基于应力波的木材含水率检测理论及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材高含水率段以及含水率分布检测是木材干燥和木材加工中要解决的重要问题。本论文以青杨、巨尾桉、山毛榉和落叶松四种木材的无缺陷试件为试验材料,研究了含水率、基本密度、纤维比量、温度、长度对木材中应力波纵向传播速度的影响,建立了应力波纵向传播速度理论模型并进行了验证。分析了含水率和弦向角对木材横向应力波传播速度的影响以及木材横向的含水率分布对应力波断层图像的影响。为用应力波检测木材含水率及含水率分布提供了理论基础。
     主要成果和结论如下:
     (1)分别建立了木材含水率在纤维饱和点以上和以下时的应力波纵向传播理论模型并进行了验证。结果表明,模型理论值和实际值吻合度较好,二者最大误差小于8.2%。在纤维饱和点以下时,理论模型与实际值的吻合度更高。
     (2)应力波在木材纵向上传播时,传播速度随含水率的下降而增加,且在纤维饱和点上下分别与含水率之间存在较好负相关线性关系。纤维饱和点以下时,传播速度的变化率是纤维饱和点以上时的2倍以上。
     (3)含水率相同时,从树皮到髓心,青杨和山毛榉木材上的传播速度逐渐增加;巨尾桉和落叶松木材上的传播速度逐渐降低。落叶松木材上差幅为13%左右,青杨、巨尾桉和山毛榉木材上的差幅为20%左右。这是由于木材各向异性造成的,这种差异可以用相对速度参数进行修正。
     (4)同一树种内,传播速度与木材基本密度线性正相关。在不同树种上,传播速度与基本密度的线性关系不明显。在25℃到100℃的范围内,传播速度随温度的升高而下降,但变化幅度只有3%左右。试件长度在200-1000mm范围内,传播速度不变。
     (5)青杨纤维比量与应力波传播速度之间存在极好的线性关系。在纤维饱和点上下,新参数修正速度(等于传播速度除以纤维比量)与含水率之间存在较好的负相关线性关系。在纤维饱和以下,修正速度随含水率的变化率是纤维饱和点以上时的2倍以上。木材纤维比量在干燥前可以测出,因此修正速度可以用来检测青杨木材的含水率。
     (6)应力波在木材横向上传播时,径向和弦向传播速度都随含水率的降低而增大。在纤维饱和点以下时,传播速度与含水率线性负相关,当含水率高于纤维饱和点时,传播速度变化幅度较小。传播速度随弦向角增加而增大,当弦向角小于60度时,应力传播速度随弦向角的增加明显增大;当大于60度时,传播速度增幅较小。
     (7)木材横截面的应力波二维断层图像能够在一定程度上反映含水率的变化,但目前还难以对含水率分布进行定性和定量表征。
Wood high moisture content and distribution detection are unsettled issues in the wood drying and wood processing. In this thesis, the effects of moisture content, basic density, fiber proportion, temperature and length on the timber longitudinal stress wave velocity were studied using defect-free specimens of poplar (Populus cathayana), urophylla(Eucalyptus grandis X E.urophylla), beech (Fagus longipetiolata) and larch (Larix gmelinii) wood. The models of longitudinal stress wave velocity were established and validated. The effects of moisture content and tangential angle on the stress wave velocity of wood horizontal were discussed. And the effects of wood moisture content distribution on the stress wave two-dimensional tomographic images were also discussed. They provided a theoretical basis for wood moisture content and distribution detection basing on stress wave technology.
     The main results and conclusions were obtained as follows:
     (1) Two models of longitudinal stress wave velocity were established with the moisture content below or above fiber saturation point (FSP), respectively. The results showed that the models were suitable for actual values withthe errors less than8.2%. The model below FSP was more suitable than the model above FSP.
     (2) The longitudinal stress wave velocities decreased with increasing moisture content, and there was a good negative linear relationship. Below FSP, the rate of velocity variation was more than two times of that above FSP.
     (3) For the species with a constant moisture content, from bark to pith, the stress wave velocities of poplar and beech wood increased, and the velocities of urophylla and larch wood decreased. The difference in Larch wood was around13%, and the difference of poplar, beech and urophylla were all around20%. This was due to the anisotropy of natural lumber, which were corrected by the relative velocity.
