B位先驱体法制备PZT/ZrO_2复合压电陶瓷及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文借助B位先驱体法在750℃合成了亚稳态钙钛矿型PZT粉料,在烧结过程中,过量ZrO_2随着温度的升高逐渐析出使整个体系趋向热力学稳定状态,从而形成PZT/ZrO_2复合压电陶瓷材料。研究了四方和三方不同铁电相区域,Nb~(5+)离子软性掺杂和无掺杂情况下,第二相ZrO_2粒子引入对PZT基体各种性能的影响。
     研究中应用了XRD、SEM、TEM、EDS等研究手段,详细分析了第二相ZrO_2粒子的析出温度、析出范围和析出形貌等。结果显示,在Nb~(5+)软性掺杂的情况下在ZrO_2名义含量值a>0.03时XRD检测到单斜相或四方相ZrO_2存在,在无掺杂的三方铁电相区1260℃烧结温度下,在名义ZrO_2含量最大值a=0.05时仍然没有检测到ZrO_2存在,这都说明了PZT本身对铅缺少容忍不同会造成一定的Zr/Ti比例偏移富锆方向。
     在Zr/Ti比例偏移的情况下,电学性能的变化趋势由PZT本身性质决定;在ZrO_2明显析出时,电学性能如d_(33),K_p等有不同程度的下降,但在a=0.05时d_(33)值仍然能保持a=0.00时的90%。
     随着名义ZrO_2含量值a的增大,断裂韧性K_(IC)均有一定的提高,但是四方铁电相区域(51/49)K_(IC)增加幅度(14%)远小于三方铁电相区域(58/42)K_(IC)增加幅度(62%)。三方铁电相区域四方相ZrO_2的存在是其K_(IC)增加幅度很大的主要原因之一。断裂强度σf除了在四方铁电相区ZrO_2析出时有一定程度下降外均升高,这和烧结密度、晶粒尺寸等有一定的关系。
     由于PZT基体和ZrO_2颗粒的物理性质,如弹性模量或者泊松比等差异,在降温过程中引起热失配,残余应力保留在烧结体中。PZT基体受压应力,第二相ZrO_2颗粒受拉应力,但实际烧结体中应力类型和大小与ZrO_2颗粒析出状态有关。如Zr/Ti比例为58/42时,由于四方相ZrO_2的存在,PZT基体中保留的压应力使居里温度降低;而Zr/Ti比例为51/49时,只有单斜相ZrO_2存在,由于马氏体相变和应力释放等原因,居里温度反而上升。
     通过介电-温谱分析,第二相ZrO_2的存在使四方铁电相区域PZT弥散程度加强,使三方铁电相区域PZT弥散程度减弱。
Metastable PZT solid solution powders of perovskite structure are synthesized by B-site precursor method at 750℃. With the increase of temperature, addition of ZrO_2 will precipitate from matrix of PZT because of systems becoming more stable state in thermodynamics, thus PZT/ZrO_2 Piezoelectric ceramic composite was prepared. The effect of ZrO_2 addition on mechanical and piezoelectric properties of composites was investigated in different ferroelectric areas from rhombohedral phase to tetragonal phase and Nb5+ ion-doped.
     Precipitated temperature, range, micrographs of ZrO_2 second phase were studied by using analysis methods such as XRD, SEM, TEM, EDS etc. The results showed that monoclinic or tetragonal zirconia presented when nominal addition of ZrO_2 over 0.03mol/PZNT mol by using XRD studies. There is no zirconia phase in pure PZT (Zr/Ti=60/40) sintering at 1260℃until nominal addition of ZrO_2 over 0.05 mol/PZT. From above we can see that a certain shift of Zr/Ti happened because of tolerance of Pb absence in PZT.
     The change of electric properties is up to PZT self when the shift of Zr/Ti happened. Electric properties such as d_(33) and K_p have a little decrease due to the second phase of ZrO_2, but the value of d_(33) at a=0.05 reaches the ninety percent of the value at a=0.00. Fracture toughness K_(IC) increases in both rhombohedral phase (62%) and tetragonal phase (14%) with the increase of ZrO_2 nominal value a. The bigger extent of increase in rhombohedral phase is the presence of tetragonal ZrO_2. Fracture strengthσf also increased except in tetragonal phase, this is related to the density and grain size and so on.
