高灰度级图像的生成及多曝光融合技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灰度级层次蕴含了图像细节的重要信息,通过提高图像灰度级可以恢复出图像中丢失的许多重要信息,使图像的细节更丰富,图像更清晰。近几十年,高灰度级图像的生成和显示技术已经成为图像处理领域的研究热点之一。提高图像灰度级的技术通常包括灰度级细化和高动态范围两类。目前,对灰度级细化方法的研究较少,并且细化后图像的灰度级不丰富仍是这类方法常遇到的问题;而高动态范围图像的生成及显示效果非常依赖输入的多曝光图像。针对这些问题,主要完成了灰度级细化方法、高动态范围图像生成和多曝光融合三个方面的研究工作。
     针对灰度级细化的研究主要包括:(1)提出通过给待估计的浮点数加上一个服从某种已知分布的随机变量,从这些浮点数和的四舍五入后的整数值估计出这个浮点数的方法。(2)设计和实现了一套具有补光功能的成像设备,并使用提出的算法从设计的成像设备采集的图像/视频实现灰度级细化。为了检测算法和成像设备的有效性,分别使用模拟数据和真实数据进行实验。模拟数据的实验结果表明,随着图像数量增加,恢复图像与参考图像的均方根误差不断减少,并最终收敛。真实数据的实验结果表明,恢复图像比采集图像具有更丰富的灰度级。
     通过分析不同曝光图像中的强度值与辐射照度之间的关系,提出在辐射照度log值的一个小邻域内,图像的强度值与辐射照度log值之间满足线性关系。基于这个发现,设计出以高动态范围图像中强度值为变量的优化模型,该模型使每个辐射照度log值邻域内,高动态范围图像中强度值变化程度与所有曝光图像中强度值变化程度最大的尽可能保持一致。实验结果表明,提出的算法可以从少量的不同曝光图像生成高动态范围图像,而且与直接求和相比,该算法得到的图像更接近辐射照度log值。
     针对多曝光融合的结果非常依赖输入图像的问题,提出两个方面改进:(1)根据背景趋势定义融合权值,使融合图像保持图像局部特征的同时,所有区域过渡自然;(2)提出去除背景趋势的图像增强方法,既压缩了不同背景环境间的亮度差异,还利用灰度级邻域内的强度值在增强前后的线性关系,对同一背景环境下的目标进行增强。为了评价算法,提出了梯度模标准差作为客观评价指标之一。实验结果表明,提出的算法得到的图像中昏暗和明亮区域内的对比度明显增强,而且图像的梯度模标准差均较小,说明该算法在保持整体视觉感受的同时,增强了局部对比度。
     另外,还提出了基于模糊C均值聚类的多曝光融合方法。在该方法中,提出通过将图像中所有像素分为曝光正常和不正常两个模糊类,并根据每个像素对曝光正常类的隶属度构造出引导图像。在引导图像的作用下,使用基于窗口线性变换的全局优化算法得到融合图像。实验结果表明,从主观上来看,提出的算法得到的图像的整体视觉感受适中,而且所有区域的局部特征比较明显。从客观上来看,通过与6种不同的色调映射算法和1种多曝光融合方法进行对比,提出的算法得到的图像的熵较大,而梯度模标准差较小,说明该方法不仅突显了局部对比度,而且使图像亮度分布比较均匀。
     提出的方法在高灰度级图像的生成及多曝光融合方面均有较好的表现,其中灰度级细化方法能较大程度地提高灰度级精度,而生成的高动态范围图像更接近场景辐射照度log值,实现也很简单,此外,多曝光融合方法对输入图像的依赖少,即使使用较少的不同曝光图像也能得到较好的融合图像。
Much important information about details of images is contained in grayscale levels.And the lost details can be recovered by grayscale improvement technology, whichproduces clearer images with richer details. In recent decades, high grayscale imagegeneration and visualization technique has become a focus in the area of image processing,including Grayscale Super-Resolution (GSR) and High Dynamic Range (HDR) twoaspects. So far, research on GSR is rare and images obtained by the traditional methodsstill have less grayscale levels. The results of HDR image generation and display relyheavily on differently exposed images. To address these problems, we propose severalnew methods including GSR, HDR generation and exposure fusion methods.
