简称Yb3+:YAG)陶瓷是一种新型的激光介质,与YAG晶体相比,具有多种优良的特性,如制作工艺简单、生长周期短、性价比高、可掺杂浓度高等。采用碳离子注入,在Yb3+:YAG陶瓷上制备条形光波导。共聚焦荧光实验发现Yb3+的荧光特性在波导中得到保留,离子注入并没有引起荧光淬灭,但在波导区引入了少量缺陷。
     钕掺杂的氧化钇(Nd3+:Y2O3)陶瓷是一种光学性能优良的激光介质。采用飞秒激光写入在Nd3+:Y2O3陶瓷上制备条形光波导,形成的波导在TE、TM两个偏振方向都可对光限制。使用共聚焦显微镜研究荧光特性,发现与体材料相比波导区Nd3+的荧光强度和峰值位置都没有明显改变。
     镧系离子掺杂的上转换纳米颗粒(UCNPs)(如CaF2:Er3+,Yb3+, CaF2:Tm3+,Yb3+)在生物成像方面的应用正在吸引研究者越来越多的关注。我们首次尝试了用两种CaF2UCNPs对细胞进行表征,结果显示两种UCNPs均可以稳定修饰生物分子,对细胞无毒性,生物兼容性好。纳米颗粒热敏性实验显示CaF2:Tm3+,Yb3+中的荧光强度比值随温度的变化要比CaF2:Er3+,Yb3+小很多,但是CaF2:Tm3+, Yb3+中整体的荧光强度要大的多,加之其荧光信号在生物组织中的穿透深度大约是CaF2:Er3+,Yb3+的6倍。综合考虑,CaF2:Tm3+,Yb3+是更为理想的生物荧光标记材料。
Optical waveguides are micro-structured regions with high refractive index surrounded by low refractive index areas. Optical waveguides can confine light propagation within structures to dimensions of the order of several microns, reaching very high optical intensities. The investigation of micro-photoluminescence and nonlinear effects in waveguide structures is of great importance for the realization of photonic devices, such as waveguide laser or second harmonic generation (SHG). Compact optical circuits can be realized by the integration of a couple of photonic devices in a single waveguide platform. As a result, optical systems with high miniaturization, stabilization and good performance can be achieved. As the basic components, the quality of optical waveguides affects the function of integrated photonic circuits. Therefore, the fabrication of high quality optical waveguide structures is the basis of integrated photonic circuits, and has bocome one of the most significant research topics in integrated optics/photonics and modern optical communications.
     As of yet, several methods have been employed to manufacture optical waveguides, including energentic ion beam irradiation, femtosecond laser inscription, ion exchange, diffusion and thin film deposition, etc. Energentic ion beam irradiation and femtosecond laser inscription have attracted great attention owing to their advantages of convenience, fast, no pollution to the environment and super applicability for most of optical materials. According to the different irradiation approaches, energentic ion beams can be divided into ion implantation, swift heavy ion irradiation and focused ion beam writing. As one mature material surface modification technology, ion implantation has becoming one of the most promising techniques to fabricate waveguides in more than100optical materials including crystals, transparent ceramics, glasses, semiconductors and polymers, etc. For traditional light-ion implantation, usually only consisits of hydrogen (H) and helium (He) ions, the incident ions will collide with the target ions and a low refractive index optical "barrier" layer will be formed at the end of the ions'track due to the nuclear energy deposition. During the ion trajectory, the incident ions mainly collide with electrons of the target atoms and produce ionization, and induce slight variation of the refractive index. As a consequence, the regions between the material surface and the optical barrier are waveguide volumes. Swift heavy ion irradiation usually adopts heavy ions with atomic number above8and energies above1MeV/amu. In these cases, the electronic damage is dominant over the nuclear collisions during most of the ion trajectory. Depending on the amorphous nano-track induced by single ion irradiation or the overlapping of heavy lattice damage induced by multiple ions irradiation, the refractive index will change and effective waveguide structures will be formed at lower fluences. Focused ion beam writing is a unique direct-writing method to fabricate2D waveguides beneath sample surface. During the process, focused ion beams, with diameters from a few microns to submicrometric scales, are irradiated into the substarte at specific depth beneath the sample surface and then induce refractive index changes. Typically, the ions are protons or He ions. Femtosecond laser inscription adopts near-infrared femtosecond laser with high optical densities as the writing source. In these cases, optical materials can absorb two or more photons, and structure changes are produced owing to the avalanche ionization. In the meantime, the refractive index of the materials in the irradiated regions will change and optical waveguides are constructed. Femtosecond laser inscription possesses the advantages of fast, clean, high spatial resolution, superior applicability to various materials, and has been increasing used for waveguide fabrication.
