目标导向的关节结构运动控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关节结构是在自然界及人造机械中普遍存在的结构。在计算机动画和数控机床的研究中均涉及到关节结构的建模和运动控制。正向运动学和逆向运动学是两种典型的运动控制方法。逆向运动学是一种目标导向的运动控制方法,通常的解法有牛顿迭代法、伪逆矩阵法、SR逆矩阵法、阻尼最小二乘法等基于非线性方程的方法,以及循环坐标下降法、时空约束、动力学约束等基于优化的方法。在此基础上还有各类利用冗余自由度来满足关节链约束或完成第二任务的逆向运动学方法。这些方法为关节结构进一步的运动学建模和求解建立了基础。
     首先在传统的点逆向运动学基础上提出了关节结构的曲线逆向运动学算法,针对关节链的末端效应器沿曲线运动的情形,建立了高维的关节角度空间中关节链运动曲线与三维的末端效应器运动轨迹之间的直接联系,推导出了关节链运动曲线的递推公式,进一步给出了误差控制方法,提出了完整的算法流程,并实现了雅可比加权最小范数伪逆方法(Weighted Least-Norm, WLN)在曲线逆向运动学算法中的重用。
     在传统的五轴机床运动学模型基础上,引入刀具运动链来描述刀具几何形状在加工中的运动偏移作用,用以替代传统的刀触点偏置算法,提出了机床-刀具运动链模型及相应的运动控制算法。刀具子运动链与机床运动链的表示形式一致,提供额外的两个被动自由度,使本章提出的五轴机床运动模型在描述刀触点时能够更充分地发挥五轴加工的灵活性。
     提出了一种基于空间聚类的逆向运动学算法,采用基于数学的建模方法,将正向运动学看作关节角度空间中的点到末端效应器位置空间中点的映射,将逆向运动学看作末端效应器位置空间中的点到关节角度空间中点的映射,进而提出了一种基于聚类的逆向运动学算法。该方法采用双层继承结构模型(Hierarchical Inherit Model),对末端位置空间和关节角度空间中的点集分别进行聚类,并建立聚类之间的对应关系作为运动模型。
     提出了一个基于运动捕捉数据和贝叶斯网络的运动合成系统,可以根据足迹来合成人体行走动画。该系统能够从运动捕捉数据中提取关键帧和步态参数,用于贝叶斯网络学习,学习后的贝叶斯网络能够根据足迹序列生成完整的虚拟人行走运动。这种方法结合了贝叶斯网络的非确定性推理能力和步态参数对肢体末端的控制。
Joint is a widespread kind of structure in natural world and artificial machines. The modeling and motion control of joint are researched in computer animation and CNC machine tools. Forward kinematics and inverse kinematics are two types of usually used motion control methods. Inverse kinematics is goal-oriented. The solutions to inverse kinematics are grouped into two categories, one is based on nonlinear equations such as Newton-like iterative method, pseudo-inverse matrix, SR-inverse matrix, damped leased squares method; the other is based on optimizations such as cyclic coordinate descent, time-space constraint, dynamic constraint. Furthermore, there are inverse kinematic methods that using redundant degrees of freedom to satisfy kinematic chain constraints or achieve secondary task. These methods established solid foundation for further modeling and solution.
     Curve inverse kinematics for joint structure is proposed in this thesis in the case of end effector move along curve. Curve inverse kinematics establishes direct contact of kinematic chain motion curve in joint angle space and end effector trajectory in3-D space. The recursive equation of joint angle is derived, and two kind of error control mechanism are proposed to construct a complete algorithm. Weighted least norm method are used together with curve inverse kinematics to handle singularity.
     The offset coursed by cutter shape are researched for CNC machine tool. Instead of traditional cutter contact offset, a machine-cutter kinematic chain model and corresponding motion control method are proposed. The machine-cutter kinematic chain has unified form, and introduces two more passive degrees of freedom to exert the most flexibility of CNC machine.
     Another inverse kinematics algorithm based on spatial clustering is proposed. By using a mathematical modeling method, the forward kinematics can be seen as the mapping from the point in the space of joint angles to the position of the end effector in the3D space, while the inverse kinematics seen as the mapping from the end effector position in3D space to the points in the joint angle space. The method uses a double layer Hierarchical Inherit Model, one layer is the position of the end effector, denoted by P layer, and the other layer is the joint angle layer, referred to Q layer. The set of points in both P and Q layers are clustered successively, and the establishment of the correspondence relationship between the clusters could be extracted as motion model. The solution of the inverse kinematic is to find a suitable cluster in Q layer by given a cluster in P layer.