     There is thermal stress in sintering body because of the mismatch of physical properties such as elastic modulus or poisson ratio between matrix and particle. Compressive stress in PZT matrix and tensile stress in ZrO_2 particle, but real instance is decided to the precipitation state of ZrO_2. For example, Curie temperature decreased when Zr/Ti is 58/42, but increased when Zr/Ti is 51/49. The reason of increase can be explained of martensitic transformation or stress release.
     Dielectric temperature spectra showed that the degree of dispersion enhanced in tetragonal ferroelectric phase and weakened in rhombohedral ferroelectric phase when ZrO_2 can be seen evidently.
引文
[1] B.贾菲,压电陶瓷,北京:科学出版社,1979: 7
    [2]田中哲郎,压电陶瓷材料,北京:科学出版社,1982: 10
    [3]张福学,现代压电学,北京:科学出版社,2001: 117
    [4] G. W. Pierce, Proc. Am. Acad., 1925, 60: 269
    [5] R. W. Wood and A. L. Loomis, The physical and biological effects of intense audible sound on living organismsand cell, Phil., 1927, 4: 417
    [6] J. Valasek, Piezoelectric and allied phenomena in rochelle salt, 1920, 15:537
    [7] G. Busch, P. Scherrer, Naturwiss., 1935, 23: 737
    [8] A. Von Hippel, R. G. Breckenridge, F. G. Chesley, High dielectric constant ceramics, Ind. Eng. Chem., 1946, 38: 1097
    [9] S. Roberts, Dielectric properties of lead zirconate and barium-lead zirconate, J. Am. Ceram. Soc., 1950, 33: 63
    [10] B. Jaffe, et al, J. Res. Nat. Bur. Stand., 1955, 55: 239
    [11] B. Jaffe, R. S. Roth, S. Marzullo, Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics, 1954, 25: 809
    [12] G. A. Smolensky, Soviet Phys. (Solid state), 1950, 1: 150
    [13] H. Ouchi, K. Nagano, S. Hayakawa, Piezoelectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3-PbZrO3 solid solution ceramics, 1965, 48: 630
    [14] Yasuyoshi Saito, Hisaaki Takao, Toshihiko Tani, et al, Lead-free piezoceramics, Nature, 2004, 432: 84~87
    [15]王红丽,刘艳改,无铅压电陶瓷研究进展,山东陶瓷,2007, 30 (5): 30~33
    [16]吴思华,王平,付鹏,无铅压电陶瓷材料的研究现状,佛山陶瓷,2008,2: 35~37
    [17] Chua, NT; Wang, J; Ma, J, Development of lead-free piezoceramic, Advanced structural and functional materials for protection, 2008, 136: 63~66
    [18] Zhang, SJ; Xia, R, Shrout, TR, Lead-free piezoelectric ceramics vs PZT? , J. Electrochem. Soc., 2007, 19 (4): 171~177
    [19] Shrout, TR; Zhang, SJ, Lead-free piezoelectric ceramics: alternatives for PZT? , J. Electrochem. Soc., 2007, 19: 111~124
    [20] Muralt, P, Ferroelectric thin films for micro-sensors and actuators: a review, J. Micromech. Microeng., 2000, (10) 2: 136~146
    [21] Thapliyal, R; Pellision, A; Logvinovich, D, et al, PZT Films on Wafers and Fibers for MEMS Application, Ferroelectrics, 2007: 339~342
    [22] Jang, LS; Kuo, KC, Fabrication and characterization of PZT thick films for sensing and actuation, Sensors, 2007, 7 (4): 493~507
    [23]刘梅冬,许毓春,压电铁电材料与器件,武汉:华中理工大学出版社,1990:17~46
    [24]陆佩文,无机材料科学基础,武汉:武汉工业大学出版社,1996:43
    [25]山东大学压电铁电物理教研室,压电陶瓷及其应用,山东:山东人民出版社,1973:199~317
    [26] JEE, 1979, 10: 37~40
    [27] S. L. Swartz, T. R. Shrout, T. Takenaka, Electric ceramics R&D in the US and Japan, PartⅡ: Japanese View, Am. Ceram. Soc. Bull., 1997, 76 (8): 51~55