     (4) For the same species, there was a linear relationship between stress wave velocity and basic density. However, as to the different species, the linear relationship between the velocity and basic density was not obvious. Velocities slightly decreased with the increasing temperature of wood in the range of25℃to100℃, but the variation was only about3%. The velocity was constant in the length range of200-1000mm.
     (5) There was an linear relationship between stress wave velocity and poplar fiber proportion. There was a negative linear relationship between the new parameter of corrected velocity (divided the stress wave velocity by the fiber proportion) and moisture content. Specifically, for the case of below FSP, the rate of change of corrected velocity was more than twice of that above FSP. It is belieived that the corrected velocity could be used to measure the moisture content of poplar wood as the data of fiber proportion was available with measurement before drying.
     (6) Both radial and tangential stress wave velocities in the cross section of wood inccreased with decreasing moisture content. A good negative linear relationship between velocities and moisture content below FSP was found. Above FSP, the velocities were slightly varied. Velocities increased quickly with the increasing of the angle when the tangential angle was less than60degrees, while velocities had a small increase when the tangential angle was more than60degrees.
     (7) The two-dimensional tomographic stress wave image on the cross section of wood is feasible to reflect the variation of wood moisture content. However, so far, it was difficult to quantitatively and qualitatively describe the distribution of moisture content.
引文
1.安源,殷亚方,姜笑梅,等.应力波和阻抗仪技术勘查木结构立柱腐朽分布[J].建筑材料学报,2008(4):457-463.
    2.鲍震宇,邸向辉,王立海,等.小兴安岭天然林中冷杉立木含水率对应力波传播速度的影响[J].林业科技,2013(1):22-24.
    3.陈勇平,李华,黎冬青,等.古建筑木材中应力波传播速度的影响因素[J].木材工业,2012(2):37-40.
    4.冯国红,王立海,杨慧敏,等.应力波木材无损检测信号采集系统[J].森林工程,2008(2):22-24+87.
    5.冯海林,李光辉.应力波在木材中的三维传播模型及其应用[J].系统仿真技术,2007,(10):190-194.
    6.冯海林,李光辉,方益明,等.应力波传播模型及其在木材检测中的应用[J].系统仿真学报,2010,22(6):1490-1493.
    7.高建民.木材干燥学[M].科学出版社,2008.
    8.高珊,王立海,王洋.东北林区十个树种冻结活立木中应力波传播速度试验研究[J].森林工程,2013(4):47-52.
    9.高珊,王立海,王洋,等.应力波在立木冻结与常温状态下的传播速度比较[J].林业科学,2010(10):124-129.
    10.高珊.环境温度对美国红松活立木及原木声波传播及力学特性的影响[D].东北林业大学,2012.
    11.郭志仁,张厚江.木质材料力学性能无损检测技术研究现状与发展趋势[J].林业机械与木工设备,2010(4):4-6+16.
    12.黄广华,陈瑞英.人工林巨尾桉木材性能与树龄的关系[J].福建林学院学报,2009,02:183-186.
    13.李华,石志敏,陈勇平,等.无损检测技术在故宫保和殿柱构件勘查中的应用[C].故宫出版社,2010:561-566.
    14.陈勇平,黎冬青,李华,等.古建筑木构件现场分类及其无损检测技术[J].木材工业,2011(6):41-43.
    15.廖春晖,张厚江,黎冬青,等.古建筑圆柱形木构件内部缺陷筛查方法研究[J].北京林业大学学报,2013a(1):123-126.
    16.廖春晖,张厚江,黎冬青,等.面向古建筑木构件内部缺陷勘测的应力波临界速度确定[J].西北林学院学报,2013b(4):158-161.
    17.廖春晖,张厚江,黎冬青,等.含水率对木材性能快速检测指标的影响[J].江苏农业科学,2012(6):280-282.
    18.廖春晖,张厚江,黎冬青,等.古建筑木构件缺陷检测方法发展现状[J].森林工程,2011(4):51-53.
    19.梁善庆,胡娜娜,林兰英,等.古树名木健康状况应力波快速检测与评价[J].木材工业,2010a(3):13-15.
    20.梁善庆,赵广杰,傅峰.应力波断层成像诊断木材内部缺陷[J].木材工业,2010b(5):11-13.
    21.梁善庆,蔡智勇,王喜平,等.北美木材无损检测技术的研究与应用[J].木材工业,2008(3):5-8.