     Motion synthesis system based on motion capture data and Bayesian network is proposed. The system can synthesize human walking animation according to given footprints sequence. The system extracts keyframes and gait parameters from motion capture data and for samples for Bayesian network learning. Footprint sequences are input to the trained Bayesian network, and a complete virtual human walking motion is generated automatically. This approach combines the control of extremities by gait parameters and non-deterministic reasoning ability of the Bayesian network. Experiments show that synthetic motion fully meet time and space constraints and maintain good realism.
引文
[1]Thalmann, D. Motion modeling. Can we get rid of motion capture? In:Egges, A., Kamphuis, A. Overmars, M. (eds) MIG 2008. LNCS, Heidelberg:Springer,2008: 121-131
    [2]金小刚,鲍虎军,彭群生.计算机动画技术综述.软件学报,1997,8(4):241-251
    [3]沈晓杰.运动数据的编辑合成技术研究:[硕士学位论文]。杭州:浙江大学图书馆,2006
    [4]http://h-anim.org/Specifications/H-Anim200x/ISO_IEC_FCD_19774/
    [5]罗冠.虚拟人的运动生成及控制技术研究:[博士学位论文]。西安:西北工业大学图书馆,2003
    [6]徐孟,孙守迁,潘云鹤.虚拟人运动控制技术的研究.系统仿真学报,2003,15(3):338-343
    [7]Deutscher J. Blake A. Reid Ⅰ. Articulated body motion capture by annealed particle filtering. In:Proc. of Computer Vision and Pattern Recognition.2000.126-133
    [8]Thomas B. Moeslund, Erik Granum. A survey of computer vision-based human motion capture. Modeling people toward vision-based understanding of a person's shape, appearance, and movement,2004,81(3):231-268
    [9]李婷.基于运动捕捉数据的人体运动编辑技术研究:[硕士学位论文]。武汉:华中科技大学图书馆,2008.
    [10]庄越挺,刘小明,潘云鹤.一种基于视频的人体动画骨架提取技术.计算机研究与发展,2003,37(4):498-506
    [11]罗忠祥,庄越挺,潘云鹤等.基于视频的运动捕获.中国图象图形学报,2002,7(8):752-758
    [12]Michael Gleicher. Retargetting motion to new characters. In:Proc. of International Conference on Computer Graphics and Interactive Techniques archive.1998.33-42
    [13]戚晶晶.运动编辑系统的设计与实现:[硕士学位论文]。北京:北京交通大学图书馆,2011
    [14]Witkin, Z. Popvic. Motion warping. In Proc. of SIGGRAPH'95.1995.105-108
    [15]Jehee Lee, Sung Yong Shin. A hierarchical approach to interactive motion editing for human-like figures. In:Proc. of SIGGRAPH99.1999.39-48
    [16]Wei Wei Xu. Footprint sampling based motion editing. International Journal of Image and Graphics,2003(3):311-324
    [17]L. Kovar, M. Gleicher, F. Pighin. Motion graphs. In:Proc. of SIGGRAPH2002. 2002.473-82
    [18]黄赞榛.基于运动图的运动搜索与合成:[硕士学位论文]。北京:中国传媒大学图书馆,2007
    [19]Yu-Chi Lai. Group Motion Graphs. In Proc. In Proc. of SIGGRAPH'95.1995. 281-290
    [20]Arikan, D. Forsyth. Interactive motion generation from examples. In:Proc. of SIGGRAPH 2002.2002.483-490
    [21]J. Lee, J. Chai, P. Reitsma et al. Interactive control of animated with human motion data. In:Proc. of ACM SIGGRAPH2002.2002.491-500
    [22]王瑢瑢.基于运动库的三维角色动画生成方法研究与实现:[硕士学位论文]。北京:中国科学院研究生院(计算技术研究所),2006
    [23]Bruderlin, L. Williams. Motion signal processing. In:Proc. SIGGRAPH'95.1995. 97-104
    [24]Munetoshi Unuma, Ken-ichi Anjyo, Ryozo Takeuchi. Fourier Principles for emotion-based human figure animation. In:Proc. SIGGRAPH95.1995.91-96
    [25]刘丰,庄越挺,罗忠祥等.基于小波变换的运动分析及其应用.中国图象图形学学报.2003,8(1):68-76
    [26]刘丰.基于运动捕获数据的若干动画技术研究。[硕士学位论文]。杭州:浙江大 学,2004.