     Over the last years, bio-imaging techniques have experienced countless developments, especially due to the requirements of biomedical research and clinical treatment. In particular, the combination of ultrafast laser oscillators, confocal microscopy, and biocompatible fluorescent nanoparticles has emerged as a powerful tool for high-resolution cellular and tissue imaging. The discovery of novel fluorescent probes is a key research subject. Lanthanide-doped upconverting nanoparticles (UCNPs) are attracting considerable attention. These nanoparticles can be multiphoton excited with near infrared (NIR) light to generate emission at higher energies spanning from UV to NIR. What is important, the NIR range700-900nm is the "biological window" where the tissue has little absorption and scattering to the light. As a result, UCNPs can be used for deeper detection. Comparing with quantum dots (QDs) and organic fluorescent materials, UCNPs have some advantages of high chemical stability, high optical conversion efficiency, low toxicity, high singal-to-noise ratio. In addition, near-infrared laser source is cheap and can produce high power. With all these merits, UCNPs are going to exerting important impacts on bio-imaging.
     In this dissertation, we report on the fabrication of planar, channel or cladding waveguides by using ion implantation, swift heavy ion irradiation and femtosecond laser inscription in variety of optical materials, including KTP crystals, Nd3+:YAB crystals, Nd3+:YVO4+KTP hybrid system, Nd3+:MgO:LiNbO3crystals, Yb3+:YAG ceramics, and Nd3+:Y2O3ceramics. The prism coupling and end-face coupling were introduced to analyse the dark modes, near-field intensity distributions and propagation losses. Thermal annealing treatments were used to improve the propagation properties. The refractive index profiles were reconstructed by combining SRIM (the stopping and ranges of ions in matter) and RCM (reflectivity calculation method). Based on the reconstructed refractive index distributions, FD-BPM (finite difference beam propagation method) was used to simulate the near-field intensity distributions. Confocal microscopy was employed to measure the micro-fluorescence, Raman or SHG properties in order to investigate the structure modifications in the waveguide regions. Based on the end-face setup, waveguide SHG experiments were performed in self-frequency or frequency crystals. Comparing CaF2:Er3+,Yb3+and CaF2:Tm3+,Yb3+these two kinds UCNPs, their potential applications in bio-imaging were analysed.
     Potassium titanyl phosphate (KTiOPO4or KTP) is a widely used nonlinear crystal for phase-matched frequency doubling (particularly efficient under1064→532nm SHG). We report on the birefringent phase-matching SHG in nonlinear KTP buried channel waveguides produced by femtosecond laser inscription with the so-called "double-line" configuration. The stable SH green light at~532nm with peak power0.15kW has been achieved with the pulsed~1064nm fundamental laser pumping, with the maximum optical conversion efficiency of~11%. Under the continuous wave pump configuration, the maximum power of the generated532nm light is~49μW with a conversion efficiency of0.016%.
     We report on the efficient SHG at532nm from femtosecond laser inscribed KTP cladding waveguide structures in configuration of birefringent phase matching. The guiding structures, with cross section areas of~104μm2, are with circular and hexagonal boundaries, respectively, and guided in any transverse direction. Under1064nm pulsed fundamental beam pump, the conversion efficiency of the SH green lasers from the waveguides are as high as45%, indicating the fabricated buried channel waveguides could be good candidates for green laser source.
     We report on the micro-Second Harmonic (u-SH) and micro-Raman (μ-Raman) images of ion implanted channel and planar waveguides in KTP crystals. The μ-SH images reveal that the nonlinear properties in the waveguides have not been deteriorated during the implantation process. This is consistent with the μ-Raman images that lattice distortions are minimal at waveguide's volume. Both the structural and nonlinear properties of the KTP lattice have been only modified at the end of ions' trajectory, which is in good agreement with the positions with maximum refractive index changes.
     Neodymium doped yttrium aluminum borate (Nd3+:YAl3(BO3)4or Nd3+:YAB) crystal is one good self-frequency-douling laser crystal which combines the good thermal, mechanical, and nonlinear properties of the YAB host with the outstanding fluorescence properties of Nd ions. Buried channel optical waveguides, supporting both magnetic (TM) and transverse (TE) polarizations, have been fabricated in a Nd3+:YAB crystal by ultrafast laser inscription following the so-called "double line" approach. Confocal fluorescence and SH imaging experiments have revealed that the original fluorescence and nonlinear properties have been not deteriorated by the waveguide inscription procedure. Preliminary laser experiments have shown the ability of the fabricated structures for green laser light generation under808nm optical pumping by self-frequency-doubling of the1.06μm laser line of neodymium ions. Green output powers close to40μW has been achieved.
     Neodymium doped yttrium orthovanadate (Nd3+:YVO4) crystal is an efficient IR laser crystal owing to its outstanding features of high emission cross section, broad absorption bands, good mechanical and thermal properties. We report on the fabrication of optical channel waveguides supporting both visible and infrared TE and TM confinement in a hybrid system composed by a Nd3+:YVO4laser gain medium glued to a KTP nonlinear crystal by ultrafast laser inscription. The micro-photoluminescence and second harmonic confocal images of the fabricated waveguides have revealed that the laser and nonlinear properties of the constituent crystals have been not deteriorated due to the waveguide inscription. The resulting structures emerge as promising candidates for the development of multi-frequency waveguide lasers.
