机器人与环境间力/位置控制技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机器人应用领域的不断扩展和对机器人智能化要求的不断提高,以往以位置控制为主的机器人控制方法已不能满足某些复杂环境(装配、抛光、去毛刺、助力机器人、康复机器人)的应用要求,机器人与环境间力/位置控制方法同时实现机器人末端接触力和位置期望值跟踪控制,适应了机器人在复杂环境中运动控制的要求;当前,机器人与环境间力/位置控制研究大都基于机器人阻抗控制和机器人力/位置混合控制。本文在国家科技重大专项和国家自然科学基金课题的资助下,对机器人与环境间力/位置控制关键技术开展研究,主要内容和创新点有:
     常规机器人阻抗控制性能受环境动力学和期望阻抗模型参数的影响明显,为实现不同环境下机器人阻抗控制性能保持不变,期望阻抗模型必须作相应调整:在定义机器人阻抗控制性能指标基础上提出系统稳态时阻抗模型刚度计算方法;结合神经网络估计环境等效刚度和二阶系统临界阻尼条件,计算出阻抗模型阻尼初值;提出了自适应模糊控制方法根据测量的接触力、位移误差及其导数实时调整阻抗模型的阻尼、刚度参数值,提高机器人阻抗控制中接触力/位置控制的动静态性能;此外,为保持机器人与环境间接触状态和实现期望的接触力控制,给出了环境位置误差允许的范围;提出了机器人操作空间中基于伪速度的机器人位置控制方法,提高机器人运动控制动态性能。
     修改常规的机器人力/位置混合控制方法,提出了机器人位置、姿态、力和力矩混合控制方法;针对机器人力/位置混合控制易受系统干扰影响的问题,研究基于Kalman状态观测器的机器人力控制方法。结合机器人位置、姿态、力和力矩混合控制和Kalman状态观测器的优点,提出了性能优良且对系统干扰具有较强抑制能力的机器人力/位置混合控制方法。
     将机器人与大刚性环境间碰撞接触过程依次分为:接近运动阶段、冲击振荡阶段、阻尼振荡阶段和稳定阶段,为实现机器人末端与环境间快速稳定和期望的接触力控制,设计了针对不同阶段的控制策略:针对接近运动阶段的自适应非接触阻抗控制,通过神经网络实时调整阻抗模型参数以改变机器人接近过程的动力学特性,在实现快速接近前提下减小后续的碰撞接触冲击效应;针对冲击振荡阶段的机器人位移、速度与驱动力关系,设计镇定控制器抑制机器人末端位移回弹运动以减小冲击振荡幅值,缩短冲击振荡持续时间;针对阻尼振荡阶段,提出了变参数机器人力/速度控制方法,建立基于系统能量快速衰减的参数调整规则,加快阻尼振荡的稳定和实现期望的接触力控制。综合冲击振荡与阻尼振荡阶段控制方法,设计模糊控制器根据镇定控制原理对机器人力/速度控制中参数进一步微调,实现碰撞接触后系统的快速稳定和期望的接触力跟踪控制。
     抛光机器人控制系统设计,提出了基于机器人力/位置混合控制和阻抗控制原理的机器人抛光作业中抛光力和位置控制方法:采用阻抗模型跟踪控制实现接触面法向方向抛光力跟踪控制;对于接触面切向方向的进给速度控制,采用模糊控制实现基于刀具轨迹的接触而切向进给速度前馈控制;此外,设计了基于现场总线的抛光机器人控制系统软硬件结构,机器人抛光实验验证控制方法的有效性。
With the continuous expansion of the application area of robotics and the sustained growth of the robot intelligent level request, the position tracking control pointed robot control system can no longer meet the application in complex environments(assembly, polishing, deburring, human augmentations, rehabilitation robotics). The position force control method for the robot-environment interaction is aimed at establishing robotic end-effector force and position tracking control simultaneously, it meets the requirements of robot motion control in the complex environment. At present,studies on force position control between robot and environment mainly focus on the robot impedance control and the hybird position/force control of a robot.This thesis, supplied by the National Natural Science Foundation, the National Science and Technology major project, specializes the key technologies of the robot force position control method for the robot-environment interaction, the main content and innovation of the thesis is as follows:
     The performance of conventional robot impedance control mainly depends upon the environment dynamics and the choice of the expected impedance model. To maintain the performance of the robot impedance control in a wide range of environments, the expected impedance model needs to be adjusted adaptively. The caculation of the spring parameter of the impedance model in system steady-state conditions is based on the self-defined force impedance control performance index. Combined with the environment spring equivalence value estimated by neural networks and the second-order systems critical damping condition, the damping initial value of the impedance model is determined. In order to improve the force position tracking static-dynamic performance, the self-turning fuzzy control method is designed to achieve adjustment for the damping and spring parameters of the impedance model based on the measured force, position and its derivative in real time. Moreover, the environment position tolerance for maintaining contacted status and establishing expected force tracking control for the robot-environment interaction is illustrated.The quasi-velocity-based robot position control method for a robot in the operational space is also proposed to improve the dynamic performance of the robot motion control.