    [27]Thalmann. Motion Control:From Keyframe to Task-Level Animation. In:N. Magnenat Thalmann and D. Thalmann(eds.), In state of the Art in Computer Animation. New York:Springer Verlag,1989.3-17
    [28]卢筑飞.基于插中理论的人体动画运动控制与合成研究:[硕士学位论文]。武汉:华中科技大学图书馆,2007
    [29]黄锦军.虚拟人运动控制技术的研究与实现:[硕士学位论文]。武汉:华中科技大学图书馆,2007
    [30]S. N. Steketee, N. I. Badler. Parametric keyframe interpolation incorporating kinetic adjustment and phrasing control. In:Proc. SIGGRAPH'85.1985.255-262
    [31]S. Terra, R. Metoyer. Performance timing for keyframe animation. In:Proc. Eurographic/ACM Symposium on Computer Animation.2004.253-258
    [32]Xu Hai-Yin, Li Dan, Wang Jian. Implicit curve oriented inbetweening for motion animation. In:Proc. of the 4th International Conference on Computer Graphics and Interactive Techniques.2006.87-91
    [33]Li Dan, Xu Hai-Yin, Huang Rui et al. Kinematic inbetweening for motion animaiton. In:K.-c. Hui et al. (Eds). Technologies for E-Learning and Digital Entertainment, Berlin:Springer-Verlag Berlin Heidelberg,2007.647-654
    [34]Xu Hai-Yin, Li Dan, Tang Shao-Min. Kinematic inbetweening along implicit curves for motion animations. In:Proc. of 16th International Conference on Artificial Reality and Telexisetnce.2006.1-4
    [35]李丹,徐海银.基于二维隐曲线的动作补间新算法.计算机仿真,2008,25(9):234-237
    [36]柏友良.队列训练中的人体行为模拟技术研究:[硕士学位论文]。长沙:国防科学技术大学,2007
    [37]Deepak Tolani, Ambarish Goswami, Norman Ⅰ.Badler. Real-Time Inverse Kinematics Techniques for Anthropomorphic Limbs. Graphical Models,2000,62(5): 35-42
    [38]胡准庆,房海蓉,方跃法.机器人精确轨迹控制方法的研究.中国安全科学学报,2003,13(3):8-11
    [39]M. Girard, A. A. Maciejewski. Computational modeling for the computer animation of legged figures. In:Proc. SIGGRAPH'85.1985.263-270
    [40]Balestrino, G. de Maria, L. Sciavicco. Robust control of robotic manipulators. In: Proc. the 9th IFAC World Congrress.1984.2435-2440
    [41]W. A. Wolocich, H. Elliot. A computational technique for inverse kinematics. In: Proc. of 23rd IEEE Conference on Decision and Control.1984.1359-1363
    [42]E. Whitney. Resolved motion rate control of manipulators and human prostheses. IEEE Transaction on Man-Machine System,1969,10:47-53
    [43]Y. Nakamura, H. Hanafusa. Inverse kinematic solutions with singularity robustness for robot manipulator control. Journal of Dynamic Systems, Measurement, and Control,1986,108(3):163-171
    [44]Anthony A. Maciejewski, Charles A. Klein. Numerical filtering for the operation of robotic manipulators through kinematically singular configurations. Journal of Robotic Systems,1988,5(6):527-552
    [45]W. Wampler. Manipulator inverse kinematic solutions based on vector formulations and damped least squares methods. IEEE Transactions on Systems, Man, and Cybernetics,1986(16):93-101
    [46]Samuel R. Buss, Jin-Su Kim. Selectively damped least squares for inverse kinematics. Journal of Graphic Tools,2005,10(3):37-49
    [47]Keith Grochow, Steven I. Martin, Aaron Hertzmann et al. Style-based inverse kinematics. In:Proc. of SIGGRAPH2004.2004.522-531
    [48]Li-Chun, Tommy Wang, Chih Cheng Chen. A Combined Optimization Method for Solving the Inverse Kinematics Problem of Mechanical Manipulators. IEEE Transactions on Robotics and Automation,1991,7(4):489-499
    [49]张鑫,王章野,王作省等.人体运动建模的实时逆运动学算法.计算机辅助设计与图形学学报,2009,21(6):853-860
    [50]Cheng-Yun Karen Liu. Towards a generative model of natural motion. [Doctor dissertation]. Washington:University of Washington,2005
    [51]Marcelo Kallmann. Analytical inverse kinematics with body posture control. Computer Animation and Virtual Worlds,2008,19(2):79-91