     Lithium niobate (LiNbO3) is a multi-functional material for the combination of the excellent electro-optic, acousto-optic, photoelastic, photorefractive and nonlinear optic properties. Neodymium doped lithium niobate (Nd3+:MgO:LiNbO3) is a widely used laser medium. We report on the fabrication of optical channel waveguides produced in Nd3+:MgO:LiNbO3crystals by hydrogen (H), carbon (C), and oxygen (O) ions implantation. The micro-luminescence investigations indicate that the fluorescence properties in the waveguide regions are well preserved comparing with the bulks. The ion implantation induced lattice distortions translate from the nuclear damage region (NIR) to the electronic damage region (EDR) when the ion mass is increased (from H to O). The C ion implanted wavegudes exhibit hybrid fluorescence properties of both H and O ions implanted waveguides.
     We report on the fabrication of Nd3+:MgO:LiNbO3active planar waveguides based on the generation of non-overlapping nano-tracks by ultralow-fluence swift Ar ions irradiation. The analysis of the micro-photoluminescence (μ-PL) have shown that the fluorescence efficiency of Nd3+ions have been well preserved in the waveguides with respect to bulk, thus making the waveguides good candidates for integrated laser sources. More interestingly, the presence of a relevant distortion of the LN network in the surroundings of the amorphous tracks has been determined from the analysis of the induced shifts in both the Nd3+luminescence and Raman modes. It has been concluded that the creation of non-overlapping amorphous tracks leads not only to a partial amorphization of the lattice network but also to a relevant lattice compression in their surroundings, which suggests that the final refractive index modification is the consequence of the interplay between both effects. Finally, it has been found that the presence of ion induced nano-tracks leads to a strongly enhanced SH signal, which is tentatively attributed to the associated lattice modifications (damage, disorder and distortions).
     Ytterbium doped aluminium garnet (Yb3+:YAG) ceramic is one novel laser gain medium. We report on the fabrication of carbon (C) ion implanted channel waveguides in a Yb3+:YAG ceramic. The resulting waveguides have shown good optical properties with well-confined and nonleaking propagation modes and with moderate propagation losses. We have found that the use of medium mass avoids the activation of fluorescence quenching.
     Neodymium doped yttria (Nd3+:Y2O3) ceramic is an attractive laser gain medium which possesses high melting point, high thermal conductivity and excellent laser performance. We report on the Nd3+:Y2O3ceramic optical channel waveguides produced by femtosecond laser inscription with a "double-line" scheme. The confocal μ-PL images reveal that the original fluorescence emission properties have not been affected by the laser filamentation, which means the original luminescence features have been well preserved in the waveguide volumes. The fabricated micro-photonic structures emerge as promising candidates for integrated laser sources.
     Very recently, lanthanide doped CaF2UCNPs have gained recognition due to their good infrared-to-visible upconversion fluorescence efficiencies. We report on the remarkable two-photon excited fluorescence efficiency of CaF2:Tm3+,Yb3+nanoparticles in the "biological window". Based on the strong Tm3+ion emission (at around800nm), tissue penetration depths as large as2mm have been demonstrated, which are more than four times those achievable based on the visible emissions in comparable CaF2:Er3+,Yb3+nanoparticles. The outstanding penetration depth, the absence of cytotoxicity in the incubated cells, together with the fluorescence thermal sensitivity demonstrated here, makes CaF2:Tm3+,Yb3+nanoparticles ideal candidates as multifunctional nanoprobes for high contrast and highly penetrating in vivo fluorescence imaging applications.
引文
1.[日]西原浩:集成光路,科学出版社,2004
    2.[美]Amnon Yariv:现代通信光电子学,电子工业出版社,2004
    3.[英]卡萨普:光电子学与光子学的原理及应用,电子工业出版社,2003
    4.陈益新:集成光学,上海交通大学出版社,1985
    5. S. E. Miller, Bell System Technical Journal,48 (1969) 2059
    6. M. L. Calvo, and V. Lakshminarayanan, Optical Waveguides:From Theory to Applied Technologies (CRC Press,2007, London).
