枸杞多糖对糖尿病大鼠血—视网膜屏障的保护作用及ROCK通路表达的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:明确枸杞多糖(LBP)对糖尿病大鼠血—视网膜屏障的保护作用,进一步探讨枸杞多糖通过调控ROCK信号通路及其底物P-MLC的表达,减少血—视网膜屏障渗漏的作用机制。
     材料与方法:实验一.取健康雄性SD大鼠60只,随机分为3组:CON组:正常对照组;DM组:STZ造模;LBP组:STZ造模成模后予以LBP(250mg/Kg·d)灌胃,DM组予以等量的生理盐水灌胃。分别于4w、8w、12w抽取静脉血,并取眼球。观察大鼠的一般情况;记录各时间点各组大鼠体重变化、血糖值及甘油三酯和胆固醇的浓度;伊文思蓝(EB)45 mg/kg尾静脉注入,分别检测视网膜中EB含量。实验二.健康成年雄性(SD)大鼠54只,分组及给药方法取材时间同实验一,采用HE染色光镜观察各组大鼠视网膜各层组织细胞数量及形态变化。血管铺片形态学观察:视网膜动静脉的形态、管径,同时采取免疫组化方法,检测视网膜血管网VEGF的表达及灰度值半定量分析,采用透射电镜技术观察视网膜毛细血管内皮细胞、周细胞及感光细胞超微结构。实验三.健康成年雄性(SD)大鼠44只,随机分为5组,CON组、DM组、LBP组给药方法取材时间同实验一,F组:成模后法舒地尔(Fasudil)腹腔注射(15mg/kg),L+F组:成模后LBP灌胃+Fasudil腹腔注射,各组于8w取材。分别用免疫组织化学方法检测Occludin、ROCK1表达情况进行半定量分析。免疫印迹方法检测Occludin、ROCK及其底物P-MLC蛋白表达的量,并利用凝胶成像系统对其进行定量分析。实验四.实验细胞RF/6A,MEM培养基继续培养48h,按照1:2-1:4进行传代。分组检测:共分5组,正常对照组:含葡萄糖5.5mmol/L;高糖1组:含葡萄糖30mmol/L;高糖2组:含葡萄糖40mmol/L;LBP+高糖1组:含葡萄糖30mmol/L+LBP(1g/L);LBP+高糖2组:含葡萄糖40mmol/L+LBP(1g/L);于1d、3d、5d、7d进行指标检测。倒置显微镜下观察细胞形态的变化;以辣根过氧化酶(HRP)作示踪剂用二室弥散系统检测RF/6A单层通透性,免疫荧光法观察细胞骨架的变化、Western blot检测ROCK1、Occludin和P-MLC的蛋白表达量,并进行半定量分析。
     结果:
     1.LBP对DM大鼠血糖、血脂及血—视网膜屏障渗漏的影响:
     (1)血糖变化:LBP干预后的各组大鼠对应同时期的DM大鼠的血糖均有明显下降,4w时血糖下降幅度为57%,8w时下降幅度为40%,12w血糖下降幅度为36%,其降血糖效果以4w最为明显,随着病情的进展LBP的降糖效果有所减弱,下降率基本稳定在35%~40%之间。
     (2)体重的变化:DM组成模后,开始出现消瘦,体重下降或增加缓慢,明显低于相同时间段的其他两组大鼠的体重。而LBP组则体重与正常对照组比较略有下降,明显好于DM组。
     (3)血脂的变化:DM组12w时甘油三酯基本达到正常值的3倍,而LBP组12w时甘油三酯的浓度有轻度上升。12w时DM组总胆固醇浓度是正常对照组的1.4倍;而LBP组胆固醇浓度与正常组基本无差异p>0.05。
     (4)EB在血—视网膜屏障渗漏的变化:DM组大鼠EB渗漏量4w、8 w、12 w分别增加了2.1倍、2.3倍、2.7倍。而枸杞多糖组较糖尿病组以上三个时间点EB渗透量降低了50%、40%、27%,组间比较p<0.01。前4w保护作用表现就的最明显。