    [52]Luis Unzueta, Manuel Peinado, Ronan Boulic et al. Full-body performance animation with Sequential Inverse Kinematics. Graphical Models.2008, 70(5):87-104
    [53]Kevin G. Der, Robert W. Sumner, Jovan Popovic. Inverse kinematics for reduced deformable models. In:Proc. of SIGGRAPH2006.2006.1174-1179
    [54]Michael Meredith, Steve Maddock. Using a half-Jacobian for real-time inverse kinematics. In:proceedings of the international conferences on computer games: artificial intelligence, design and education.2004.81-88
    [55]Tan Fung Chan, Rajiv V. Dubey. A Weighted Least-Norm Solution Based Scheme for Avoiding Joint Limits for Redundant Joint Manipulators. IEEE Transactions on Robotics and Automation,1995,11(2):286-292
    [56]Paolo Baerlocher, Ronan Boulic. An inverse kinematics architecture enforcing an arbitrary number of strict priority levels. The Visual Computer,2004,20(6): 402-417
    [57]Marcelo Kallmann. Analytical inverse kinematics with body posture control. Computer Animation and Virtual Worlds,2008,19(2):79-91
    [58]Michiel van de Panne. From Footprints to Animation. Computer Graphics forum, 1997,16(4):211-223
    [59]Koichi Nishiwaki, Tomomichi Sugihara, Satoshi Kagami etc. Online Mixture and Connection of Basic Motions for Humanoid Walking Control by Footprint Specification. In:IEEE International Conference on Robotics & Automation. Seoul, 2001.4110-4115
    [60]Xu Weiwei, Pan Zhigeng, Ge Yunfang. Footprints Sampling Based Motion Editing. Journal of Computer-Aided Design & Computer Graphics,2003,15(7):805-811
    [61]Choi M. G. Lee L. Shin S. Y. Planning biped locomotion using motion capture data and probabilistic roadmaps. ACM Transaction on Graphics,2003,22(2):182-203
    [62]J. H. Fan, A. Balla. Quadric method for cutter orientation in five-axis sculptured surface machining. International Journal of Machine Tools and Manufacture,2008, 48(7-8):788-801
    [63]A.Can, A. Unuvar. A novel iso-scallop tool-path generation for efficient five-axis machining of free-form surface. International Journal of Advanced Manufacturing Technology,2010,51(9-12):1083-1098
    [64]J. Balic. A New NC Machine Tool Controller for Step-by-Step Milling. International Journal of Adcanced Manufacturing Technology,2001,18(6):399-403
    [65]A. Ozgedik, C. Cogun. An experimental investigation of tool wear electric discharge machining. International Journal of Advanced Manufacturing Technology,2006, 27(5-6):488-500
    [66]J. H. Yoon, H. Pottmann, Y. S. Lee. Locally optimal cutting positions for 5-axis sculptured surface machining. Computer-Aided Design 2003,35(1):69-81
    [67]Y. Wang, Z. Wang, N. Gindy. Collision-free maching fixture design based on parametric tool space for five-axis grinding. International Journal of Advanced manufacturing Technology,2009,45(1-2):1-7
    [68]C. C. Lo. Real-time generation and control of cutter path for 5-axis CNC machining. International Journal of Machine Tool & Manufacture,1999,39(3):471-488
    [69]H. Li, H. Y. Feng. Efficient five-axis machining of free-form surfaces with constant scallop height tool paths. International Journal of production research,2004,42(12): 2403-2417
    [70]Y. S. Lee. Admissible tool orientation control of gouging avoidance for 5-axis complex surface machining. Computer-Aided Design,1997,29(7):507-520
    [71]E. L. J. Bohez. Five-axis milling machine tool kinematic chain design and analysis. International Journal of Machine Tools & Manufacture,2000,42(4):505-520
    [72]R.S. Lee, C.H. She. Developing a Postprocessor for Three Types of Five-Axis Machine Tools. The International Journal of Advanced Manufacturing Technology, 1997,13(9):658-665