    7. D. Kip, Appl. Phys. B 67 (1998) 131
    8. C. Grivas, Prog. Quant. Electron.35 (2011) 159
    9. J. I. Machenzie, IEEE J. Sel. Top. Quantum Electron.13 (2007) 626
    10. A. Jechow, M. Schedel, S. Stry, J. Sacher, and R. Menzei, Opt. Lett.32 (2007) 3035
    11. L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. Mccaffery, J. Appl. Phys.73 (1993) 2695
    12. Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, Opt. Lett.35 (2010) 3276
    13. Y. Tan, F. Chen, J. R. V. de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, Appl. Phys. Lett.97(2010)031119
    14.谭杨:山东大学博士学位论文,光学晶体波导中的激光和非线性效应2011
    15. E. J. Murphy, Integrated Optical Circuits and Components (Marcel Dekker,1999, New York)
    16.I. P. Kaminow, IEEE Trans. Microw. Theory Tech.23 (1975) 57
    17. P. G. Kik, and A. Polman, MRS Bull.23 (1998) 48
    18. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press,1994, Cambridge)
    19. F. Chen, laser & Photonics Reviews, DOI 10.1002/lpor.201100037
    20. F. Chen, J. Appl. Phys.106 (2009) 081101
    21. F. Chen, X. L. Wang, and K. M. Wang, Opt. Mater.29 (2007) 1523
    22. J. F. Ziegler, computer code, SRIM http://www.srim.org
    23. J. Oliveraes, A. Garcia-Navarro, A. Mendez, F. Agullo-Lopez, G. Garcia, A. Garcia-Cabanes, and M. Carrascosa, Nucl. Instrum. Methods Phys. Res. B 257 (2007) 765
    24. T. Ruiz, A. Mendez, M. Carrascosa, J. Carnicero, A. Garcia-Cabanes1, J. Olivares, F. Agullo-Lopez, A. Garcia-Navarro, and G. Garcia, J. Phys. D 40 (2007) 4454
    25. N. Dong, F. Chen, D. Jaque, A. Benayas, F. Qiu, and T. Narusawa, J. Phys. D 44 (2011) 105103
    26. Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, Opt. Lett.35(2010)3276
    27. J. Olivares, M. L. Crespillo, O. Caballero-Calero, and M. D. Ynsa, A. Garcia-Cabanes, M. Toulemonde, Ch. Trautmann, and F. Agullo-Lopez, Opt. Express 17(2009)24175
    28. F. Watt, M. B. H. Breese, A. A. Bettiol, and J. A. van Kan, Mater. Today 10 (2007) 20
    29. E. J. Teo, A. A. Bettiol, B. Xiong, M. B. H. Breese, P. Yang, G. Z. Mashanovich, and G. T. Reed, Opt. Lett.34 (2009) 659
    30. A. A. Bettiol, S. Venugopal Rao, E. J. Teo, J. A. van Kan, and F. Watt, Appl. Phys. Lett.88(2006)171106
    31. A. Benayas, D. Jaque, Y. Yao, F. Chen, A. A. Bettiol, A. Rodenas, and A. K. Kar, Opt. Lett.35 (2010) 3898
    32. Y. Yao, N. Dong, F. Chen, S. K. Vanga, and A. A. Bettiol, Opt. Lett.36 (2011) 4173
    33. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett.21 (1996) 1729
    34. R. R. Gattass, and E. Mazur, Nat. Photon.2, (2008) 219
    35. Y. Cheng, K. Sugioka, and K. Midorikawa, Opt. Lett.29 (2004) 2007
    36. C. Zhang, N. N. Dong, J. Yang, F. Chen, J. Vazquez de Aldana, and Q. M. Lu, Opt. Express 19(2011) 12503
    37. G. A. Torchia, P. F. Meilan, A. Rodenas, D. Jaque, C. Mendez, and L. Roso, Opt. Express 15(2007) 13266
    38. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, Opt. Lett.29 (2004) 1840
    39. T. Calmano, J. Siebenmorgen, F. Reichert, M. Fechner, A. Paschke, N. Hansen, K. Petermann, and G. Huber, Opt. Lett.36 (2011) 4620
    40. Y. Tan, F. Chen, J. R. Vazquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, Appl. Phys. Lett.97 (2010) 031119
    41. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. P. Ruske, S. Nolte, and A. Tunnermann, Phys. Status Solidi A 208 (2011)276
    42. J. Burghoff, S. Nolte, and A. Tunnermann, Appl. Phys. A 89 (2007) 127
    43. H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, J. Vac. Sci. Technol.A24(2006) 1012
    44. S. F. Wong, E. Y. B. Pun, and P. S. Chung, Photonics Tech. Lett.14 (2002) 80
    45. R. Ramponi, M. Malangoni, and R. Osellame, Appl. Phys. Lett.78 (2001) 2098
    46. G. L. Yip, and J. Albert, Opt. Lett.10 (1985) 151
    47.王亮玲:山东大学博士学位论文,离子注入与离子交换平面和条形光波导的制备及其特性研究,2008
    48. J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Muller, and E. Dieguez, Adv. Phys.45 (1996) 349