     The hybrid position, posture, force, and moment control method of a robot is proposed by the modification of the conventional hybrid position/force control. As for the question of the hybrid position/force control of a robot susceptible to system disturbance, the robot force control method based on Kalman active observers is proposed. Moreover, combined with the advantages of Kalman active observers and the hybrid position, posture, force and moment control method, the designed hybird position/force control of a robot exhibits good performance and is robust to system disturbances.
     The robot's physical impact and contact with the stiff environment is divided into approaching movement, impact oscillation, damping oscillation and steady stage successively. In order to stabilize the robot's physical impact and contact with an environment and achieve the expected contact force control, control strategies are designed for different phases:the robot noncontact impedance control method is designed for the approaching movement and the impedance parameters are adjusted by neuron networks for changing robot dynamics characteristics during the approaching movement, it decreases the succeeding impact/contact effect on the premise of fast approaching;in order to diminish the amplitude of the oscillation and shorten the impact duration time, the designed suppression controller represses the position rebound based on the robot end-effector's displacement, velocity and driving force in the impact oscillation phase, the varying-parameter robot force/velocity control method is designed to improve the stability of the damping oscillation phase based on the fast rate of energy dissipation of the system. Meanwhile, combined the control methods for the impact oscillation and damping oscillation, a fuzzy control method is designed to facilitate fine adjustments of the system force feedback coefficient based on the suppression control principle, it improves the force tracking control performance and stability of the impact/contact transition processes for the interaction between the robot and environment in contact.
     In the design of the polishing robot control system, the polishing force and position control is implemented by integrating the hybird position/force control and the robot impedance control principle:the designed impedance model following control method is adopted to realize the polishing force control in the constrained surface normal direction, the fuzzy logic controller plans the speed feed-forward in the constrained surface tangential direction based on the tool path data. In addtion, the realization of the software and hardware structure of the polishing robot control system based on the fieldbus is introduced.The feasibility and effectiveness of the control methods is confirmed by some experiment.
引文
[1]熊有伦.机器人学[M].北京:机械工业出版社,1993.
    [2]Yu B. MODELING, CONTROL DESIGN AND MECHATRONIC IMPLEMENTATION OF CONSTRAINED ROBOTS FOR SURFACE FINISHING APPLICATIONS[D]. Oklahoma State University,2000.
    [3]Miomir V, Dragoljub S, Yury E. Dynamics and Robust Control of Robot-environment Interaction[M]. London:World Scientific Publishing,2009.
    [4]Loulin H. CONTROL OF CONSTRAINED ROBOT SYSTEMS [D]. ELECTRICAL & COMPUTER ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE,2004.
    [5]Chen H, Wang J, Zhang G, et al. High-precision assembly automation based on robot compliance[J]. International Journal of Advanced Manufacturing Technology, 2009,45(9-10):999-1006.