     2.LBP对DM大鼠血—视网膜屏障形态学变化的影响:
     (1)HE染色光镜观察:
     12wDM组神经纤维层断裂明显;节细胞、内颗粒层细胞排列明显紊乱;毛细血管明显扩张,数量增加。4wLBP组、8wLBP组各层组织形态与正常组织基本无明显差别,12wLBP组仅出现内、外颗粒层排列稍有不规则,毛细血管的轻度扩张。
     (2)视网膜血管铺片:12w DM组毛细血管网迂曲,扭结,某些部位出现节段性膨大,管腔狭窄甚至闭塞。周细胞和内皮细胞有所减少;12wCON DM、LBP组VEGF灰度值216.13±2.71、105.30±4.25、176.72±4.31。组间有明显差异p<0.05,DM组并随着病程的进展,VEGF表达的量不断增高。
     (3)电镜下超微结构的改变:12w DM组大鼠视网膜基底膜进一步增厚,血管内皮细胞及周细胞肿胀,胞质内线粒体肿胀变性,管腔可出现扩张。视杆细胞膜盘模糊,出现溶解、断裂,间隙进一步扩大。12w LBP胞质内部分线粒体轻度肿胀变性,基底膜增厚不明显,毛细血管壁完整,管腔无扩张。视杆细胞,膜盘结构略有些模糊,结构开始出现紊乱,但纹理尚清。
     3.枸杞多糖对糖尿病大鼠血—视网膜屏障保护作用机理的研究:
     (1)免疫组化法检测的Occludin表达:主要分布在视网膜内五层上。灰度值12w时,CON组143.70±2.29;DM组173.18±3.78;LBP组153.02±3.59,DM组表达较正常对照组显著减少。随着糖尿病视网膜病变时间的延长而逐渐下降。8w各治疗组与DM组比较,Occludin表达量明显增加。F+L组效果最好(p<0.05),LBP与Fasudil组之间无明显差异(p>0.01)
     (2)免疫组化法检测的ROCK1表达:主要分布在神经节细胞层和内颗粒层,灰度值12w时,CON组178.32±5.92;DM组155.91±2.76;LBP组178.82±4.33,DM组从4w开始减弱,并随着病程的延长,ROCK1表达的量逐渐增加,而LBP组ROCK表达量并没有明显的增加。各治疗组间比较,F+L组与正常组无明显差异(p>0.05),治疗效果最好,Fasudil组的作用要比LBP的效果明显一些(p<0.05)。
     (3)免疫印迹法检测Occludin蛋白表达:DM组随着病程的延长,Occludin蛋白的量逐渐下降,组间有明显差异p<0.01,而LBP组3.57±0.58;F组3.65±0.71;F+L组4.48±0.53,LBP组与F组比较LBP组表达略低,但无明显统计学意义P>0.05。F+L组表达量高于其他两治疗组p<0.01,与CON组相接近。
     (4)免疫印迹法检测ROCK1蛋白表达:各组DM组大鼠ROCK蛋白表达随着病程的延长量逐渐上升,组间有明显差异p<0.01;而LBP组3.14±0.51;F组3.05±0.42;F+L组2.62±0.51,LBP组与F组比较LBP组表达略高,有统计学意义p<0.05。F+L组表达量高于其他两治疗组p<0.01,与CON组相接近。
     (5)免疫印迹法检测P-MLC蛋白表达:各组DM组大鼠ROCK蛋白表达随着病程的延长量逐渐上升,组间有明显差异p<0.01,而LBP组2.97±0.42;F组2.78±0.53;F+L组2.44±0.47,LBP组与F组比较LBP组表达略高,有统计学意义p>0.05。F+L组表达量高于其他两治疗组p<0.01,与CON组相接近。