     In the GSR method, we first propose to estimate a float number from all the integermeasurements for the sum of this float number and a random variable with a givendistribution. Then, a photographing apparatus with fine-tunable indirect fill lights isdesigned and realized, obtained from which the images/videos are used to increasegrayscale precision. To validate this approach, we test on the simulated data and thereal-world data. The experiment results show that the root mean square of errors betweenthe reconstructed image and the reference image decreases with increasing the number oflow grayscale images and finally converges. When applying into the real-world data, theresults show that the reconstructed images have richer grayscale.
     Based on analyzing the relationship between the intensity value and the irradiance,we propose the linear model between the intensity values and the logarithm values ofirradiance in the small neighborhood. The optimal model is designed with the intensityvalues of HDR image as the variable, which ensures that in the neighborhood the intensitychange of HDR image be consistent with the maximum change in all Low DynamicRange (LDR) images. The results show that the proposed method can generate an HDRimage from fewer differently exposed images without estimating the camera responsefunction. Besides, compared to the summation method, images obtained by the proposedmethod are closer to the logarithm values of irradiance.
     In the exposure fusion method, two improvements are proposed. First, weights are defined based on the background context to make the fused image smooth. Second, theenhancement method by removing the background context is proposed to compress thedifference between different backgrounds and simultaneously increase the local contrastbased on the linear model between the intensities before and after enhanced. To evaluatethe results objectively, we propose the Standard Derivation of Gradient Magnitude(SDGM) as an objective index. The results show that in the images obtained by theproposed method, the local contrast in the dark and bright regions is higher and SDGM issmaller, indicating that the local contrast has been enhanced and the global appearance hasbeen kept.
     We also propose the exposure fusion method based on fuzzy C-means clustering, inwhich all pixels are divided into a collection of two fuzzy clusters. Based on the degree towhich each pixel belongs to the normal exposure cluster, a guided image is constructedand is combined with the Globally Optimized Linear Windowed Tone-Mapping method toobtain the fused image. The results show that the proposed method can increase the localcontrast and the global brightness and that compared to6different tone mapping methodsand1exposure fusion method, images obtained by the proposed method have biggerentropy and smaller SDGM.
     Methods in this paper have good performance in high grayscale image generation andexposure fusion. The proposed GSR method can considerably increase the grayscaleprecision. The proposed HDR generation method can produce an HDR image closer to thelogarithm value of irradiance and its implementation is simple. Besides, exposure fusionmethods depend less on input images, that is, fewer exposed images can also be used toproduce good results.