    [73]C. H. She, C. C. Chang. Design of a generic five-axis postprocessor based on generalized kinematics model of machine tool. International Journal of Machine Tools & Manufacture,2007,47(3-4):537-545
    [74]C. H. She, Z. T. Huang. Postprocessor development of a five-axis machine tool with nutating head and table configuration. International Journal of Advanced Manufacturing Technology,2008,38(7-8):728-740
    [75]K. Sorby. Inverse kinematics of five-axis machines near singular configurations. International Journal of Machine Tools & Manufacture,2007,47(2):299-306
    [76]N. Wang, K. Tang. Automatic generation of gouge-free and angular-velocity-compliant five-axis toolpath. Computer Aided Design,2007, 39(10):841-852
    [77]韦启航,陆文莲,傅祖芸等.人体步态分析系统综述.中国科学院研究生院学报,1991,8(2):94-106
    [78]戴克戎,汤荣光.平地常速行走时的步态观察.中国生物医学工程,1982,1(1):15-21
    [79]胡雪艳,恽晓平,郭忠武等.正常成人步态特征研究.中国康复理论与实践, 2006,12(10):855-857
    [80]张今瑜,吴爱明,张立勋.一种步态测量方法及其在康复应用中的实验研究.医疗装备,2008,21(2):1-3
    [81]Harold C. Sun, Dimitris N. Metaxas. Automating gait generation. In:Proc. of ACM SIGGRAPH 2001.2001.261-270
    [82]张瑞红,金德闻,张济川等.不同路况下正常步态特征研究.清华大学学报(自然科学版),2000,40(8):77-80
    [83]Robert Riener, Marco Rabuffetti, Carlo Frigo. Stair ascent and descent at different inclinations. Gait and Posture,2002,15(1):32-44
    [84]Patrick A. Costigan, Kevin J. Deluzio, Urs P. Wyss. Knee and hip kinetics during normal stair climbing. Gait and Posture,2002,16(1):31-37
    [85]吴剑,李建设.步态生物力学研究进展.中国体育科技,2002,38(1):16-17
    [86]Gammon M. Earhart, Amy J. Bastian. Form switching during human locomotion: traversing wedges in a single step. The Journal of Neurophysiology,2000, 84(2):605-615
    [87]Ambarish Goswami. A new gait parameterization technique by means of cyclogram moments:Application to human slope walking. Gait and Posture,1998,8(1):15-36
    [88]Andrea N. Lay, Chris J. Hass, Robert J. Gregor. The effects of sloped surfaces on locomotion:A kinematic and kinetic analysis. Journal of Biomechanics,2006,39(9): 1621-1628
    [89]王雪松,程玉虎.机器学习理论、方法及应用.北京:科学出版社,2009.3-5
    [90]万齐亮.基于学习的逆向运动学人体运动合成:[硕士学位论文]。武汉:华中科技大学图书馆,2011
    [91]孔怡青.半监督学习及其应用研究:[博士学位论文]。无锡:江南大学图书馆,2009
    [92]聂黎.基于基因表达式编程的车间动态调度方法研究:[博士学位论文]。武汉: 华中科技大学图书馆,2011
    [93]Gazihan Alankus, Caitlin Kelleher. Potential Field Guided Inverse Kinematics for Human Characters. In proceedings of Eurographics 2009.2009.
    [94]Yan Li, Tianshu Wang, Heung-Yeung Shum. Motion Texture:A Two-Level Statistical Model for Character Motion Synthesis. ACM Transactions on Graphics, 2002,21(3):465-472
    [95]Manfred Lau, Ziv Bar-Joseph, James Kuffner. Modeling Spatial and Temporal Variation in Motion Data. ACM Transactions on Graphics,2009,28(5):1-10
    [96]Chunpeng Li, Shilong Xia, Zhaoqi Wang. Pose Synthesis Using the Inverse of Jacobian Matrix Learned from Examples. In:IEEE Virtual Reality Conference 2007. Charlotte, USA,2007.99-106
    [97]Mahmoud Tarokh, Kancherla Keerthi, Malrey Lee. Classification and characterization of inverse kinematics solutions for anthropomorphic manipulators. Robotics and Autonomous Systems,2010,58(1):115-120
    [98]Shen Junxing, Sun Shouqian, Pan Yunhe. Key-Frame Extraction from Motion Capture Data. Journal of Computer-Aided Design & Computer Graphics,2004, 16(5):719-723
    [99]Liu Yungen, Liu Jingang. Keyframe Extraction from Motion Capture Data by Optimal Reconstruction Error. Journal of Computer-Aided Design & Computer Graphics,2010,22(4):670-675
    [100]Jeff Lander. Working With Motion Capture File Formats. Game Developer, 1998,2(1):4-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700