    [6]Schreuder H, Verheijen R. Robotic surgery [J]. International Journal of Obstetrics and Gynaecology,2009(116):198-213.
    [7]Nef T, Mihelj M, Riener R. ARMin:A robot for patient-cooperative arm therapy[J]. Medical and Biological Engineering and Computing,2007,45(9):887-900.
    [8]Hurd S A, Carnegie D A, Brown N R, et al. Development of an intelligent robotic system for the automation of a meat-processing task[J]. International Journal of Intelligent Systems Technologies and Applications,2005,1(1-2):32-48.
    [9]Ha Q, Santos M, Nguyen Q, et al. Robotic excavation in construction automation [J]. IEEE Robotics and Automation Magazine,2002,9(1):20-28.
    [10]Nagata F, Watanabe K, Izumi K. Furniture polishing robot using a trajectory generator based on cutter location data[C]//2001IEEE International Conference on Robotics and Automation. Seoul, Korea:Institute of Electrical and Electronics Engineers Inc.,2001:319-324
    [11]日本机器人学会.新版机器人技术手册[M].程君实,宗光华,译.北京:科学出版社,2008.
    [12]Tine Lefebvre J X H, De A G G. Active compliant motion:a survey[Z].2005.
    [13]Huang J B, Xie Z W, Liu H, et al. DSP FPGA-based Controller Architecture for Flexible joint robot with enhanced impedance performance [J]. J Intell Robot Syst, 2008,53:247-261.
    [14]Syedhassan, Naveedanwer, Zafarkhattak, et al. Open architecture dynamic manipulator design philosophy [J]. Robotics and Computer-Integrated Manufacturing,2009,10(6):54-64.
    [15]股跃红,朱剑英.智能机器力觉及力控制研究综述[J].航空学报,1999(01):1-7.
    [16]张广立.丌放式机器人力控制系统及先进力控制策略的研究[DJ.上海:上海交通大学,2004.
    [17]蔡建羡.不确定机器人的力/位置智能控制[D].燕山大学,2003.
    [18]Yong C, Sarkar N. A unified force control approach to autonomous underwater manipulation[J]. Robotica,2001,19:255-266.
    [19]Lei W, Yongping H, Fei W, et al. Experimental study of force control based on intelligent prediction algorithm in open architecture robot system[C]//2007 IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ, USA:IEEE, 2007:1675-1681
    [20]Matinfar M, Hashtrudi-Zaad K. Optimization-based robot compliance control: Geometric and linear quadratic approaches[J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH,2005,24(8):645-656.
    [21]Wang L, Hao Y, Wang F. The experiment research of force control based on intelligent prediction in unknown environment[C]//International Technology and Innovation Conference 2006. Stevenage, UK:Inst. of Eng. and Technol,2006:6-12
    [22]韩建达,成海,谈大龙.一种基于运动状态反馈的机器人接触力控制[J].机器人,1997(06):23-28.
    [23]Raibert M H, Craig J J. Hybrid position/force control of manipulators[J]. Journal of Dynamic Systems, Measurement and Control,1981,103(2):126-133.
    [24]N. H. Impedance Control:An Approach to Manipulation, Part Ⅰ-Theory, Part Ⅱ Implementation, Part Ⅲ-Application[J]. ASME Journal of Dynamic System, Measurement and Control,1985,107(1):1-24.
    [25]Bassi E, Benzi F, Capisani L M, et al. Hybrid position/force sliding mode control of a class of robotic manipulators[C]//48th IEEE Conference on Decision and Control held jointly with 2009 28th Chinese Control Conference. Shanghai, China:Institute of Electrical and Electronics Engineers Inc.,2009:2966-2971
    [26]Seraji H, Colbaugh R. Force Tracking Impedance Control [J]. The International Journal of Robotics Research,1997,2(16):97-117.
    [27]蔡自兴,谢光汉,伍朝晖,等.直接在位置控制机器人上实现力_位置自适应模糊控制[J].机器人,1998(04):23-30.