引文
[1] Park S C, Park M K, Kang M G. Super-resolution image reconstruction: a technicaloverview. IEEE Signal Processing Magazine,2003,20(3):21~36
    [2] Yang J, Wright J, Huang T S, et al. Image super-resolution via sparse representation.IEEE Transactions on Image Processing,2010,19(11):2861~2873
    [3] Glasner D, Bagon S, Irani M. Super-resolution from a single image. in: IEEE.2009IEEE12th International Conference on Computer Vision(ICCV). Kyoto, JAPAN:IEEE,2009.349~356
    [4] Debevec P E, Malik J. Recovering high dynamic range radiance maps fromphotographs. in: Whitted T. ACM SIGGRAPH97Conference Proceedings. NewYork, USA: ACM,1998.369~378
    [5] Simoncelli E P. Foundations of Vision. Journal of Electronic Imaging,1996,5(1):107
    [6] Seetzen H, Whitehead L A, Ward G.54.2: A High Dynamic Range Display UsingLow and High Resolution Modulators. SID Symposium Digest of Technical Papers,2003,34(1):1450~1453
    [7] Seetzen H, Heidrich W, Stuerzlinger W, et al. High dynamic range display systems.ACM Transactions on Graphics (TOG),2004,23(3):760~768
    [8] Segall C A, Katsaggelos A K, Molina R, et al. Bayesian resolution enhancement ofcompressed video. IEEE Transactions on Image Processing,2004,13(7):898~911
    [9] Xiong Z, Sun X, Wu F. Robust web image/video super-resolution. IEEETransactions on Image Processing,2010,19(8):2017~2028
    [10] Gunturk B K, Altunbasak Y, Mersereau R M. Multiframe resolution-enhancementmethods for compressed video. IEEE Signal Processing Letters,2002,9(6):170~174
    [11] Gunturk B K, Altunbasak Y, Mersereau R. Gray-scale resolution enhancement. in:Dugelay J L, Kenneth R.2001IEEE Fourth Workshop on Multimedia SignalProcessing. Cannes, France: IEEE,2001.155~160
    [12] Gunturk B K, Altunbasak Y, Mersereau R M. Multiframe information fusion forgray-scale and spatial enhancement of images. in: IEEE.2003InternationalConference on Image Processing. Barcelona, Spain: IEEE,2003,2.319~322
    [13] Hasegawa H, Ohtsuka T, Yamada I, et al. An edge-preserving super-precision forsimultaneous enhancement of spacial and grayscale resolutions. IEICE Transactionson Fundamentals of Electronics, Communications and Computer Sciences,2008,91(2):673~681
    [14] Han H, Shan S, Chen X, et al. Gray-scale super-resolution for face recognition fromlow Gray-scale resolution face images. in: IEEE.201017th IEEE InternationalConference on Image Processing (ICIP). Hong Kong: IEEE,2010.2825~2828
    [15] Mitsunaga T, Nayar S K. Radiometric self calibration. in: IEEE.1999IEEEComputer Society Conference on Computer Vision and Pattern Recognition. Miami,USA: IEEE,1999.1
    [16] Mann S. Comparametric equations with practical applications in quantigraphicimage processing. IEEE Transactions on Image Processing,2000,9(8):1389~1406
    [17] Mann S, Mann R. Quantigraphic imaging: Estimating the camera response andexposures from differently exposed images. in: Jacobs A, Baldwin T. Proceedingsof the2001IEEE Computer Society Conference on Computer Vision and PatternRecognition. Kauai, HI: IEEE,2001.842~849
    [18]华顺刚,王丽丹,欧宗瑛.基于多幅不同曝光量照片的场景高动态范围图像合成.大连理工大学学报,2007,47(5):678~682
    [19] Salih Y, Malik A S, Saad N. Tone mapping of HDR images: A review. in: IEEE.20124th International Conference on Intelligent and Advanced Systems (ICIAS).Kuala Lumpur, MALAYSIA: IEEE,2012.368~373
    [20] Devlin K. A review of tone reproduction techniques. Computer Science, Universityof Bristol, Tech. Rep. CSTR-02-005,2002:1~13
    [21]王作省,邹少芳,王章野.高动态图像色调映射技术新进展倡.计算机应用研究,2010,27(7):2421~2424