     4.枸杞多糖对高糖培养下视网膜血管皮细胞Rho/ROCK信号传导通路的影响:(1)正常RF/6A呈单层扁平上皮状,高糖2组7d组内皮细胞收缩明显,有的伸出长长的伪足,边界模糊,细胞间形成明显的裂隙,细胞生长数量明显较对照组少。高糖1组则于5d后形态开始出现变化。而LBP+高糖1组、LBP+高糖2组,仅于7d时,细胞略有些变圆,细胞数量略少。
     (2)RF/6As单层通透性的变化:3、5、7 d高糖组HRP的光密度值明显高于正常对照组(p<0.01),尤其高糖2组渗漏更加明显。而LBP则能逆转这种因高糖造成的渗漏(p<0.01)。尤以LBP+高糖1组效果较理想,与对应的高糖1组通透性明显降低(p<0.01)(3) F-actin形态及分布的变化:对照组F-actin分布均匀,呈网状有序排列,细胞相互融合,连接紧密。高糖2组7d外周致密带明显断裂,胞质内应力纤维断裂,细胞周边出现“绒毛状”短的指状突起,“空洞状”裂隙增大,细胞近似脱落状态。LBP+高糖2组7d外周致密带进一步变细,并且部分出现断裂,细胞间开始出现裂隙,但细胞形态明显好于高糖7d组。(4)ROCK1蛋白表达量:随葡萄糖浓度的增加而升高,与β-actin的光密度比值,正常组0.54±0.25、高糖1组0.85±0.31、高糖2组1.321±0.38,高糖1组和高糖2组与对照组比较p<0.01,而这种增高趋势能被LBP所逆转,在葡萄糖浓度为30mmol/L的条件下LBP抑制ROCK1表达的作用更明显。(5)P-MLC蛋白表达量:表达量随葡萄糖浓度的增加而升高,与β-actin的光密度比值,正常组1.34±0.25、高糖1组2.45±0.31、高糖2组3.32±0.38,高糖1组和高糖2组与对照组比较p<0.01,LBP抑制P-MLC表达的升高,LBP+高糖1组1.38±0.27,LBP+高糖2组1.87±0.51。(6) Occludin蛋白表达量:随着葡萄糖浓度的增加Occludin蛋白表达量逐渐下降,LBP—高糖1组0.90±0.16,LBP—高糖2组0.69±0.14,各治疗组均可明显提升其相对应高糖组Occludin表达的量,有明显统计学意义p<0.01,尤其LBP-高糖1组可明显抑制Occludin表达的量的下降。
     结论:
     1.LBP可以显著减低糖尿病大鼠的血糖、血脂并能降低血-视网膜屏障的渗漏。
     2.LBP可以减低糖尿病大鼠的视网膜血管上VEGF的表达,并能减轻血管内皮细胞和周细胞的水肿,减少基底膜的增厚,并减轻视细胞的损害。3.DR的过程中确实存在着ROCK通路的激活,ROCK及其底物P-MLC表达的上调而该过程可以被LBP所阻断,减低以上信号分子的表达,通过稳定Occludin的表达,起到保护血-视网膜屏障的作用。4.LBP可以明显减轻体外高糖环境培养下的单层EC的渗漏,通过抑制ROCK及其底物P-MLC该信号通路,而起到稳定细胞骨架,维持紧密连接的作用。
Object:To investigate the protection effects of lycium bararum polysaccharides (LBP) on blood-retinal barrier (BRB) in diabetic rats, and the mechanism of improving the leakage of BRB via ROCK signaling pathway and induced expression of P-MLC.
