高压低温条件下H_2O-H_2O_2-CO(NH_2)_2-C_3H_8四元体系相平衡热力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过氧化尿素应用广泛,然而生产过氧化尿素后的剩余母液循环利用,仍然是一个需要解决的难题。为了开发气体水合物法浓缩分离过氧化尿素剩余母液的新方法,在高压低温条件下,对H_2O-H_2O_2-CO(NH_2)_2-C_3H_8四元体系形成气体水合物的相平衡进行了研究。
     实验测定了在273.15K和274.15K条件下,不同浓度过氧化氢、尿素的水溶液中形成气体水合物的相平衡条件。研究发现,随着过氧化氢、尿素浓度和温度的升高,气体水合物的平衡压力也升高。形成的气体水合物在自然沉降分离掉液体后,气体水合物的母液夹带量很高。在H_2O-H_2O_2-CO(NH_2)_2-C_3H_8四元体系中加入表面活性剂十二烷基硫酸钠后,可以降低水合物的平衡压力、缩短形成水合物的诱导时间,并且显著降低形成气体水合物的母液夹带量。
     利用Chen-Guo模型,结合UNIFAC方程和Aasberg-Peterson逸度系数模型,分别对H_2O-H_2O_2-CO(NH_2)_2-C_3H_8四元体系和添加十二烷基硫酸钠的四元体系进行了热力学模拟计算,最终得到的计算结果和实验结果相吻合,相对误差也维持在5%以内。此外,实验考察了表面活性剂含量、混合添加剂配比和转速大小对水合物生成的影响。
Urea peroxide were widely used, however, it was still a problem that recycling the residual liquid after the production of peroxide urea. In order to explore a new concentration method of low concentration hydrogen peroxide and the residual liquid of peroxide urea system by gas hydrate. In this paper, the system H_2O-H_2O_2-CO(NH_2)_2-C_3H_8 were studied at high pressure and low temperature.
     At 273.15K and 274.15K temperature, solid-liquid phase composition and equilibrium pressure of clathrate compounds have been measured in the ternary system H_2O-H_2O_2-CO(NH_2)_2-C_3H_8。The study found that on the condition of high pressure and low temperature, as hydrogen peroxide (urea) concentration and temperature increased, the equilibrium pressure forming gas hydrate increased too, after separating out the liquid by natural subsidence, entrainment of residual liquid of gas hydrate was at high level. Adding surfactants SDS to this system can reduce the equilibrium pressure of the formation of hydrate, shorten the time of hydrate formation, and reduce the mass of liquid entrained.
     Moreover, the equilibrium pressure of gas hydrate formation in the quaternary system H_2O-H_2O_2-CO(NH_2)_2-C_3H_8 was calculated according to Chen-Guo thermodynamic model, improved UNIFAC mathematical equation and Aasberg-Peterson fugacity coefficient model . The calculated data was in agreement with the experiment data. In addition, the influence of the surfactant content, the mixed additives ration and the speed of stirring on the formation of gas hydrate was investigated.
引文
[1]樊栓狮,郭天民.笼型水合物的研究进展[J].化工进展,1999,1:5~11
    [2] B.C. Gbaruko, J.C. Igwe, P.N. Gbaruko, R.C. Nwokeoma.Gas hydrates and clathrates: Flow assurance, environmental and economic perspectives and the Nigerian liquified natural gas project [J].Journal of Petroleum Science and Engineering, 2007, 56: 192~198
    [3]孙志高,樊栓狮,郭开华等.气体水合物储存天然气技术[J].天然气工业,2002(5):87~90
    [4]徐红,张宝华,樊爱娟.气体水合物的研究与应用[J].化工进展,2003,(32):24~26
    [5]赵永利,郭开华,张奕,等.混合制冷剂气体水合物生成及融解过程实验研究[J ].工程热物理学报,1998,19(4):480~483
    [6]蔡毅,王世平,吕树申.替代CFC工质R141b.气体水合物蓄冷实验研究[J].暖通空调,1997,27(5):6~9
    [7] Willson R C, Bulot E, Cooney C L.Use of hydrates for aqueous solution treatment [P]. US4678583, 1987
    [8] Douglas G, Elliot Houston. Process for separating selected components from multi-component tural gas streams[P]. US5660603, 1997
    [9] John V. T., Holder G. D. Langmuir constants for spherical and linear molecules in clathrate hydrates. Validity of the cell theory[J]. Phys. Chem, 1985, 89: 3279~3285
    [10] Seong-Pil Kang, Ji-Ho Yoon, Huen Lee. Clathrate phase behavior of the phenol-methane, phenol-carbon dioxide and phenol-nitrogen systems [J]. Fluid Phase Equilibria,1997, 137: 265~273
    [11] Seong-Pil Kang Huen Lee.Clathrate phase equilibria for the water-phenol-methane system[J]. Fluid Phase Equilibria, 1998, 43(7): 339~349
    [12] van der Waals J H, Platteeuw J C. Clathrate solutions[J]. Adv. Chem. Phys, 1959, 2: 1~57
    [13] Parrish W. R., Prausnitz J. M. Dissociation pressures of gas hydrates formed by gas mixtures[J]. Ind Eng Chem Des, 1972, 11: 26~35
    [14] Ng H I, Robinson D B. Ind. Eng. Chem. Fund., 1976, 15(2): 293~295