    [22] Miller G, Hoffman C R. Illumination and reflection maps: Simulated objects insimulated and real environments. in: Glassner A. SIGGRAPH84AdvancedComputer Graphics Animation seminar notes. Orlando, USA: ACM,1984.190
    [23] Ward G. A contrast-based scalefactor for luminance display. Graphics Gems IV,1994:415~421
    [24] Drago F, Myszkowski K, Annen T, et al. Adaptive logarithmic mapping fordisplaying high contrast scenes. Computer Graphics Forum,2003,22(3):419~426
    [25] Ferschin P, Tastl I, Purgathofer W. A Comparison of techniques for theTransformation of Radiosity Values to Monitor Colors. in: IEEE.1994IEEEInternational Conference on Image Processing (ICIP). Austin, Texas, USA: IEEE,1994.992~996
    [26] Braun G J, Fairchild M D. Image lightness rescaling using sigmoidal contrastenhancement functions. Journal of Electronic Imaging,1999,8(4):380~393
    [27] Larson G W, Rushmeier H, Piatko C. A visibility matching tone reproductionoperator for high dynamic range scenes. IEEE Transactions on Visualization andComputer Graphics,1997,3(4):291~306
    [28] Reinhard E, Stark M, Shirley P, et al. Photographic tone reproduction for digitalimages. ACM Transactions on Graphics (TOG),2002,21(3):267~276
    [29] Wang T H, Wong W S, Chen F C, et al. Design and implementation of a real-timeglobal tone mapping processor for high dynamic range video. in: IEEE.200714thIEEE International Conference on Image Processing (ICIP). San Antonio, Texas,USA: IEEE,2007.209~212
    [30] Krawczyk G, Myszkowski K, Seidel H P. Computational model of lightnessperception in high dynamic range imaging. in: Rogowitz B E, Pappas T N, Daly S J.Human Vision and Electronic Imaging. San Jose, California, USA: SPIE,2006.65~76
    [31] Park S H, Montag E D. Rendering non-pictorial (scientific) high dynamic rangeimages. Resonance,2004,1655:321–326
    [32] Horn B K P. Determining lightness from an image. Computer Graphics and ImageProcessing,1974,3(4):277~299
    [33] Richards W A. Lightness scale from image intensity distributions. Applied Optics,1982,21(14):2569~2582
    [34] Chiu K, Herf M, Shirley P, et al. Spatially nonuniform scaling functions for highcontrast images. in: Graphics Interface. Toronto, Canada: Canadian InformationProcessing Society,1993.245~245
    [35] Tumblin J J E. Three methods of detail-preserving contrast reduction for displayedimages: Doctoral dissertation. Georgia Institute of Technology: Libary,2000
    [36] Durand F, Dorsey J. Fast bilateral filtering for the display of high-dynamic-rangeimages. ACM Transactions on Graphics (TOG),2002,21(3):257~266
    [37] Yang L, Lu X, Zeng W, et al. Trilateral filtering-based retinex for imageenhancement. in: Lei J, Wang F L, Deng H, et al. Proceedings of the4thinternational conference on Artificial Intelligence and Computational Intelligence.Chengdu, China: Springer Berlin Heidelberg,2012.400-407
    [38]刘衡生,沈建冰.基于亮度分层的快速三边滤波器色调映射算法.计算机辅助设计与图形学学报,2011,23(001):85~90
    [39] Duan J, Bressan M, Dance C, et al. Tone-mapping high dynamic range images bynovel histogram adjustment. Pattern Recognition,2010,43(5):1847~1862
    [40] Qiu G, Mei Y, Lam K M, et al. Tone mapping HDR images using optimization: Ageneral framework. in: IEEE.201017th IEEE International Conference on ImageProcessing (ICIP). Hong Kong: IEEE,2010.3129~3132
    [41] Tian Q, Duan J, Chen M, et al. Segmentation based tone~mapping for high dynamicrange images. in: Blanc-Talon J, Kleihorst R, Philips W, et al. Advances Conceptsfor Intelligent Vision Systems. Ghent, Belgium: Springer Berlin Heidelberg,2011.360~371