    22.林兰英,傅峰.三种无损检测方法预测四种桉树木材弹性模量的对比研究[J].木材加工机械,2007(3):24-29+12.
    23.林文树,杨慧敏,王立海.超声波与应力波在木材内部缺陷检测中的对比研究[J].林业科技,2005(2):39-41.
    24.刘妍,张厚江.木质材料力学性能无损检测方法的研究现状与趋势[J].森林工程,2010(4):46-49.
    25.刘一星,赵广杰.木质资源材料学[M].中国林业出版社,2004.
    26.刘铭宇.人工落叶松樟子松内部结构及木材密度的变化特征[D].东北林业大学,2013.
    27同慧,鹿振友,王立昌.含水率对落叶松材动态弹性模量的影响[J].木材加工机械,2007a(1):16-19.
    28.司慧,鹿振友.落叶松材生长特性对应力波传播速度的影响[J].木材加工机械,2007b(5):14-16.
    29.宋世全,徐华东,王立海.小叶杨立木横断面的超声波传播速度[J].东北林业大学学报,2010(5):40-43+47.
    30.苏娟,张厚江,王喜平.应力波评价活立木材质的研究与进展[J].林业机械与木工设备,2008(8):40-43.
    31.苏娟.应力波在活立木中传播波形的构建与研究[D].北京林业大学,2009.
    32孙燕良,张厚江,朱磊,等.木构件材料力学性能快速检测研究[J].西北林学院学报,2012(2):245-248+260.
    33.王朝志,张厚江.应力波用于木材和活立木无损检测的研究进展[J].林业机械与木工设备,2006(3):9-13.
    34.王立海,高珊,王洋,等.应力波在冻结状态白桦活立木中传播速度的试验[J].东北林业大学学报,2008a(11):36-38.
    35.王立海,徐华东,闫在兴,等.传感器的数量与分布对应力波检测原木缺陷效果的影响[J].林业科学,2008b(5):115-121.
    36.王立海,王洋,高珊,等.冻结状态下应力波在长白落叶松立木中传播速度的研究[J].北京林业大学学报,2009(3):96-99.
    37.王立海,王洋,徐华东.弦向角对应力波在原木横截面传播速度的影响[J].林业科学,2011(8):139-142.
    38.王礼立.应力波基础[M].国防工业出版社,2005.
    39.王天龙,陈永平,刘秀英,等.古建筑木构件缺陷及评价残余弹性模量的初步研究[J].北京林业大学学报,2010(3):141-145.
    40.席恩华.速生杨木质部细胞的分化成熟过程[D].北京林业大学,2012.
    41.徐华东.冻结与非冻结木材中应力波传播速度规律研究[D].东北林业大学,2011.
    42.徐华东,王立海.杨木径切面准纵波传播路径追踪及速度变化试验研究[J].声学学报,2012(1):62-67.
    43.徐华东,王立海.温度和含水率对红松木材中应力波传播速度的影响[J].林业科学,2011(9):123-128.
    44.徐华东,王立海,游祥飞,等.应力波在旱柳立木内的传播规律分析及其安全评价[J].林业科学,2010(8):145-150.
    45.闫向宏,张亚萍.有机混合液体声速混合定则的研究[J].石油大学学报:自然科学版,2002,26(1):112-113.
    46.杨慧敏,王立海.立木与原木内部腐朽二维成像检测技术研究进展[J].林业科学,2010(7):170-175
    47.杨学春,王立海.原木内部腐朽应力波二维图像的获取与分析[J].林业科学,2007(11):93-97.
    48.杨学春,王立海.红松木材结构缺陷对应力波传播参数的影响[J].东北林业大学学报,2005(1):30-31.
    49.杨学春.基于应力波原木内部腐朽检测理论及试验的研究[D].东北林业大学,2004.
    50.杨学春,王立海.应力波在原木中传播理论的研究[J].林业科学,2005,32(2):145-148.
    51.于文勇,王立海,杨慧敏,等.超声波木材缺陷检测若干问题的探讨[J].森林工程,2006(6):7-9.
    52.于文勇,王立海,张希栋.超声波木材缺陷检测固体耦合剂(橡胶)的试验[J].林业科技,2007(2):53-54+50.
    53.张璧光.木材干燥学[M].化学工业出版社,2005.
    54.张涛,黎冬青,韩扬,等.无(微)损检测技术在木结构古建筑中的应用及发展[J].林业机械与木工设备,2011(8):10-12+16.