    [15] John V. T., Papadopoulos K. D., Holder G. D. A generalized model for predicting equilibrium conditions for gas hydrates[J], AIChE Journal, 1985(2): 252~259
    [16]杜亚和,郭天民.天然气水合物生成条件的预测[J].石油学报,1988,3(3):82~92
    [17] Chen G. J., Guo T. M. A New Approach to Gas Hydrate Modeling[J]. Chem. Eng., 1998, 71(5): 145~151
    [18] Chen G. J., Ma Q L, GuoT M. A New Mechanism for Hydrate Formation and Development of Thermodynamic Model[J]. Chem. Ind. Eng., 2000, 51(5): 626~631
    [19] Chen G J, Sun C Y, Guo T M. Modeling of the Formation Conditions of Structure Hydrate[J]. Fluid Phase Equilibria, 2003, 20(4): 107~117
    [20]李小森,樊栓狮.利用统计缔合流体理论状态方程预测混合气体水合物的平衡形成条件[J].化工学报,2007,65(1):59~66
    [21]袁吉,李金平,王林军,等.表面活性剂对水合反应物两相界面张力的影响[J].中国科学技术大学学报,2008,34(4):420~423
    [22]李金平,王立璞.表面活性剂对气体水合物生成过程的影响[J].中国科学技术大学学报,2006,36(4):365~371
    [23]孙志高,马荣生,郭开华,等.表面活性剂对甲烷水合物储气特性影响的实验研究[J].西安交通大学学报,2003,37(7):37~40
    [24] Ahmed A EIgibaly,Ali M EIkamel.A new correlation for prediction hydrate formation condition for various gas mixture sand inhibitors[J].Fluid Phase Equilibria,1998,152:23~42
    [25] Matthew A Clarke,Amitabha Majumdar,Bishnoi P R.Experimental investigation of carbon dioxide hydrate formation conditions in the presence of KNO3, MgSO4 and CuSO4 [J].Chem.Eng.Data, 2004, 49:1436~1438
    [26]孙志高,郭开华,樊栓狮,等.含乙二醇和盐体系气体水合物相平衡测定与预测[J].上海交通大学学报,2002,36(10):1510~1513
    [27]孙志高,王如竹,樊栓狮,等.天然气水合物的研究进展[J].天然气工业,2001,21 (1) :93~96
    [28]耿昌全,裘俊红,朱菊香.水合物技术[J].化工进展,2001,11:13~17
    [28] Shroeter J P, Kobayashi R, Hildebrand M A. Hydrate Decomposition Conditions in the System Hydrogen Sulfide-Methane-Propane[J]. Ind. Eng. Chem. Fund., 1983,22(6): 361~364.
    [29] Holder G D, Godbole S P. Measurement and Prediction of Dissociation Pressures of Isobutane and Propane Hydrates Below the Ice Point[J].AIChE, 1982, 28(6): 930~934
    [30] Holder G D, John V T. Thermodynamics of Multicomponent Hydrate Forming Mixture[J]. Fluid Phase Equilibria, 1983, 14(8): 353~361
    [31]孙志高.石磊,樊栓狮,等.气体水合物相平衡侧定方法研究[J].石油与天然气化工,2001,30(4)
    [32] Chen, G. J., Guo, T. M. Thermodynamic Modeling of Hydrate Formation Based on New Concepts[J]. Fluid Phase Equilib. 1996, 122 (1-2), 43~65.
    [33]耿昌全,裘俊红,朱菊香.水合物技术[J].化工进展,2001,11:13~17
    [34]姜辉,于兴河,徐文世.天然气水合物研究进展[J].海洋地质动态,2005,21(12):20~25
    [35]赵红坤,曾之平,曹漫祥.尿素-过氧化氢-水三元相图研究[M].化学世界,1999(4):211~214
    [36]陈光进,马庆兰,郭天民.水合物模型的建立及在含盐体系中的应用[J].石油学报,2000,21(1):64~71
    [37]李以圭.金属溶剂萃取热力学[M].清华大学出版社,北京.1988
    [38]宋彭生,姚燕,李军.盐湖卤水体系热力学和相平衡研究进展[J].化学进展,2000,12(3): 255~264
    [39] Miller B, Strong E R. Am Gas Assn Monthly, 1946, 28(20): 63
    [40] Marshall D R, Saito S, Kobayashi R. Hydrates at High Pressures: Methane-Water, Argon-Water, and Nitrogon-Water Systems[J]. AIChE , 1964, 10(2): 202~205
    [41]朱自强,徐汛.化工热力学[M].化学工业出版社,1991.152~155
    [42]惠健,刘建仪,叶长青,等.高含CO_2水合物生成条件模拟与预测研究[J].西南石油大学学报,2007,29(2):14-16
    [43] Zhong Y, Rogers R.Surfactant effects on gas hydrates formation[J]. Chemical Engineering Science, 2000, 55(19): 4175-4187.
    [44] Jafar, J., Mahmood, M, Robert N. An Accurate Model for Prediction of Gas Hydrate Formation Conditions in Mixtures of Aqueous Electrolyte Solutions and Alcohol[J]. The Canadian Journal of Chemical Engineering, 2001, 367~373.
    [45] Deng, K., Shen, Y. A prediction model of hydrate formation condition on alcohol and electrolyte mixing system[J]. Drilling and production technology, 2009, 32 (1), 89~91.
    [46]Nimalan Gnanendran, Robert Amin. Modelling hydrate formationkinetics of a hydrate promoter–water–natural gas system in a semi-batch[J].Chemical Engineering Science,200(59): 3849~3863
    [47]陈光进,孙长宇,马庆兰.气体水合物科学与技术[M].化学工业出版社,2007,11(74)
    [48]龚果清,刘妮,刘道平等.SDS和THF对二氧化碳水合物形成的影响[C].中国制冷学会2007学术年会,810~814

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700