    [28] K. Nakamura and Y. Adachi, Piezoelectric transformer using LiNbO3 single crystals, Electron Commun Jpn 3 Fundam Eledtron Sci(USA), 1998, 81 (7): 1~6
    [29]王树和,严宗达,压电薄膜在振动控制中的应用及有限元分析,压电与声光,1997, 19 (4): 277~281
    [30]李光强,黄尚廉,智能结构系统的噪声主动控制方法,压电与声光,1997, 19 (4): 42~46
    [31] M. S. Majdoub, T. Cagin, Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect, Phys. Rev. B., 2008, 77 (125424): 1~9
    [32] B. Noheda, D E Cox, G. Shirane, Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3, Phys. Rev. B., 2000, 63 (014103): 1~9
    [33] Taluro Ikeda, Tatsuya Okano, Masayuki Watanabe, A ternary system PbO-TiO2-ZrO2, Jpn. J. Appl. Phys., 1962, 1 (4): 218~222
    [34] A. Hubert Webster, Ronald C. Macdonald, Wm. S. bowman, The system PbO-ZrO2-TiO2 at 1100℃, J. Can. Ceram. Soc., 1965, 34: 97~102
    [35] Robert L. Holman, Richard M. Fulrath, Intrinsic nonstoichiometry in the lead zirconate-lead titanate system determined by Knudsen effusion, J. Appl. Phys., 1973, 44 (12): 5227~5236
    [36] B. Guiffard, M. Troccaz, Low temperature synthesis of stoichiometric and homogeneous lead zirconate titanate powder by oxalate and hydroxide coprecipitation, Mat. Res. Bull., 1998, 33 (12): 1759~1768
    [37] R. J. Arendt, J. H. Rosolowski, J. W. Szymaszek, Lead zirconate titanate ceramics from molten salt solvent synthesized powder, Mater. Res. Bull., 1979, 14 (5): 703~709
    [38] K. L. Beal, Preparation of lead zirconate titanate solid solution under hydrothermal conditions, Ceram. Powder. Sci., 1987: 33~34
    [39] Chen Huimin, Ma Jiming, Zhu Bin et al, Reaction mechanisms in the formation of lead zirconate titanate solid solution under hydrothermal conditions, J. Am. Ceram. Soc., 1995, 76 (3): 625~629
    [40] R. E. Alonso, P. de la Presa, A.Ayala et al, The stability of PbZr0.52Ti0.48O3 prepared by the sol-gel method, Solid State Commun., 1998,107(4): 183~187
    [41] K. Van Werde, G. Vanhoyland, D. Mondelaers, et al., The aqueous solution-gel synthesis of perovskite Pb(Zr1-x,Tix)O3(PZT), J. Mater. Sci., 2007, 42: 624~632
    [42] S. L. Swartz, T. R. Shrout, Fabrication of perovskite lead magnesium niobate. Mat. Res. Bull., 1982, 17: 1245~1250
    [43] T. R. Shrout, P. Papet, Kim S, et al, Conventionally preparation submicron lead-based perovskite powders by reactive calcinations, J. Am. Ceram. Soc., 1990, 73(3): 1862~1867
    [44] T. R. Shrout, A. Halliyal, Preparation of lead based ferroeletric relaxors for capacitors, Am. Ceram. Soc. Bull., 1987, 66(4): 704~711
    [45] S. Kim, G. S. Lee, T. R. Shrout, Fabrication of fine-grain piezoelectric caramics using reactive calcination, J. Mater. Sci., 1991, 26: 4411~4415
    [46] D. L. Hankey, J. V. Biggers, Solid-state reactions in the system PbO-TiO2-ZrO2, J. Am. Ceram. Soc., 1981, 64(12): 172~173
    [47] S. S. Chandratreya, R. M. Fulrath, J. A. Pask, Reaction mechanisms in the formation of PZT solid solution, J. Am. Ceram. Soc., 1981, 64(7): 422~425