    [28]Richardsona R, Brownb M, Bhaktac B, et al. Impedance control for a pneumatic robot-based around pole-placement, joint space controllers[J]. Control Engineering Practice,2005,13:291-303.
    [29]张馄,韦庆,常文森.一种基于力/位混合控制进行插孔作业的策略[J].机器人,2002,44(4):44-48.
    [30]Seul J, Hsia T C, Bonitz R G. Force tracking impedance control for robot manipulators with an unknown environment:theory, simulation, and experiment[J]. International Journal of Robotics Research,2001,20(9):765-774.
    [31]Jung S, Hsia T C, Bonitz R G. Force tracking impedance control of robot manipulators under unknown environment[J]. IEEE Transactions on Control Systems Technology,2004,12(3):474-483.
    [32]Caccavale F, Chiacchio P, Marino A, et al. Six-DOF Impedance Control of Dual-Arm Cooperative Manipulators[J].IEEE/ASME TRANSACTIONS ON MECHATRONICS,2008,13(5):576-587.
    [33]Tsuji T, Tanaka Y. Bio-mimetic impedance control of robotic manipulator for dynamic contact tasks[J]. Robotics and Autonomous Systems,2008(56):306-316.
    [34]Pathak P M, Mukherjee A, Dasgupta A. IMPEDANCE CONTROL OF SPACE ROBOT[J]. International Journal of Modelling and Simulation,2006,26(4): 316-322.
    [35]Valency T, Zacksenhouse M. Accuracy Robustness Dilemma in Impedance Control[J]. Transactions of the ASME,2003,25:310-318.
    [36]Duttaa A, Obinata G. Impedance control of a robotic gripper for cooperation with humans[J]. Control Engineering Practice,2002,10:379-389.
    [37]Chang P H, Jin M. Nonlinear target impedance design and its use in robot compliant motion control with time delay estimation[M].2006,3877-3882.
    [38]Wang Z, Peer A, Buss M. Fast online impedance estimation for robot control[C] //IEEE 2009 International Conference on Mechatronics. Malaga, Spain:Inst. of Elec. and Elec. Eng. Computer Society,2009:145-152
    [39]Katic D, Vukobratovic M. Advanced control of robot compliance tasks using hybrid intelligent paradigms[M].2002,173-180.
    [40]Bechlioulis C, Doulgeri Z, Rovithakis G. Robot force/position tracking with guaranteed prescribed performance[C]//2009 IEEE International Conference on Robotics and Automation. Kobe, Japan:Institute of Electrical and Electronics Engineers Inc.,2009:3688-3693
    [41]Lee K. Force tracking impedance control with variable target stiffness[C]//17th World Congress, International Federation of Automatic Control. Seoul, Korea: Elsevier,2008:74-81
    [42]Owen W, Croft E, Benhabib B. Stiffness optimization for two-armed robotic sculpting[J]. Industrial Robot,2008,35(1):46-57.
    [43]王宪伦.不确定环境下机器人柔顺控制及可视化仿真的研究[D].济南:山东大学,2006.
    [44]温淑焕.不确定性机器人力/位置智能控制及轨迹跟踪实验的研究[D].燕山大 学,2005.
    [45]Passenberg C, Peer A, Buss M. A survey of environment-, operator-, and task-adapted controllers for teleoperation systems[J]. MECHATRONICS,2010, 20(7):787-801.
    [46]Lin S, Tsai H. Impedance control with on-line neural network compensator for dual-arm robots[J].Journal of Intelligent and Robotic Systems:Theory and Applications,1997,18(1):87-104.
    [47]Seul J, Hsia T C, Bonitz R G. On robust impedance force control of robot manipulators[C]//Proceedings of International Conference on Robotics and Automation. New York, NY, USA:IEEE,1997:2057-2062
    [48]Pedrocchi N, Visioli A, Ziliani G, et al. On the elasticity in the dynamic decoupling of hybrid force/velocity control in the contour tracking task[C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE,2008:955-960
    [49]Tsuji T, Tanaka Y. On-line learning of robot arm impedance using neural networks[J]. Robotics and Autonomous Systems,2005,52(4):257-271.