    55.张希栋,王立海,杨学春.冲击条件对原木孔洞缺陷检测效果影响的研究[J].林业科技,2009a(3):46-48.
    56.张希栋,王立海,杨学春.含水率对原木孔洞缺陷应力波检测效果的影响[J].林业科技,2009b(4):54-56.
    57.张希栋,王立海.应力波在木材内部传播时间特性研究[J].林业机械与木工设备,2007(8):22-24.
    58.张厚江,朱磊,孙燕良,等.古建筑木构件材料主要力学性能检测方法研究[J].北京林业大学学报,2011(5):126-129.
    59.张厚江,王喜平,苏娟,等.应力波在美国红松立木中传播机理的试验研究[J].北京林业大学学报,2010(2):145-148.
    60.朱磊,张厚江,孙燕良,等.基于应力波和微钻阻力的红松类木构件力学性能的无损检测[J].南京林业大学学报(自然科学版),2013(2):156-158.
    61.朱磊,张厚江,孙燕良,等.基于应力波和微钻阻力的古建筑木构件材料力学性能检测[J].东北林业大学学报,2011(10):81-83.
    62.朱磊,张厚江,孙燕良,等.古建筑木构件无损检测技术国内外研究现状[J].林业机械与木工设备,2011(3):24-27.
    63.Axmon J, Hansson M. Nondestructive detection of decay in spruces using acoustic singnals: evaluation of circumferential modes[J]. Signal Processing Report SPR-45 May,1999,66.
    64.Bachle H, Walker J. The influence of temperature on the velocity of sound in green pine wood[J]. European Journal of Wood and Wood Products,2006,64(5):429-430.
    65. Bodig J, Goodman J R. Prediction of elastic parameters for wood[J]. Wood Science, 1973,5(4):249-264.
    66. Bodig J. Mechanics of wood and wood composites[M]. Van Nostrand and Reinhold Co.,1982.
    67.Brashaw B K, Wang X, Ross R J, et al. Relationship between stress wave velocities of green and dry veneer[J]. Forest products journal,2004,54(6):85-89.
    68.Bucur V, Chivers R C. Acoustic properties and anisotropy of some Australian wood species[J]. Acta Acustica united with Acustica,1991,75(1):69-74.
    69.Bucur V. Nondestructive characterization and imaging of wood[J]. Springer Series in Wood Science, 2003:181-214.
    70.Bulleit W M, Falk R H. Modeling stress wave passage times in wood utility poles[J]. Wood science and technology,1985,19(2):183-191.
    71.Carrasco E V M, Azevedo Jr A P. Nondestructive evaluation of mechanical properties of wood using ultrasound[J]. Engenharia Civil. Guimaraes. Portugal 1,2003,(16):27-37
    72.Chan J M, Walker J C, Raymond C A. Effects of moisture content and temperature on acoustic velocity and dynamic MOE of radiata pine sapwood boards[J]. Wood Science and Technology, 2011,45(4):609-626.
    73.Chen Z, Wengert E M, Lamb F M. A technique to electrically measure the moisture content of wood above fiber saturation[J]. Forest products journal,1994,44(9):57-62.
    74.Chowdhury M Q, Ishiguri F, Hiraiwa T, et al. Yoshizawa N. Variation in anatomical properties and correlations with wood density and compressive strength in Casuarina equisetifolia growing in Bangladesh[J]. Australian Forestry,2012,75(2):95-99.
    75.Cruz C R, Muniz G I B, Lima J T, et al. Application of stress waves to estimate moisture content in Eucalyptus wood[J]. Cerne, Lavras,2009,15(4):430-438.
    76.Divos F, Szalai L. Tree evaluation by acoustic tomography [C]. In:Proceedings of the 13th International Symposium on Nondestructive Testing of Wood. August 19-21,2002. Berkeley, CA, 2002:251-256
    77.Divos F, Divos P. Resolution of stress wave based acoustic tomography [C]. In:Proceedings of the 14th International Symposium on Nondestructive Testing of Wood, May 2-4,2005, University of Applied Sciences, Eberswalde, Germany,2005:309-314
    78.Garcia R A, Carvalho A M, Latorraca J V F, et al. Nondestructive evaluation of heat-treated Eucalyptus grandis Hill ex Maiden wood using stress wave method[J].Wood Science and Technology, 2012,46(1-3):41-52.