    [48] S. Venkataramani, J. V. Biggers, Reactivity of zirconia in calcining of lead zirconate-lead titanate compositions prepared from mixed oxides, Am. Ceram. Soc. Bull., 1980, 59(4): 462~466
    [49] B. V. hiremath, . I. Kingon, J. V. Biggers, Reaction sequence in the formation of lead zirconate-lead titanate solid solution: Role. of raw materials, Solid State Commun., 1983, 66(6): 790~793
    [50] H. M. Jang R. S. Cho, L. M. Lee, Machanism of formation Pb((Zn, Mg)1/3Nb2/3))O3, J. Am. Ceram. Soc., 1995, 78(2): 297~304
    [51] J. F. wang, J. R. Giniewcz, A. S. Balla, Soft piezoelectric (1-x)Pb(Sc1/2Ta1/2)O3-xPbTiO3 ceramics with high coupling factors and low Qm, Ferroelectr. Lett.,1993, 16: 113~115
    [52] J. R. Giniewcz, S. Balla, L. C. Cross, Pyroelctricresponse and depolarization behavior (1-x)Pb(Sc1/2Ta1/2)O3-xPbTiO3 materials, Ferroelectrics, 1991, 118: 157~164
    [53] N. Kim, W. Huebner, S. J. Jang, et al, Dielectric and piezoelectric properties of lanthanummodified lead magnesium niobate-lead titanate ceramics, Ferroelectrics,.1989, 93: 341~349
    [54] J. C. Shaw, K. S. Lin, I. N. Lin, Modification of piezoelectrics of the Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 ternary system by aliovalent additives. J. Am. Ceram. Soc., 1995, 78(1): 178~182
    [55] Tripathi, A., Tripathi, A.K., Goel, T.C., et al, Ferroelectric and pyroelectric characteristics of A site Nb+5 doped PZT, Electrets., 1996, 9: 878~883
    [56] Sundar, V., Kim, N., Randall, C.A., The effect of doping and grain size on electrostriction in PbZr0.52Ti0.48O3, Ferroelectrics, 1996, 2: 935 ~ 938
    [57] Sugano, S., Yoshimoto, T., Nagai, A., The effect of Nb(V) addition on the properties of PZT prepared by an alkoxide process, Applications of Ferroelectrics, 1990, 6: 584 ~ 587
    [58] A. Hizebry, H. El Attaoui, M. Saadaoui, Effect of Nb and K doping on the crack propagation behavior of lead zirconate titanate ceramics, J. Eur. Ceram. Soc., 2007, 27: 557~560
    [59]周华,锶、铁、钙等离子掺杂锆钛酸铅(PZT)系压电陶瓷结构和性能的研究:[硕士学位论文],天津;天津大学,2005
    [60]路朋献,PZT基压电陶瓷的掺杂改性和低温烧结研究:[硕士学位论文],北京;北京工业大学,2005
    [61] R.F. Zhanga, H.P. Zhanga, J. Mab, Effect of Y and Nb codoping on the microstructure and electrical properties of lead zirconate titanate ceramics, Solid State Ionics, 2004, 166: 219~223
    [62] Ajai Garg, D.C. Agrawal, Effect of rare earth (Er, Gd, Eu, Nd and La) and bismuth additives on the mechanical and piezoelectric properties of lead zirconate titanate ceramics, Mater. Sci. Eng., B, 2001, 86: 134~143
    [63] Hae Jin HWANG, Ken-ichi TAJIMA, Mutsuo SANDO, et al, Microstructure and Mechanical Properties of Lead Zirconate Titanate(PZT) Nanocomposites with Platinum Particles, J. Ceram. Soc. Jpn., 2000, 108 (4): 339~344
    [64] Hae Jin Hwang, Mutsuo Sando, Motohiro Toriyama, Effect of Secondary phase dispersion on mechanical and piezoelectric properties of PZT-based nanocomposites, IEEE, Xplore, 1996: 373~375
    [65] Barbara Milic, Marija Kosec, Tomaz Kosmac, Mechanical and electric properties of PZT-ZrO2 composites, Ferroelectrics, 1992, 129: 147~155