    [50]Katic D, Vukobratovic M. Advanced control of robot compliance tasks using hybrid intelligent paradigms[M].2002,173-180.
    [51]Nagata F, Mizobuchi T, Tani S, et al. Impedance model force control using neural networks for a desktop NC machine tool[C]//2009 IEEE International Symposium on Industrial Electronics. Piscataway, NJ, USA:IEEE,2009:1428-1433
    [52]Osypiuk R, Kroger T. A three-loop model-following control structure:theory and implementation[J].International Journal of Control,2010,83(1):97-104.
    [53]Osypiuk R. Simple robust control structures based on the model-following concept-A theoretical analysis[J].International Journal of Robust and Nonlinear Control, 2010,20(17):1920-1929.
    [54]Zhu Y, Barth E J. Impedance control of a pneumatic actuator for contact tasks[C] //2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain:Institute of Electrical and Electronics Engineers Inc.,2005:987-992
    [55]Panwar V, Sukavanam N. Design of optimal hybrid position/force controller for a robot manipulator using neural networks[J]. Mathematical Problems in Engineering, 2007,2007.
    [56]Sabanovic A. SMC framework in motion control systems[J]. International Journal of Adaptive Control and Signal Processing,2007,21(8-9):731-744.
    [57]Aghili F. Robust Impedance Control Of Manipulators Carrying A Heavy Payload[J]. Journal of Dynamic Systems, Measurement and Control,2010,132(5): 51011-51018.
    [58]Liuzzo S, Tomei P. Global adaptive learning control of robotic manipulators by output error feedback[J]. International Journal of Adaptive Control and Signal Processing,2009,23(1):97-109.
    [59]Golea N, Golea A, Barra K, et al. Observer-based adaptive control of robot manipulators:fuzzy systems approach[J]. Applied Soft Computing Journal,2008, 8(1):778-787.
    [60]Huang C Q, Peng X F, Jia C Z, et al. Guaranteed robustness/performance adaptive control with limited torque for robot manipulators[J]. Mechatronics,2008,18(10): 641-652.
    [61]Ming-Chih C, An-Chyau H. Adaptive impedance control of robot manipulators based on function approximation technique[J]. Robotica,2004,22:395-403.
    [62]Seo D, Akella M R. Non-certainty equivalent adaptive control for robot manipulator systems[J]. Systems and Control Letters,2009,58(4):304-308.
    [63]Burkan R, Uzmay I. Logarithmic based robust approach to parametric uncertainty for control of robot manipulators[J]. International Journal of Robust and Nonlinear Control,2005,15(10):427-436.
    [64]黄楼林,赵东波,熊有伦.对未知环境的机器人力控自律跟踪及建模[J].机器人,1993,22(02):21-25.
    [65]Koivo A J, Houshangi N. Real-time vision feedback for servoing robotic manipulator with self-tuning controller[J]. IEEE Transactions on Systems, Man and Cybernetics,1991,21(1):134-142.
    [66]Nicoletti G M. On the stability of adaptive controllers for robotic manipulators[C] //Proceedings of the 34th Midwest Symposium on Circuits and Systems. New York, NY, USA:IEEE,1992:950-953
    [67]Wenjie D. On trajectory and force tracking control of constrained mobile manipulators with parameter uncertainty [J]. Automatica,2002,38(9):1475-1484.
    [68]Fielding M R, Dunlop R, Damaren C J. Hamlet:Force/position controlled hexapod walker-Design and systems[C]//Proceedings of the 2001 IEEE International Conference on Control Applications. Mexico City, Mexico:Institute of Electrical and Electronics Engineers Inc.,2001:984-989
    [69]Villani L, Natale C, Siciliano B, et al. An experimental study of adaptive force/position control algorithms for an industrial robot[J]. IEEE Transactions on Control Systems Technology,2000,8(5):777-786.