    79.Gerhards C C. Compassion of two nondestructive instruments for measuring Pulse Transit Time in wood[J]. Wood Science,1978,(7):15-19.
    80.Glibert A E, Smiley E T. Picus sonic tomography for the quantification of decay in white oak (Quercus Alba) and hickory (Carya spp.) [J]. Journal of Arboriculture,2004,30(5):277-280
    81.Goncalves R, da Costa O A L. Influence of moisture content on longitudinal, radial, and tangential ultrasonic velocity for two Brazilian wood species[J]. Wood and Fiber Science,2008,40(4):580-586.
    82.Huang Y S, Chen S S. Estimation of moisture content change in wood by tap tone non-destructive testing[J]. Tai-wan J Forest Sci,1996,11(4):367-372.
    83.Haines D W, Leban J M, Herbe C. Determination of Young's modulus for spruce, fir and isotropic materials by the resonance flexure method with comparisons to static flexure and other dynamic methods[J]. Wood science and technology,1996,30(4):253-263.
    84.Jacobson B. Ultrasonic velocity in liquids and liquid mixtures[J]. Journal of Chemical Physics, 1952,20:927-928.
    85James W L, Boone R S, Galligan W L. Using speed of sound in wood to monitor drying in a kiln[J]. Forest products journal,1982,32(9):27-34.
    86. James W L. Effect of temperature and moisture content on internal Friction and speed of sound in Douglas-fir [J]. Forestry Products Journal.1961,11(9):383-390
    87.Jang S S. Evaluation of lumber properties by applying stress waves to larch logs grown in Korea[J]. Forest products journal,2000,50(3):44-47.
    88.Kabir M, Daud W, Khalid K, et al. Dielectric and ultrasonic properties of rubber wood. Effect of moisture content grain direction and frequency[J]. Holz als Roh-und Werkstoff,1998,56(4):223-227.
    89.Kang H, Booker R E. Variation of stress wave velocity with MC and temperature[J]. Wood Science and Technology,2002,36(1):41-54.
    90.Lang E M, Bejo L, Divos F, et al. Orthotropic Strength and Elasticity of Hardwoods in Relation to Composite Manufacture Part Ⅲ:Orthotropic Elasticity of Structural Veneers[J]. Wood and fiber science,2003,35(2):308-320.
    91.Lawday G, Hodges PA. The analytical use of stress waves for the detection of decay in standing trees[J]. Forestry,2000,73(5):447-456.
    92.Lee J N, Tang R C, Kaiserlik J. Nondestructive evaluation of modulus of elasticity of yellow-poplar LVL:Effect of veneer-joint design and relative humidity[J]. Wood and fiber science, 2001,33(4):510-521.
    93.Lee C J, Wang S Y, Yang T H. Evaluation of moisture content changes in taiwan red cypress during drying using ultrasonic and tap-tone testing[J]. Wood and Fiber Science,2011,43(1):57-63.
    94.Mcdonald K A, Green d W, Schad K C. Relationship between log and lumber modulus of elasticity[J]. Forest Products Journal,1997,47(2):89-92.
    95.Mishiro A. Effect of density on ultrasonic velocity in wood[J]. Mokuzai Gakkaishi, 1996,42(9):887-894.
    96.Mishiro A. Ultrasonic velocity in wood and its moisture content. Ⅰ. Effects of moisture gradients on ultrasonic velocity in wood[J]. Mokuzai Gakkaishi.1995,41(6):1086-1092.
    97.Mishiro A. Ultrasonic velocity in wood and its moisture content. Ⅱ. Ultrasonic velocity and average moisture content in wood during desorption (1):Moisture content below the fiber saturation point[J]]. Mokuzai Gakkaishi.1996a,42(6):612-617.
    98.Mishiro A. Ultrasonic velocity in wood and its moisture content. Ⅲ. Ultrasonic velocity and average moisture content in wood during desorption (2):During desorption from a water-saturated condition[J]. Mokuzai Gakkaishi.1996b,42(10):930-936.
    99.Norton M P, Greenhalgh R. Estimation of moisture content in timber using ultrasonics[J]. Applied Energy,1990,35(4):267-297.
    100.Nicolotti G, Socco L V, Martinis R, et al. Application and comparison of three tomographic techniques for detection of decay in trees[J]. Journal of Arboriculture,2003,29(2):66-78.