    [66] Xiang Ming Chen, Jing Si Yang, Toughening of PZT Piezoelectric ceramics by in-situ complex structures, J. Eur. Ceram. Soc., 1998, 18: 1059~1062
    [67] K. Tajima, H. J. Hwang, M. Sando, et al, PZT nanocomposites reinforced by small amount of oxides, J. Eur. Ceram. Soc., 1999, 19: 1179~1182
    [68] Ajaik. Garg, D. C. Agrawal, Enhancement in fracture toughness of PZT ceramics by in-situ precipitation of CeO2, Ferroelectrics, 2001, 256: 91~ 102
    [69] Faxin Li, Xiaoxing Yi, Zhiqi Cong, et al, PZT nanocomposites reinforced by small amount of MgO, Mod. Phys. Lett. B, 2007, 21 (24): 1605~1610
    [70] Soon-Jong Jeong, Jung-Bae Kim, Mechanical Toughness and Piezoelectric Properties in a Piezoelectric Composite, Integrated Ferroelectrics, 2007, 90: 12~19
    [71] Minoru Takahashi, Kazuyoshi Baba, Osamu Nishizato, et al, Mechanical and Electromechanical properties of monoclinic ZrO2 fiber/PZT composites, J. Can. Ceram. Soc., 1994, 102 (1): 63~68
    [72] Minoru Takahashi, Terumoto Fujiwara, Hideo Hayashi, et al, Mechanical and Electromechanical properties of tetragonal ZrO2 fiber/PZT composites, J. Can. Ceram. Soc., 1994, 102 (10): 944~949
    [73] Hai-BoLin, Mao-sheng Cao,Quan-Liang Zhao, et al, Mechanical reinforcement and piezoelectric properties of nanocomposites embedded with ZnO nanowhiskers, Scripta Mater., 2008, 59: 780~783
    [74]郭景坤,关于陶瓷材料的脆性问题,复旦学报,2003,42(6):822~824
    [75]顾淑华,浅谈陶瓷脆性与改善脆性的途径,河北陶瓷,2000,28(2):42~43
    [76]闫洪,窦明民,李和平,二氧化锆陶瓷的相变增韧机理和应用,陶瓷学报,2000,21(1):46~50
    [77]郭瑞松,蔡舒,季惠明等,工程结构陶瓷,天津:天津大学出版社,2002,103~106
    [78] Ran-Rong Lee, Arthur H. Heuer, In situ martensitic transformation in a ternary MgO-Y2O3-ZrO2 alloy:Ⅰ, transformation in tetragonal ZrO2 ceramics, J. Am. Ceram. Soc., 1988, 71(8): 694~700
    [79] A. H. Heuer, N. Claussen, W. M. Kriven, et al, Stability of tetragonal ZrO2 particles in ceramic matrices, J. Am. Ceram. Soc., 1982, 65(12): 642~650
    [80] M. Ruhle, L. T. Ma, W. Wunderlich, et al, TEM studies on phases and phase stabilities of zirconia ceramics, Physica B, 1988, 150: 86~98
    [81] Jan Fong Jue, Anil V. Virkar, Fabrication, microstructural characterization, and mechanical properties of polycrystalline t’-zirconia, J. Am. Ceram. Soc., 1990, 73(12), 3650~3657
    [82] Sylvain Deville, Gerard Guenin, Jerome Chevalier, Martensitic transformation in zirconia PartⅠ. Nanometer scale predication and measurement of transformation induced relief, Acta Mater., 2004, 52: 5697~5707
    [83] Sylvain Deville, Gerard Guenin, Jerome Chevalier, Martensitic transformation in zirconia PartⅡ.Martensite growth, Acta Mater., 2004, 52: 5709~5721
    [84] M. V. Swain, L. R. F. Rose, Strength limitations of transformation-toughened zirconia alloys, J. Am. Ceram. Soc., 1986, 69(7): 511~518
    [85] I-Wei Chen, P. E. Reyes Morel, Implication of transformation plasticity in ZrO2-containing ceramics:Ⅰ, Shear and dilatation effects, J. Am. Ceram. Soc., 1986, 69(3): 181~189
    [86] Richard H. J. Hannink, Patrick M. Kelly, Barry C. Muddle, Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc., 2000, 83(3): 461~487
    [87] H. Ruf, Anthony G. Evans, Toughening by monoclinic zirconia, J. Am. Ceram. Soc., 1983, 66(5): 328~332