    [70]Lippiello V, Siciliano B, Villani L. Interaction control of robot manipulators using force and vision[J]. International Journal of Optomechatronics,2008,2(3):257-274.
    [71]Nganga-Kouya D, Saad M, Lamarche L. Backstepping adaptive hybrid force/position control for robotic manipulators[C]//Proceedings of 2002 American Control Conference. Danvers, MA, USA:American Automatic Control Council, 2002:4595-4600
    [72]Nganga-Kouya D, Saad M, Lamarche L, et al. Backstepping adaptive position control for robotic manipulators[C]//Proceedings of American Control Conference. Piscataway, NJ, USA:IEEE,2001:636-640
    [73]Nogueira S L, Pazelli T D F P, Siqueira A A G, et al. Adaptive fuzzy nonlinear H tracking control design of a constrained robot system[C]//16th Mediterranean Conference on Control &Automation. Piscataway, NJ, USA:IEEE, 2008:362-367
    [74]Seul J, Sun B Y, Ilsia T C. Experimental studies of neural network impedance force control for robot manipulators[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA:IEEE,2001:3453-3458
    [75]Katie D. Advanced Connectionist Control Algorithm for Robotic Compliance Tasks based on Wavelet Network Classifier[J]. Scientific-Technical Review,2006,14(2): 24-29.
    [76]Ferguene F, Toumi R. Dynamic external force feedback loop control of a robot manipulator using a neural compensator-application to the trajectory, following in an unknown environment[J]. International Journal of Applied Mathematics and Computer Science,2009,19(1):113-126.
    [77]Fanaei A, Farrokhi M. Robust adaptive neuro-fuzzy controller for hybrid position/force control of robot manipulators in contact with unknown environment[J].Journal of Intelligent &Fuzzy Systems,2006,17(2):125-144.
    [78]Zhijun L, Weidong C, Jun L. Adaptive compliant force-motion control of coordinated non-holonomic mobile manipulators interacting with unknown non-rigid environments[J]. Neurocomputing,2008,71(7-9):1330-1344.
    [79]范文通.受时变约束机械臂自适应模糊力/位置控制方法研究[D].吉林大学,2008.
    [80]肖金壮,王立玲,王洪瑞,等.一种通过模糊自调整应用于机械手广义力/位置控制的稳定系统研究[J].自动化与仪器仪表,2005(03):3-6.
    [81]Burn K, Short M, Bicker R. Adaptive and nonlinear fuzzy force control techniques applied to robots operating in uncertain environments[J]. Journal of Robotic Systems,2003,20(7):391-400.
    [82]Mallapragada V, Erol D, Sarkar N. A new method of force control for unknown environments[J]. International Journal of Advanced Robotic Systems,2007,4(3): 313-322.
    [83]Hong-Rui W, Li Y, Li-Xin W. Fuzzy-neuro position/force control for robotic manipulators with uncertainties[J]. Soft Computing,2007,11(4):311-315.
    [84]cojbasic Z M, Nikolic V D. HYBRID INDUSTRIAL ROBOT COMPLIANT MOTION CONTROL[J]. Automatic Control and Robotics,2008,1(7):99-110.
    [85]王立玲.工业机器人的力/位置模糊控制策略研究[D].河北大学,2005.
    [86]柳洪义,王磊,王菲.在未知环境下基于阻抗模型的受限机械手模糊力控制方法[J].东北大学学报,2005(08):766-769.
    [87]Baptista L F, Sousa J M, Sa Da Costa J. Force control of robotic manipulators using a fuzzy predictive approach[J]. Journal of Intelligent and Robotic Systems:Theory and Applications,2001,30(4):359-376.