    49. V. V. Atuchin, K. K. Ziling, and D. P. Shipilova, Sov. J. Quantum Electron.,14 (1984)671
    50. J. Hukriede, D. Kip, and E. Kratzig, Appl. Phys. B 72 (2001) 749
    51. R. V. Schmidt, and I. R. Kaminow, Appl. Phys. Lett.25 (1974) 458
    52. W. K. Burns, P. H. Klein, E. J. West, and L. E. Plew, J. Appl. Phys.50 (1979) 6175
    53. H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, Photonics Tech. Lett.19 (2007) 417
    54. P. K. Tien, R. Ulrich, and R. J. Martin, Appl. Phys. Lett.14 (1969) 291
    55. F. Bruno, M. Guidice, R. Recca, and F. Testa, Appl. Opt.30 (1991) 4560
    56. K. M. Wang, B. R. Shi, N. Cue, Y. Y. Zhu, F. R. Xiao, F. Lu, W. Li, and Y. G. Liu, Appl. Phys. Lett.73 (1998) 1020
    57. G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Giinter, Opt. Mater.31(2009)1054
    58. T. Yamashiki, and K. Tsuda, Opt. Lett.28 (2003) 316
    59. V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, Nat. Biotechnol.23 (2005)313
    60. F. Vetrone, R. Naccache, A. J. de la Fuente, F. Sanz-Rodriguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, Nanoscale 2(2010)495
    61. S. Jiang, Y. Zhang, K. M. Lim, E. K. W. Sim, and L. Ye, Nanotechnology 20 (2009) 155101
    62. L. Q. Xiong, Z. G. Chen, Q. W. Tian, T. Y. Cao, C. J. Xu, and F. Y. Li, Anal. Chem. 81(2009) 8687
    63. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, Nano Lett. 8 (2008) 3834
    64. D. K. Chatteriee, A. J. Rufalhah, and Y. Zhang, Biomaterials 29 (2008) 937
    65. J. Zhou, Y. Sun, X. X. Du, L. Q. Xiong, H. Hu, and F. Y. Li, Biomaterials 31 (2010) 3287
    66. J. V. Frangioni, Curr. Opin. Chem. Biol.7 (2003) 626
    67. G. Marquez, L. H. V. Wang, S. P. Lin, J. A. Schwartz, and S. L. Thomsen, Appl. Opt.37 (1998) 798
    68. R. Weissleder, Nat. Biotechnol.19 (2001) 316
    69. L. M. Maestro, J. E. Ramirez-Hernandez, N. Bogdan, J. A. Capobianco, F. Vetrone, J. Garcia Sole, and D. Jaque, Nanoscale 4 (2012) 298
    70. S. A. Hilderbrand, F. W. Shao, C. Salthouse, U. Mahmood, and R. Weissleder, Chem. Commun.28 (2009) 4188
    71. N. M. Idris, Z. Q. Li, L. Ye, E. K. W. Sim, R. Mahendran, P. C. L. Ho, and Y. Zhang, Biomaterals 30 (2009) 5104
    72. K. Konig, J. Microsc.200 (2000) 83
    73. J. H. Rao, A. Dragulescu-Andrasi, and H. Q. Yao, Curr. Opin. Biotechnol.18 (2007) 17
    74. F. Wang, D. Banerjee, Y. S. Liu, X. Y. Chen, X. G. Liu, Y. F. Wu, Z. R. Xu, C. B. Mao, and S. K. Xu, ACS Nano 3 (2009) 1580
    75. L. M. Maestro, E. M. Rodriguez, F. Vetrone, R. Naccache, H. L. Ramirez, D. Jaque, J. A. Capobianco, and J. G. Sole, Opt. Express 18 (2010) 23544
    76. F. Vetrone, R. Naccache, A. Zamarron, A. J. de la Fuente, F. Sanz-Rodriguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, ACS Nano 4 (2010) 3254
    77. G. S. Yi, H. C. Lu, S. Y. Zhao, G. Yue, W. J. Yang, D. P. Chen, and L. H. Guo, Nano Lett.4(2004)2191
    78. F. Vetrone, R. Naccache,V. Mahalingam, C. G. Morgan, and J. A. Capobianco, Adv. Funct. Mater.19 (2009) 2924
    79. H. T. Wong, H. L. W. Chan, and J. Hao, Opt. Express 18 (2010) 6123
    80. T. Jiang, W. Qin, and F. Ding, Nanotechnology 10 (2010) 2013
    81. F. Wang, and X. G. Liu, J. Am. Chem. Soc.130 (2008) 5642
    82. F. Pandozzi, F. Vetrone, J. C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. A. Bettinelli, J. Phys. Chem. B 109 (2005) 17400
    83. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, Nano Lett. 8 (2008) 3834
    1. R. Regener, and W. Sohler, Appl. Phys. B 36 (1985) 143
    2. R. Ramponi, R. Osellame and M. Marangoni, Rev. Sci. Instrum.73 (2002) 3
    3. P. J. Chandler and F. L. Lama, Opt. Acta.33 (1986) 127
    4. J. F. Ziegler, computer code, SRIM http://www.srim.org
    5. Rsoft Design Group, Computer software BEAMPROP, http://www.rsoftdesign.com
    6.谭杨:山东大学博士学位论文,光学晶体波导中的激光和非线性效应2011
    7.赵金花:山东大学博士学位论文,离子注入光学晶体波导结构的特性研究2011
    8.孔艳霞:山东大学硕士学位论文,离子注入YAG激光晶体光波导2010
    9.[日]西原浩:集成光路,科学出版社,2004
    10.曹庄琪:导波光学,科学出版社,2007