    [88] Vinayak P. Dravid, Michael R. Notis, Charles E. Lyman, Twinning and microcracking associated with monoclinic zirconia in the eutectic system zirconia-mullite, J. Am. Ceram. Soc., 1988, 71(4): 219~221
    [89] M. Ruhle, N. Claussen, A. H. Heuer, Transformation and microcrack toughening as complementary processes in ZrO2-toughened Al2O3, J. Am. Ceram. Soc., 1986, 69(3): 195~197
    [90] S. R. Witek, E. P. Butler, Zirconia particle coarsening and the effects of zirconia additions on the mechanical properties of certain commercial aluminas, J. Am. Ceram. Soc., 1986, 69(7): 523~529
    [91] Ewald Bischoff, Manfred Ruhle, Twin boundaries in monoclinic ZrO2 particles confined in a mullite matrix, J. Am. Ceram. Soc., 1983, 66(2): 123~127
    [92] Anil V. Virkar, Roger L. K. Matsumoto, Ferroelastic domain switching as a toughening mechanism in tetragonal zirconia, J. Am. Ceram. Soc., 1986, 69(10): 224~226
    [93]张国军,金宗哲,颗粒增韧陶瓷的增韧机理,硅酸盐学报,1994,22(3),259
    [94] Qing Ma, W. Pompe, J.D.French, et al, Residual stresses in Al2O3-ZrO2 composites: a test of stochastic stress models, Acta metal. Mater., 1994, 42 (5): 1673~1681
    [95] Giuseppe Pezzotti, Valter Sergo, Orfeo Sbaizero, et al, Strengthening contribution arising from residual stresses in Al2O3/ZrO2 composites: a piezo-sepctroscopy investigation, J. Eur. Ceram. Soc., 1999, 19: 247–253
    [96] Chun-hway Hsueh, Paul F. Becher, Residual thermal stresses in ceramic composites PartⅠ: with wllipsoidal inclusions, Mater. Sci. Eng., A, 1996, 212: 22~28
    [97] Chun-hway Hsueh, Paul F. Becher, Residual thermal stresses in ceramic composites PartⅡ: with short fibers, Mater. Sci. Eng., A, 1996, 212: 29~35
    [98] Anil V. Virkar, Jan Fong Jue, Measurement of residual stresses in oxide-ZrO2 three-layer composites, Communications of the American ceramic society, 1988, 71(3):148~151
    [99] R. W. Davidge, T. J. Green, The strength of the two-phase ceramic/glass materials, Ournai of materials science, 1968, 3:629~634
    [100] Hideo Awaji, Seong-Min Choi, Eisuke Yagi, Mechanisms of toughening and strengthening in ceramic-based nanocomposites, Mech. Mater., 2002, 34: 411~422
    [101] Jose L. Ortiz-Merino, Richard I. Todd, Relationship between wear rate, surface pullout and microstructure during abrasive wear of alumina and alumina/SiC nanocomposites, Acta Mater., 2005, 53: 3345~3357
    [102] A. Garg, D. C. Agrawal, Effect of net PbO content on mechanical and electromechanical properties of lead zirconate titanate ceramics, Mater. Sci. Eng., B, 1999, 60: 46~50
    [103] H. J. Hwang, K. Watari, M. Sando, et al, Low-temperature sintering and high-strength Pb(Zr,Ti)O3-matrix composites incorporating silver particles, J. Am. Ceram. Soc., 1997, 80(3): 791~93
    [104] Chen Xiang Ming, Yang Jing Si, Toughening of PZT piezoelectric ceramics by in-situ complex structures, J. Eur. Ceram. Soc. 1998, 18: 1059~1062
    [105] R. A Pferner, G. Thurn, F Aldinger, Mechanical properties of PZT ceramics with tailored microstructure, Mater. Chem. Phys., 1999, 61: 24~30