    [88]Xu G, Song A. Fuzzy variable impedance control for upper-limb rehabilitation robot[C]//5th International Conference on Fuzzy Systems and Knowledge Discovery. Jinan, Shandong, China:Inst. of Elec. and Elec. Eng. Computer Society, 2008:216-220
    [89]Nagata F, Watanabe K, Kusumoto Y, et al. Generation of normalized tool vector from 3-axis CL data and its application to a mold polishing robot[C]//2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan:Institute of Electrical and Electronics Engineers Inc.,2004:3971-3976
    [90]Pires J N, Godinho T, Araujo R. Force control for industrial applications using a fuzzy PI controller[J]. Sensor Review,2004,24(1):60-67.
    [91]Xu Z L, Fang G. Fuzzy-neural impedance control for robots[M].2004:299, 263-275.
    [92]Touati Y, Amirat Y, Saadia N, et al. A neural network-based approach for an assembly cell control[J]. Applied Soft Computing Journal,2008,8(4):1335-1343.
    [93]Doh N L, Chung W K, Youm Y, et al. Two transition phase control methods for hard contact[J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME,2007,129(3):262-274.
    [94]Tsuji T, Terauchi M, Tanaka Y. Online learning of virtual impedance parameters in non-contact impedance control using neural networks[J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS,2004, 34(5):2112-2118.
    [95]Ferretti G, Magnani G, Zavala Rio A. Impact modeling and control for industrial manipulators [J]. IEEE Control Systems Magazine,1998,18(4):65-71.
    [96]Zotovic R, Valera A. Robot force and impact control with feedforward switching[C] //17th World Congress, International Federation of Automatic Control, IFAC, July 6, 2008-July 11,2008. Seoul, Korea, Republic of:Elsevier,2008
    [97]Armstrong B, Wade B A. Nonlinear PID control with partial state knowledge: damping without derivatives [J]. International Journal of Robotics Research,2000, 19(8):715-731.
    [98]Armstrong B, Neevel D, Kusik T. New results in NPID control:Tracking, integral control, friction compensation and experimental results[J]. IEEE Transactions on Control Systems Technology,2001,9(2):399-406.
    [99]Hyde J M, Cutkosky M R. Controlling contact transition[J]. IEEE Control Systems Magazine,1994,14(1):25-30.
    [100]Kegen Y, Kieffer J. Robotic force/velocity control for following unknown contours of granular materials [J]. Control Engineering Practice,1999,7(10):1249-1256.
    [101]Basanez L, Rosell J. Robotic polishing systems[J]. IEEE Robotics & Automation Magazine,2005,12(3):35-43.
    [102]Marquez J J, Perez J M, Rios J, et al. Process modeling for robotic polishing[J]. Journal of Materials Processing Technology,2005,159(1):69-82.
    [103]Feng-Yun L, Tian-Sheng L. Development of a robot system for complex surfaces polishing based on CL data[J]. International Journal of Advanced Manufacturing Technology,2005,26(9-10):1132-1137.
    [104]Nagata F, Watanabe K, Hashino S, et al. Polishing robot using a joystick controlled teaching system[C]//Proceedings of 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. Piscataway, NJ, USA:IEEE, 2000:632-637
    [105]Tsai M J, Jou-Lung C, Jian-Feng H. Development of an automatic mold polishing system[J]. IEEE Transactions on Automation Science and Engineering,2005,2(4): 393-397.
    [106]Nagata F, Kusumoto Y, Watanabe K, et al. High precision polishing robot using a learning-based surface following controller[C]//Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Piscataway, NJ, USA:IEEE,2003:91-96
    [107]Nagata F, Kusumoto Y, Watanabe K, et al. Polishing robot for PET bottle molds using a learning-based hybrid position/force controller[C]//2004 5th Asian Control Conference, July 20,2004-July 23,2004. Melbourne, Australia:Institute of Electrical and Electronics Engineers Inc.,2004:914-921
    [108]De Schutter J, Bruyninckx H, Wen-Hong Z, et al. Force control:a bird's eye view[C] //International Workshop Control Problems in Robotics and Automation. Berlin, Germany:Springer-Verlag,1998:1-17
    [109]B. Siciliano L V. From indirect to direct force control:A roadmap for enhanced industrial robots[Z].:39,16-26.