    101.Oliveira F G R, Candian M, Lucchette F F, et al. A technical note on the relationship between ultrasonic velocity and moisture content of Brazilian hardwood (Goupia glabra)[J]. Building and Environment,2005,40(2):297-300.
    102.Oliveira F G R, Sales A. Relationship between density and ultrasonic velocity in Brazilian tropical woods[J]. Bioresource technology,2006,97(18):2443-2446.
    103.Panshin A J, Zeeuw C. Textbook of wood technology [M]. McGraw-Hill Book Co.,1980.
    104.Quilho T, Gominho J, Pereira H. Anatomical characterisation and variability of the thistle Cynara cardunculus in view of pulping potential[J]. Iawa Journal,2004,25(2):217-230.
    105.Ross R J, Pellerin R F, Volny N, et al. Inspection of timber bridges using stress wave timing nondestructive evaluation tools[J]. US Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, Report FPL-GTR,1999,114.
    106.Ross R J, Willits S W. A Stress Wave Based Approach to NDE of Logs for Assessing Potential Veneer Quality [J]. Forest products journal,1999,49(11/12):60-62.
    107.Ross R J, Yang V W, Illman B L, et al. Relationship between stress wave transmission time and bending strength of deteriorated oriented strandboard[J]. Forest products journal,2003,53(3):33-35.
    108.Ross R J, Ward J C, TenWolde A. Stress wave nondestructive evaluation of wetwood[J]. Forest products journal,1994,44(7/8):79-83.
    109.Ross R J, Degroot R C, Nelson W J, et al. The relationship between stress wave transmission characteristics and the compressive strength of biologically degraded wood[J]. Forest products journal, 1997,47(5):89-93.
    1110.Sakai H, Minamisawa A, Takagi K. Effect of moisture content on ultrasonic velocity and attenuation in woods[J]. Ultrasonics,1990,28(6):382-385.
    111.Sandoz J. Moisture content and temperature effect on ultrasound timber grading[J]. Wood Science and Technology,1993,27(5):373-380.
    112.Sehgal C M, Brown G M, Bahn R C, et al. Measurement and use of acoustic nonlinearity and sound speed to estimate composition of excised livers[J]. Ultrasound in medicine& biology, 1986,12(11):865-874.
    113.Simpson W T, Wang X P. Relationship between longitudinal stress wave transit time and moisture content of lumber during kiln-drying[J]. Forest Products Journal,2001,51(10):51-54.
    114.Steffen R. A new tomographic device for the non-destructive testing of trees[C]. In:Proceedings of the 12th International Symposium on Nondestructive Testing of Wood,2000, September 13-15, Sopron, Hungary,2000,233-237.
    115.Van Dyk H, Rice R W. Ultrasonic wave velocity as a moisture indicator in frozen and unfrozen lumber[J]. Forest products journal,2005,55(6):68-72.
    116.Wang S Y, Chiu C M, Lin C J. Variations in ultrasonic wave velocity and dynamic Young's modulus with moisture content for Taiwania plantation lumber[J]. Wood and Fiber Science, 2002,34(3):370-381.
    117.Wang X, Ross R J, McClellan M, et al. Nondestructive evaluation of standing trees with a stress wave method[J]. Wood and Fiber Science,2001,33(4):522-533.
    118.Wang X, Ross R J, Punches J, et al. Evaluation of Small-Diameter Timber for Value-Added Manufacturing oe A Stress Wave Approach[J]. Precision Forestry,2003:91.
    119.Wagner F G, Gorman T M, Layton H D, et al. Stress-wave analysis of Douglas-fir logs for veneer properties[J]. Forest products journal,2000,50(4):49-53.
    120. Wagner F G, Gorman T M, Wu S Y. Assessment of intensive stress-wave scanning of Douglas-fir trees for predicting lumber MOE[J]. Forest products journal,2003,53(3):36-39.
    121.Wolfe R, Moseley C. Small-diameter log evaluation for value-added structural applications[J]. Forest Products Journal,2000,50(10):48-58.
    122.Yamamoto K, Sulaiman O, Hashim R. Nondestructive detection of heart rot of Acacia mangium trees in Malaysia[J]. Forest Products Journal,1998,48(3):83-86.
    123.Zhang S, Zhong Y. Structure-property relationship of wood in East-Liaoning oak[J]. Wood Science And Technology,1992,26(2):139-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700