    [106] S. Jiansirisomboon, K. Songsiri, A. Watcharapasorn, et al, Mechanical properties and crack growth behavior in poled ferroelectric PMN-PZT ceramics, Current Applied Physics, 2006, 6: 299~302
    [107] Weon-Pil Tai, Song-Hee Kim, The effect of poling treatment and crystal structure of PZT on fracture toughness and fatigue resistance, J. Mater. Sci. Lett., 2003, 38:1787~1792
    [108] Karun Mehta, Anil V. Virkar, Fracture mechanisms in ferroelectric-ferroelastic lead, J. Am. Ceram. Soc., 1990, 73(3): 56~74
    [109] Sang-Beom Kim, Doh-Yeon Kim, Effect of grain size and poling on the fracture mode of lead zirconate titanate ceramics, J. Am. Ceram. Soc., 1990, 73(1): 161~163
    [110] Alessandra Bianco, Maurizio Paci, Robert Freer, Zirconium titanate: from polymeric precursors to bulk ceramics, J. Eur. Ceram. Soc. 1998, 18: 1235~1243
    [111]王埔,PZT压电陶瓷制备工艺:[本科毕业论文],天津;天津大学,2004
    [112] Rabindra N. Das, P. Pramanik, Chemical synthesis of fine power of lead magnesium niobate using niobium tartarate complex, Mater. Lett., 2000, 46: 7~14
    [113] Yao Li, Jiupeng Zhao, Biao Wang, Low temperature preparation of nanocrystalline Sr0.5Ba0.5Nb2O6 powders using an aqueous organic gel route, Mater. Res. Bull., 2004, 39: 365~374
    [114] Michael M. A. Sekar, Arvind hallliyal, Low-temperature synthesis, characterization, and properties of lead-based ferroelectric niobates, J. Am. Ceram. Soc., 1998, 81:380~388
    [115] Yeshwanth Narendar, Gary L. messing, Kinetic analysis of combustion synthesis of lead magnesium niobate from metal carboxylate gels, J. Am. Ceram. Soc., 1997, 80:915~924
    [116] A. D. Polli, F. F. Lange, C. G. Levi, Metastability of the fluorite, pyrochlore, and perovskite structures in the PbO~ZrO2~TiO2 system. J. Am. Ceram. Soc. 2000, 83(4): 873~81
    [117]郭向华,先驱体法制备锆钛酸铅基压电陶瓷的工艺和性能的研究:[博士学位论文],天津;天津大学,2003
    [118] Andrew D. Polli, Fred F. Lange, Carlos G. Levi, metastablity of the fluorite, pyrochlore, and perovskite structures in the PbO-ZrO2-TiO2 system, J. Am. Ceram. Soc., 2000, 83(4): 873~881
    [119] Marija Cancarevic, Matvei Zinkevich, Fritz Aldinger, Thermodynamic assessment of the PZT system, J. Ceram. Soc. Jpn., 2006, 114(11): 937~949
    [120] Ping-HuaXiang, Xian-LinDong, Chu-DeFeng, et al, Microstructure and mechanical properties of small amounts of In2O3 reinforced Pb(ZrxTi1-x)O3 ceramics, Mater. Res. Bull., 2003, 38: 1147~1154
    [121]关振铎,张中太,焦金生,无机材料物理性能,北京:清华大学出版社,1992
    [122]徐廷献等,电子陶瓷材料,天津:天津大学出版社,1993
    [123]桂红,张孝文,顾秉林,复合钙钛矿型弛豫铁电体的介电机理研究,中国科学,27(2): 134~141
    [124]李广申,李克庆,铅基复合钙钛矿型驰豫铁电体介电理论研究进展,中国陶瓷工业,2004,11(3):34~37
    [125]钟海胜,PMN-PT钙钛矿相的合成及弛豫铁电陶瓷的制备:[硕士学位论文],武汉;武汉理工大学,2003
    [126] George A. Samara, Relaxor properties of compositionally disordered perovskites: Ba- and Bi- substituted Pb(Zr1-xTix)O3, Phys. Rev. B: Condens. Matter, 2005, 71: 224108
    [127] Zhigang Zhu, Kyle Jiang, Graham J. Davies, Dielectric relaxation behavior in Pb(Mn1/3Sb2/3)O3-Pb(Zr,Ti)O3 systems, Smart. Mater. Struct., 2006, 15: 1249~1254
    [128]孟中岩,姚熹,电介质理论基础,北京:国防工业出版社,1979,223