    [42] Mei Y, Qiu G, Lam K M. Saliency Modulated High Dynamic Range Image ToneMapping. in: IEEE.2011Sixth International Conference on Image and Graphics(ICIG). Hefei, Anhui, China: IEEE,2011.22~27
    [43]罗雪梅,曾平,郑海红等.自适应分区的色调映射算法.华中科技大学学报自然科学版,2012,40(011):93~96
    [44] Shan Q, Jia J, Brown M S. Globally optimized linear windowed tone mapping.IEEE Transactions on Visualization and Computer Graphics,2010,16(4):663~675
    [45] Liu C H, Au O C, Cheng C H, et al. Two-level optimized tone mapping for highdynamic range images. in: IEEE.201017th IEEE International Conference onImage Processing (ICIP). Hong Kong: IEEE,2010.3153~3156
    [46] adík M. Perception motivated hybrid approach to tone mapping. in:. Rossignac J,Skala V. Proceedings of the15th International Conference in Central Europe onComputer Graphics, Visualization and Computer Vision. Campus Bory, Plzen-Bory,Czech Republic: Univ W Bohemia,2007.129~136
    [47] Lee J, Jeon G, Jeong J. Piecewise tone reproduction for high dynamic rangeimaging. IEEE Transactions on Consumer Electronics,2009,55(2):911~918
    [48] Yip K Y, Au O C, Cheung N M, et al. Optimal contrast enhancement fortone-mapped low dynamic range images based on high dynamic range images. in:IEEE. IEEE Pacific Rim Conference on Communications, Computers and SignalProcessing. Victoria, Canada: IEEE,2009.53~58
    [49] Goshtasby A A. Fusion of multi-exposure images. Image and Vision Computing,2005,23(6):611~618
    [50] Bachoo A K. Real-time exposure fusion on a mobile computer. in: Nicolls F.Proceedings of the Twentieth Annual Symposium of the Pattern RecognitionAssociation of South Africa. Stellenbosch, South Africa: PRASA,2009.1~6
    [51] Wu X, Song Z, Yu G, et al. A novel multiple cues based image fusing algorithm forhigh dynamic range image generation. in:. Fourth International Conference onMachine Vision (ICMV11). Singapore: International Society for Optics andPhotonics,2012.1~7
    [52] Várkonyi-Kóczy A R, Rovid A, Hashimoto T. Gradient~based synthesized multipleexposure time color HDR image. IEEE Transactions on Instrumentation andMeasurement,2008,57(8):1779~1785
    [53] Cheng I, Basu A. Contrast enhancement from multiple panoramic images. in: IEEE.2007IEEE11th International Conference on Computer Vision(ICCV). Rio deJaneiro, Brazil: IEEE,2007.1~7
    [54] Vavilin A, Jo K H. Recursive HDR Image Generation from Differently ExposedImages based on Local Image Properties. in: IEEE. International Conference onControl, Automation and Systems. Seoul, South Korea: IEEE,2008.2421~2426
    [55] Cho W, Hong K S. Extending dynamic range of two color images under differentexposures. in: IEEE. Proceedings of the17th International Conference on PatternRecognition. Washington DC, USA: IEEE,2004.853~856
    [56] Jo K H, Vavilin A. HDR image generation based on intensity clustering and localfeature analysis. Computers in Human Behavior,2011,27(5):1507~1511
    [57] Kakarala R, Hebbalaguppe R. A method for fusing a pair of images in the JPEGdomain. Journal of Real-Time Image Processing,2011,1:1~11
    [58] Block M, Schaubert M, Wiesel F, et al. Multi-Exposure Document Fusion Based onEdge-Intensities. in: IEEE.10th International Conference on Document Analysisand Recognition. Barcelona, Spain: IEEE,2009.136~140
    [59] Burt P, Adelson E. The Laplacian pyramid as a compact image code. IEEETransactions on Communications,1983,31(4):532~540
    [60] Burt P J, Kolczynski R J. Enhanced image capture through fusion. in: IEEE. FourthInternational Conference on Computer Vision. Berlin, Germany: IEEE,1993.173~182