    11. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press,1994, Cambridge)
    12. F. Chen, laser & Photonics Reviews, DOI 10.1002/lpor.201100037
    13. F. Chen, J. Appl. Phys.106 (2009) 081101
    14. F. Chen, X. L. Wang, and K. M. Wang, Opt. Mater.29 (2007) 1523
    15. E. R. Schineller, R. P. Flam, and D. W. Wilmot, J. Opt. Soc. Am.58 (1968) 1171
    16. J. Oliveraes, A. Garcia-Navarro, A. Mendez, F. Agullo-Lopez, G. Garcia, A. Garcia-Cabanes, and M. Carrascosa, Nucl. Instrum. Methods Phys. Res. B 257 (2007) 765
    17. T. Ruiz, A. Mendez, M. Carrascosa, J. Carnicero, A. Garcia-Cabanes 1, J. Olivares, F. Agullo-Lopez, A. Garcia-Navarro, and G. Garcia, J. Phys. D 40 (2007) 4454
    18. J. Olivares, M. L. Crespillo, O. Caballero-Calero, and M. D. Ynsa, A. Garcia-Cabanes, M. Toulemonde, Ch. Trautmann, and F. Agullo-Lopez, Opt. Express 17(2009)24175
    19. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett.21 (1996) 1729
    20. R. R. Gattass, and E. Mazur, Nat. Photon.2 (2008) 219
    21. Y. Cheng, K. Sugioka, and K. Midorikawa, Opt. Lett.29 (2004) 2007
    22. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, Opt. Lett.29 (2004) 1840
    23. J. Burghoff, S. Nolte, and A. Tunnermann, Appl. Phys. A 89 (2007) 127
    24.孔勇发:多功能光电材料——铌酸锂晶体,科学出版社,2005
    25.[俄罗斯]V. G. Dmitriev,非线性光学晶体手册,高等教育出版社,2009
    26. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev. Lett.7 (1961)118
    27. J. A. Giordmaine, Phys. Rev. Lett.8 (1962) 19
    28. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, Phys. Rev. Lett.8 (1962)21
    29.王立强,生物技术中的荧光分析,机械工业出版社,2010
    30. N. N. Dong, F. Chen, D. Jaque, A. Benayas, F. Qiu, and T. Narusawa, J. Phys. D:Appl. Phys.44 (2011) 105103
    31. N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramirez-Hernandez, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Sole, M. Bettinelli, D. Jaque, and A. Speghini ACS Nano 5 (2011) 8665
    32. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer,2006, Berlin)
    1. W. P. Risk, T. R. Gosnell, and A. V. Nurmikko, Compact blue-green lasers (Cambridge Universtiy Press,2003, London)
    2. M. Scheidt, B. Beier, R. Knappe, K. J. Boller, and R. Wallenstein, J. Opt. Soc. Am. B:Opt. Phys.12 (1995) 2087
    3. L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, J. Appl. Phys.73 (1993) 2695
    4. W. P. Risk, S. D. Lau, R. Fontana, L. Lane, and C. Nadler, Appl. Phys. Lett.33 (1993) 1301
    5. Y. S. Liu, D. Dentz, and R. Belt, Opt. Lett.9 (1984) 76
    6. W. P. Risk, Appl. Phys. Lett.58 (1991) 19
    7. M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, and G. Huber, Opt. Lett.24(1999)205
    8. Y. Fan, H. Li, and L. Zhao, Mater. Charact.59 (2008) 407
    9. D. N. Nikogosyan, Nonlinear Optical Crystals:A Complete Survey (Springer, 2005, New York)
    10. H. J. Scheel, and T. Fukuda, Crystal Growth Technology (Wiley,2003, West Sussex)
    11. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, Appl. Phys. B 97 (2009) 251
    12. C. Grivas, Prog. Quant. Electron.35 (2011) 159
    13. F. Chen, Y. Tan, L. Wang, D. C. Hou, and Q. M. Lu, Appl. Surf. Sci.,254 (2008) 1822
    1.王继扬,激光自倍频晶体研究和应用进展,物理学进展,31 (2011)91
    2.[俄罗斯]D. N. Nikogosyan,非线性光学晶体——一份完整的总结,高等教育出版社,2009
    3. A. Brenier, D. Jaque, and A. Majchrowskic, Opt. Mater.28 (2006) 310
    4. J. Z. Sotor, A. J. Antonczak, and K. M. Abramski, Opto-Electron. Rev.18 (2010) 75
    5. C. Jung, B. A. Yu, I. S. Kim, Y. L. Lee, N. E. Yu, and D. K. Ko, Opt. Express 17 (2009)19611
    6. C. Jung, B. A. Yu, K. Lee, Y. L. Lee, N. E. Yu, D. K. Ko, and J. Lee, Appl. Phys. Express 1 (2008) 062005
    7. A. Brenier, D.Jaque, and A. Majchrowskic, Opt. Mat.28 (2006) 310
    8. I. Schiitz, I. Freitag, and R. Wallenstein, Opt. Comm.77 (1990) 221
    9. B. S. Lu, J. Wang, H. F. Pan, M. H. Jiang, E. Q. Liu, and X. Y. Hou, J. Appl. Phys. 66(1989)6052
    10. D. Jaque, J. Capmany, J. Garcia Sole, Z. D. Luo, and A. D. Jiang, J. Opt. Soc. Am. B 15(1998) 1656