    [129] G. S. Fulcher, Analysis of recent measurement of the viscosity of glasses, J. Am. Ceram. Soc. 1925, 8(6): 339~355
    [130]刘艳改,贾德昌,周玉,铁电陶瓷中电畴翻转研究进展,材料科学与工艺,2006, 14(1): 9~11
    [131]张颖,陈志武,原为XRD法研究电畴疲劳过程中铁电陶瓷PLZT的畴变,金属学报,2004, 40(12): 1299~1304
    [132]张飒,程璇,张颖,铁电陶瓷的电畴及畴变观测研究进展,功能材料,2005, 36(1): 15~18
    [133] O. Guillon, F. Thiebaud, D. Perreux, et al, New consideration about the fracture mode of PZT ceramics, J. Eur. Ceram. Soc. 2005, 25: 2421~2424
    [134] R. Yimnirun, S. Wongsaenmai, S. Ananta, et al, Dielectric properties of PIN-PT ceramics under compressive stress, Current Applied Physics, 2009, 9: 422~425
    [135] R. Yimnirun, N. Triamnak, M. Unruan, Stress-dependent ferroelectric properties of Pb(Zr1/2Ti1/2)O3–Pb(Zn1/3Nb2/3)O3 ceramic systems, Ceram. Int., 2009, 35: 185~189
    [136] Muangjai Unruan, Athipong Ngamjarurojana, Yongyut Laosiritaworn, Influences of perpendicular compressive stress on the dielectric and ferroelectric properties of electrostrictive and piezoelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics, J. Appl. Phys., 2008, 104: 034101
    [137] Jason Sung, Patrick S. Nicholson, Inclusion-initiated fracture model for ceramics, J. Am. Ceram. Soc., 1990, 73(3): 639~644
    [138] Minoru Taya, S. Hayashi, Albert S. Kobayashi, et al, Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress, J. Am. Ceram. Soc., 1990, 73(5): 1382~1391
    [139] P. Duran,C. Moure,Sintering at near theoretical density and properties of PZT ceramics chemically prepared, J. Mater. Sci. Lett., 1985, 20(3): 827
    [140] Takashi Yamamoto,Ferroelectric properties of the PbZrO3-PbTiO3 system, Jpn. J. Appl. Phys., 1996, 35: 5104
    [141] Jane W. Adams, H. Henry Nakamura, Thermal expansion behavior of single-crystal zirconia, J. Am. Ceram. Soc., 1985, 68(9): 228
    [142] M. V. Nevitt, S. K. Chan, J. Z. Liu, et al., The elastic properties of monoclinic ZrO2, Physica B, 1988, 150: 230
    [143] R. E. Cohen, M. J. Mehl, L. L. Boyer, Phase transition and elasticity in zirconia, Physica B, 1988, 150: 1
    [144] A. Bouzid, E. M. Bourim, M. Gabbay, et al., PZT phase diagram determination by measurement of elastic moduli, J. Eur. Ceram. Soc., 2005, 25: 3213
    [145] M. Masaki, H. Hashimoto, W. Masahiko, et al., Measurements of complex materials constants of piezoelectric ceramics:Radial vibrational mode of a ceramic disk, J. Eur. Ceram. Soc., 2008, 28: 133
    [146] E. Hong, R. Smith, S. V. Krishnaswamy, et al., Residual stress development in Pb(Zr,Ti)O3/ZrO2/SiO2 stacks for piezoelectric microactuators, Thin Solid Films, 2006, 510: 213
    [147] W. R. Cook, D. A. Berlincourt, F. J. Scholz, Thermal expansion and pyroelectricity in lead titanate zirconate and barium titanate, J. Appl. Phys., 1963, 34(5): 1392~1398
    [148] Z. Q. Zhuang, Michael J. Haun, Sei~Joo Jang, Compositon and temperature dependence of the dielectric, piezoelectric and elastic properties of pure PZT ceramics, IEEE Transactions on ultrasonics. Ferroelectrics. And Frequency control, 1989, 36(4): 413~416

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700