    [61] Adelson E H, Anderson C H, Bergen J R, et al. Pyramid methods in imageprocessing. RCA Engineer,1984,29(6):33~41
    [62] Mertens T, Kautz J, Van Reeth F. Exposure fusion. in: IEEE.15th PacificConference on Computer Graphics and Applications. Washington, DC, USA: IEEE,2007.382~390
    [63] Mertens T, Kautz J, Van Reeth F. Exposure fusion: A simple and practicalalternative to high dynamic range photography. Computer Graphics Forum,2009,28(1):161~171
    [64] Kartalov T, Ivanovski Z, Panovski L. Optimization of the pyramid height in thepyramid-based exposure fusion algorithms. Infoteh-Jahorina,2011,10:219~223
    [65] Kartalov T, Ivanovski Z, Panovski L. Fully automated exposure fusion algorithmfor mobile platforms. in: IEEE.201118th IEEE International Conference on ImageProcessing (ICIP). Brussels, Belgium: IEEE,2011.361~364
    [66] Kartalov T, Petrov A, Ivanovski Z, et al. A real time algorithm for exposure fusionof digital images. in: IEEE.15th IEEE Mediterranean Electrotechnical Conference.Piscataway, USA: IEEE,2010.641~646
    [67] Lee C C, Fuh C S. High dynamic range image with two exposures. in: IPPR.Proceedings of IPPR Conference on Computer Vision, Graphics, and ImageProcessing. Sun Moon Lake, Taiwan: IPPR,2012.1~8
    [68] Wang J, Feng S, Bao Q. Pyramidal dual-tree directional filter bank based exposurefusion for two complementary images. in: IEEE.2010IEEE10th InternationalConference on Signal Processing (ICSP). Beijing, China: IEEE,2010.1082~1085
    [69] Wang J, Xu D, Li B. Exposure fusion based on steerable pyramid for displayinghigh dynamic range scenes. Optical Engineering,2009,48(11):1~10
    [70]江铁,朱桂斌,孙奥.基于金字塔变换的多曝光图像融合.计算机技术与发展,2013,23(1):95~98
    [71]唐艳秋,张星祥,李新娥等.基于人眼视觉灰度识别特性的图像动态范围小波变换处理方法.液晶与显示,2012,27(3):385~390
    [72] Wang J, DE X, Lang C, et al. Exposure fusion based on shift-invariant discretewavelet transform. Journal of Information Science and Engineering,2011,27:197~211
    [73] Shen R, Cheng I, Shi J, et al. Generalized random walks for fusion ofmulti-exposure images. IEEE Transactions on Image Processing,2011,20(12):3634~3646
    [74] Song M, Tao D, Chen C, et al. Probabilistic exposure fusion. IEEE Transactions onImage Processing,2012,21(1):341~357
    [75]宋明黎,王慧琼,陈纯等.基于概率模型的高动态范围图像色调映射.软件学报,2009,20(3):734~743
    [76] Raman S, Chaudhuri S. A matte-less, variational approach to automatic scenecompositing. in: IEEE.2007IEEE11th International Conference on ComputerVision(ICCV). Rio de Janeiro, Brazil: IEEE,2007.1~6
    [77] Kotwal K, Chaudhuri S. An optimization-based approach to fusion ofmulti~exposure, low dynamic range images. in: IEEE.2011Proceedings of the14thInternational Conference on Information Fusion (FUSION). Chicago, Illinois, USA:IEEE,2011.1~7
    [78] Shen R, Cheng I, Basu A. QoE-Based Multi-Exposure Fusion in HierarchicalMultivariate Gaussian CRF. IEEE Transactions on Image Processing,2012,22(6):2469~2478
    [79] Zhang W, Cham W K. Gradient-directed multiexposure composition. IEEETransactions on Image Processing,2012,21(4):2318~2323
    [80] Piella G. Image fusion for enhanced visualization: A variational approach.International Journal of Computer Vision,2009,83(1):1~11
    [81] Bae S, Paris S, Durand F. Two-scale tone management for photographic look. ACMTransactions on Graphics (TOG),2006,25(3):637~645
    [82] Farbman Z, Fattal R, Lischinski D, et al. Edge-preserving decompositions formulti-scale tone and detail manipulation. ACM Transactions on Graphics (TOG),2008,27(3):1~10
    [83] Paris S, Hasinoff S W, Kautz J. Local Laplacian filters: edge-aware imageprocessing with a Laplacian pyramid. ACM Transactions on Graphics (TOG),2011,30(4):1~11