    [110]Wang H, Low K H. Wang M Y. Combined impedance/direct control of robot manipulators[C]//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China:Institute of Electrical and Electronics Engineers Inc., 2006:3605-3610
    [111]Dasgupta A. Position and force control of robotic devices interacting with passive environments through compliance modulation[J]. International Journal of Systems Science,1999,30(7):697-705.
    [112]Seungjoon C, Sangcheol L, Sangchul W. Development of a new variable remote center compliance using stiffness adjusters[C]//Proceedings of RSJ/IEEE International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE,2001:1860-1863
    [113]Arimoto S, Hyun-Yong H, Cheah C C, et al. Extension of impedance matching to nonlinear dynamics of robotic tasks[J]. Systems & Control Letters,1999,36(2): 109-119.
    [114]Zhongxu H, Bicker R, Marshall C. Position/force control of manipulator based on force measurement and its application to gear deburring[J]. Journal of Intelligent &Fuzzy Systems,2003,14(4):215-223.
    [115]Abu-Mallouh M, Surgenor B. Force/velocity control of a pneumatic gantry robot for contour tracking with neural network compensation[C]//ASME International Manufacturing Science and Engineering Conference. Evanston, IL, United states: ASME Foundation,2009:11-18
    [116]Kozlowski K, Herman P. A new control algorithm in terms of normalized quasi-velocities with gravitational forces[C]//Proceedings of the First Workshop on Robot Motion and Control. Piscataway, NJ, USA:IEEE,1999:95-100
    [117]Kozowski K, Herman P. Control of robot manipulators in terms of quasi-velocities[J]. Journal of Intelligent and Robotic Systems:Theory and Applications,2008,53(3):205-221.
    [118]Herman P. A quasi-velocity-based nonlinear controller for rigid manipulators[J]. Mechanics Research Communications,2009,36(7):859-866.
    [119]Kozlowski K, Herman P. A comparison of control algorithms for serial manipulators in terms of quasi-velocities[C]//Proceedings.2000 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA:IEEE, 2000:1540-1545
    [120]Jain A, Rodriguez G. Diagonalized Lagrangian robot dynamics[J]. IEEE Transactions on Robotics and Automation,1995,11(4):571-584.
    [121]蔡自兴.机器人学[M].北京:清华大学出版社,2000.
    [122]Cortesao R, Park J, Khatib O. Real-time adaptive control for haptic telemanipulation with Kalman active observers[J]. IEEE Transactions on Robotics,2006,22(5): 987-999.
    [123]Jeon S, Tomizuka M, Katou T. Kinematic Kalman Filter (KKF) for Robot End-Effector Sensing[J].JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME,2009,131(0210102):1-8.
    [124]Han J D, He Y Q, Xu W L. Angular acceleration estimation and feedback control: an experimental investigation[J]. Mechatronics,2007,17(9):524-532.
    [125]Cortesao R. On Kalman active observers[J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS,2007,48(2):131-155.
    [126]Cortesao R, Koeppe R, Nunes U, et al. Explicit force control for manipulators with active observers[C]//Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems. Takamatsu:IEEE,2000:1075-1080
    [127]Craig J.J.机器人学导论[M].负超,译.北京:机械工业出版社,2004.
    [128]Cortesao R, Park J, Khatib O. Real-time adaptive control for haptic manipulation with active observers[J]. IROS 2003:PROCEEDINGS OF THE 2003 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4,2003:2938-2943.
    [129]R C. On kalman active observers[J]. International Journal on Intelligent and Robotic Systems,2007:131-155.
    [130]R C, R K, U N. Compliant motion control with stochastic active observers[C]//The 2001 IEEE/RSJ International Conference on Intelligent Robot and Systems. Maui: IEEE,2001:1876-1881
    [131]李泽湘,Murray Richard M., Sastry S. Shankar.机器人操作的数学导论[M].北京:机械工业出版社,1998.
    [132]Angeless Jorge.机器人机械系统原理:理论、方法和算法[M].宋刚,译.北京:机械工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700