    11. A. A. Kaminskii, Laser Crystals (Springer,1990, New York)
    12. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, Opt. Lett.16 (1955) 1955
    13. W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, Opt. Lett.35 (2010) 916
    14. S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, Appl. Phys. Lett.97 (2010) 111114
    15. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, Appl. Phys. B.97 (2009) 251
    1.孔勇发,多功能光电材料——铌酸锂晶体,科学出版社,2005
    2. K. K. Wong, Properties of Lithium Niobate (INSPEC,2002, London)
    3.杨春晖,光折变非线性光学材料:铌酸锂晶体,科学出版社,2009
    4. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press,1994, London)
    5. F. Chen, J. Appl. Phys.106 (2009) 081101
    6. N. N. Dong, F. Chen, and D. Jaque, Opt. Express 18 (2010) 5951
    7. J. Olivares, A. Garcia-Navarro, A. Mendez, F. Agullo-Lopez, G. Garcia, A. Garcia-Cabanes, and M. Carrascosa, Nucl. Instrum Methods Phys. Res. B 257 (2007) 765
    8. J. Olivares, M. L. Crespillo, O. Caballero-Calero, M. D. Ynsa, A. Garcia-Cabanes, M. Toulemonde, C. Trautmann, and F. Agullo-Lopez, Opt. Express 17 (2009) 24175
    9. F. Chen, Crit. Rev. Solid State Mater. Sci.33 (2008) 165
    10. G G Bentini, M Bianconi, A Cerutti, M Chiarini, G Pennestri, C Sada, N Argiolas, M Bazzan, and P Mazzoldi, Opt. Lasers Eng.45 (2007) 368
    11. J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, J. Appl. Phys.84 (1998) 5180
    12. Y. Tan, F. Chen, and D. Kip, Appl. Phys. B 95 (2009) 531
    13. D. Jaque, and F. Chen, Appl. Phys. Lett.94 (2009) 011109
    14. D. Jaque, F. Chen, and Y. Tan, Appl. Phys. Lett.92 (2008) 161908
    1.姚建铨,全固态激光及非线性光学频率变换技术,科学出版社,2007
    2. T. Kushida, and J. E. Geusic, Phys. Rev. Lett.21 (1968) 1172
    3. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, J Opt. Soc. Am. B 3 (1986) 102
    4. M. Birnbaum, and J. A. Gelbwachs, J Appl. Phys.43 (1972) 2335
    5. H. G. Danielmeyer, Appl. Phys.1 (1973) 269
    6. K. Takaichi, H. Yagi, J. Lu, A. Skirakawa, K. Ueda, and T. Yanagitani, Phys. Stat. Solidi. A 200 (2003) R5
    7. S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, Opt. Commun. 281 (2008)4411
    8. S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, and S. Wada, Jpn. J. Appl. Phys.48 (2009) 1
    9. A. Pirri, D. Alderighi, G. Toci, and M. Vannini, Opt. Express 17 (2009) 23344
    10. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, Opt. Lett.32 (2007) 1890
    11. A. Pirri, D. Alderighi, G. Toci, and M. Vannini, Laser Phys.20 (2010) 931
    12. A.A. Kaminskii, Laser crystals (Springer-Verlag,1981, New York)
    13. A. Brenier, and G. Boulon, J. Alloys Comp. (323-324) (2001) 210
    14. A. A. Kaminskii, Las. Photon. Rev.1 (2007) 93
    15. A. A. Kaminskii, M. Sh. Akchurin, V. I. Alshits, K. Ueda, K. Takaichi, J. Lu, T. Uematsu, M. Musha, A. Shirakawa, V. Gabler, H. J. Eichler, H. Yagi, T. Yanagitani, S. N. Bagayev, J. Fernandez, and R. Balda, Crystallogr. Rep.48 (2003) 515
    16. J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, Jpn. J. Appl. Phys.40 (2001) 1277
    17. J. Kong, D. Y. Tang, and B. Zhao, Appl. Phys. Lett.86 (2005) 161116
    18. A. Benatyas, W. F. Silva, A. Rodenas, C. Jacinto, J. Vazquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, and D. Jaque, Appl. Phys. A 104 (2011) 301
    19. D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, Opt. Commun.99 (1993) 211
    20. S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Twonsend, and L. Zhang, Opt. Lett.16 (1991) 481
    21. N. N. Dong, F. Chen, and D. Jaque, Opt. Express 18 (2010) 5951
    22. F. Chen, Y. Tan, and D. Jaque, Opt. Lett.34 (2009) 28
    23. R. Regener, and W. Sohler, Appl. Phys. B 36 (1985) 143
    24. R. Osellame, N. Chiodo, G. D. Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Oscillator, IEEE J. Sel. Top. Quantum Electron.12 (2006) 277
    25. M. Ams. G. D. Marshall, and M. J. Withford, Opt. Express 14 (2006) 13158