    [84] Li Z, Zheng J, Yeo C, et al. Quadratic optimization based small scale detailsextraction. in: IEEE.2011IEEE International Conference on Acoustics, Speech andSignal Processing (ICASSP). Prague, Czech Republic: IEEE,2011.1309~1312
    [85] Li Z, Zheng J, Rahardja S. Detail-Enhanced Exposure Fusion. IEEE Transactionson Image Processing,2012,21(11):4672~4676
    [86] Fattal R, Agrawala M, Rusinkiewicz S. Multiscale shape and detail enhancementfrom multi-light image collections. ACM Transactions on Graphics,2007,26(3):1~9
    [87]林凌,李刚.高精度采集微弱信号的方法与电路.中国.发明专利,200610013461.8,2006:1~6
    [88] Martin D, Fowlkes C, Tal D, et al. A database of human segmented natural imagesand its application to evaluating segmentation algorithms and measuring ecologicalstatistics. in: IEEE. Eighth IEEE International Conference on Computer Vision.British Columbia, Canada: IEEE,2001.416~423
    [89] Grossberg M D, Nayar S K. What is the space of camera response functions?. in:IEEE.2003IEEE Computer Society Conference on Computer Vision and PatternRecognition. Madison, USA: IEEE,2003.602~609
    [90] Grossberg M D, Nayar S K. Modeling the space of camera response functions.IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(10):1272~1282
    [91] Hall R, Hall R. Illumination and color in computer generated imagery. New York:Springer-Verlag,1989.161~243
    [92] He K, Sun J, Tang X. Guided image filtering. in: Springer. European Conference onComputer Vision. Heraklion, Crete, Greece: Springer,2010.1~14
    [93] Bowmaker J K, Dartnall H J. Visual pigments of rods and cones in a human retina.The Journal of Physiology,1980,298(1):501~511
    [94] Kolb H. How the retina works. American Scientist,2003,91(1):28~35
    [95] Adelson E H. Saturation and adaptation in the rod system. Vision Research,1982,22(10):1299~1312
    [96] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: From errorvisibility to structural similarity. IEEE Transactions on Image Processing,2004,13(4):600~612
    [97] Yeganeh H, Wang Z. Structural fidelity vs. naturalness-objective assessment of tonemapped images. in: Kamel M, Campilho A. Proceedings of the8th internationalconference on Image analysis and recognition. Burnaby, BC, Canada: Springer,2011.111~121
    [98] Yeganeh H, Wang Z. Objective assessment of tone mapping algorithms. in: IEEE.201017th IEEE International Conference on Image Processing (ICIP). Hong Kong:IEEE,2010.2477~2480
    [99] Aydin T O, Mantiuk R, Myszkowski K, et al. Dynamic range independent imagequality assessment. ACM Transactions on Graphics (TOG),2008,27(3):1~10
    [100] Li S, Yang B. Multifocus image fusion using region segmentation and spatialfrequency. Image and Vision Computing,2008,26(7):971~979
    [101] Petrovi V, Xydeas C. Objective evaluation of signal-level image fusionperformance. Optical Engineering,2005,44(8):1~8
    [102] Pal N R, Bezdek J C. On cluster validity for the fuzzy c-means model. IEEETransactions on Fuzzy Systems,1995,3(3):370~379
    [103] Fattal R, Lischinski D, Werman M. Gradient domain high dynamic rangecompression. ACM Transactions on Graphics (TOG),2002,21(3):249~256
    [104] Reinhard E, Devlin K. Dynamic range reduction inspired by photoreceptorphysiology. IEEE Transactions on Visualization and Computer Graphics,2005,11(1):13~24
    [105] Li Y, Sharan L, Adelson E H. Compressing and companding high dynamic rangeimages with subband architectures. ACM Transactions on Graphics (TOG),2005,24(3):836~844

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700