    1. V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, Nat. Biotechnol.23 (2005)313
    2. F. Vetrone, R. Naccache, A. J. de la Fuente, F. Sanz-Rodriguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, Nanoscale 2(2010)495
    3. S. Jiang, Y. Zhang, K. M. Lim, E. K. W. Sim, and L. Ye, Nanotechnology 20 (2009)155101
    4. L. Q. Xiong, Z. G. Chen, Q. W. Tian, T. Y. Cao, C. J. Xu, and F. Y. Li, Anal. Chem.81 (2009) 8687
    5. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, Nano Lett. 8 (2008)3834
    6. D. K. Chatteriee, A. J. Rufalhah, and Y. Zhang, Biomaterials 29 (2008) 937
    7. J. Zhou, Y. Sun, X. X. Du, L. Q. Xiong, H. Hu, and F. Y. Li, Biomaterials 31 (2010)3287
    8. E. I. Altinoglu, T. J. Russin, J. M. Kaiser, B. M. Barth, P. C. Eklund, M. Kester, and J. H. Adair, ACS Nano 2 (2008) 2075
    9. J. Chen, I. R. Corbin, H. Li, W. G. Cao, J. D. Glickson, and G. Zheng, J. Am. Chem. Soc.129 (2007) 5798
    10. S. A. Hilderbrand, F. W. Shao, C. Salthouse, U. Mahmood, and R. Weissleder, Chem. Commun.28 (2009),4188
    11. N. M. Idris, Z. Q. Li, L. Ye, E. K. W. Sim, R. Mahendran, P. C. L. Ho, and Y. Zhang, Biomaterials 30 (2009) 5104
    12. K. Konig, J. Microsc-Oxford 200 (2000) 83
    13. J. H. Rao, A. Dragulescu-Andrasi, and H. Q. Yao, Curr. Opin. Biotech.18 (2007) 17
    14. F. Wang, D. Banerjee, Y. S. Liu, X. Y. Chen, and X. G. Liu, Analyst 135 (2010) 1839
    15. M. Wang, C. C. Mi, W. X. Wang, C. H. Liu, Y. F. Wu, Z. R. Xu, C. B. Mao, and S. K. Xu, Acs Nano 3 (2009) 1580
    16. M. Haase, and H. Schafer, Angew. Chem. Int. Ed.50 (2011) 5808
    17. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, Nature 263 (2010) 1061
    18. F. Vetrone, R. Naccache, A. Zamarron, A. J. de la Fuente, F. Sanz-Rodriguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, ACS Nano 4 (2010) 3254
    19. G. S. Yi, H. C. Lu, S. Y. Zhao, G. Yue, W. J. Yang, D. P. Chen, and L. H. Guo, Nano Lett.4 (2004) 2191
    20. F. Vetrone, R. Naccache,V. Mahalingam, C. G. Morgan, and J. A. Capobianco, Adv. Funct. Mater.19 (2009) 2924
    21. J. V. Frangioni, Curr. Opin. Chem. Biol.7 (2003) 626
    22. G. Marquez, L. H. V. Wang, S. P. Lin, J. A. Schwartz, and S. L. Thomsen, Appl. Opt.37(1998)798
    23. L. M. Maestro, J. E. Ramirez-Hernandez, N. Bogdan, J. A. Capobianco, F. Vetrone, J. Garcia Sole, and D. Jaque, Nanoscale 4 (2012) 29
    24. H. T. Wong, H. L. W. Chan, and J. Hao, Opt. Express 18 (2010) 6123
    25. T. Jiang, W. Qin, and F. Ding, J. Nanosci. Nanotechnol.10 (2010) 2013
    26. F. Wang, and X. G. Liu, J. Am. Chem. Soc.130 (2008) 5642
    27. F. Pandozzi, F. Vetrone, J. C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. A. Bettinelli, J. Phys. Chem. B 109 (2005) 17400
    28. M, Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, Nano Lett. 8(2008)3834
    29. A. G. Kumar, W. C. Chen, and E. R. Riman, Appl. Phys. Lett.,90 (2007) 093123
    30. G. Wang, Q. Peng, and Y. Li, J. Am. Chem. Soc.,131 (2009) 14200
    31. I. Masahiko, G. Christelle, G. Yannick, L. Kheirreddine, F. Tsuguo, and B. Georges, J. Phys.:Condens. Matter,16 (2004) 1501
    32. G. Socrates, Infrared and Raman characteristic Group Frequencies, Ⅲ Edition, (Wiley,2001, New York)
    33. L. M. Maestro, E. M. Rodriguez, F. Vetrone, R. Naccache, H. L. Ramirez, D. Jaque, J. A. apobianco, and J. G. Sole, Opt. Express 18 (2010) 23544
    34. J. C. Boyer, and F. C. J. M. Van Veggel, Nanoscale 2 (2010) 1417
    35. F. Denizot, and R. Lang, J. Immunol. Methods 89 (1986) 271
    36. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. Vangemert, Laser. Surg. Med.12 (1992) 510
    37. S. J. Madsen, M. S.Patterson, and B. C. Wilson, Phys. Med. Biol.37 (1992) 985
    38. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Optics 35 (1996)4533
    39. M. Kobayashi, Y. Ito, N. Sakauchi, I. Oda, I. Konishi, and Y. Tsunazawa, Opt. Express 9 (2001) 802

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700