     Materials and methods:Experiment One:Fifty four male SD rats were randomly divided into 3 groups. CON group:normal control rats; DM group: diabetes model group; LBP group:diabetes model rats were intragastric administrated with LBP(250mg/Kg·d). DM group were intragastric administration with normal sodium. Blood sample were extracted at 4w, 8w,12w as well as eye globe. General condition, the blood glucose, the body weight, triglyceride and cholesterinwere determined on on 4w,8w and 12w; caudal vein injection evans blue (EB) 45 mg·kg-1, EB content were detected in retina. Experiment Two:Fifty four male SD rats(grouped and admisnistrated in the same way as experiment one). Cell amount and morphologic changes in each layer retina were observed by hematine and eosine(HE) stain with commonmicroscope, Retinal vascular preparations were performed by using trypsin digestion, morphology changes was reviewed, such as shape and calibre of arteriole and veinlet in rats retina and the quantity and appearance of vascular endothelial cells and pericytes.By immunohistochemistry assessment the VEGF expression of retinal vessel net and semiquantitative analysis with cell image analysis system, ultrastructural organization of micrangium endothelial cell, perithelial cell and photosensory cell were observed under transmission electron microscope. Experiment There:healthy adult masculinity SD rats 44 were divided 5 groups, medication and the time of making sample in CON group, DM group, LBP group were same as experiment two. F group: intraperitoneal injection fasudil (15mg/kg) after induction of diabetic model; L+F group:intraperitoneal injection fasudil (15mg/kg) at same as intragastric administration with LBP(250mg/Kg·d), to make sample at 8w. Immunohistochemistry assessment the Occludin、ROCK1 expression and semiquantitative analysis. Western blot was used to determine the expression of Occludin, ROCK1 and substrate P-MLC and were quantitative analysised by gelatum imaging system. Experiment Four:macaque choroids-retinal endothelial cells (RF/6As), The third generation of cells were treated with 5.5 mmol/L isoosmia glucose (normal control group),30 mmol/L glucose(high-glucose 1 group),40 mmol/L glucose (high-glucose 2 group),30 mmol/L glucose+1g/L LBP (LBP+H-G 1 group)and 40 mmol/L glucose+1g/L LBP (LBP+H-G 2 group) respectively. Morphologic changes of RF/6As in different groups were observed under the inverted microscope at the 1st,3rd,5th and 7th day after culture. Horseradish peroxidase (HRP) was used as a tracer agent to detect the permeability of monolaye RF/6As in transwell chamber. Cytoskeleton distribution in different groups was determined by using immumof luorescence, Western blot was used to determine the expression of ROCK1, Occludin and P-MLC at 1st,3rd,5th and 7th day. Results:
     1. The effect of LBP on the blood glucose, the blood fat and BRB leakage of diabetes rats
     (1)The changes of the blood glucose in different groups:The blood glucose of each LBP group decreased obviously than the DM group at the same time, the blood glucose decreased as 57% in 4w, decreased as 40% in 8w, decreased as 36% in 12w. The best outstanding effective in 4w. Accompaning the advancemen of desease, LBP's the effective of declining the blood glucose weakened and lasted between 35%-40%
     (2)The changes of body weight in different groups:DM group rats'average body weight declined insteaded of increasing, but increased slowly in fllowing two months and that obvious lower than the other group's. but LBP group rats'body weight decreased lightly, that were most better than DM group's.
     (3) The changes of body-fat in different groups:DM group's TGL is higher 2 time than the normal value, but LBP group's increased lightly in 12w, while the density of cholesterol total in blood of DM group was 1.4 time than the normal control group's. As the seam time density of cholesterol total in blood of LBP group was not difference P>0.05
     (4) The leakage of EB in different groups:The standard curve formula was calculated:y=0.0818x+0.0023. the amount of EB leakage DM group rats were higher 2.1,2.3,2.7times than the control group rats in 4w,8w,12w respectively. But the amount of LBP group's were decreased 50%、40%、27%, comparison among groups were significance P<0.01. The protection were significant at first 4w.
     2 The morphology changes of LBP on BRB in diabetes rats.
     (1) The samples were stained with (HE) to examine the morphology changes: 12w DRgroup:nerve fiber layer rupture obviously;ganglion cells and internal granular layer cells disorded, micrangium obviously expand, vessel wall became thicker, the amount of micrangium increased. Every layer morphous were same as normal tissue in 4wLBP,8wLBP groups, only inner ane externa granular layer cells became anomalism lightly, and micrangium expanded lightly.
     (2) Retinal vascular preparation to observe:Capillary network became winding and kink, caliber became disparity. Some intumescentias shaw in some parts, even lumens were narrow or blocked up. pericytes and endothelial cells reduced in the sample of 12w DM group; gray scale of VEGF in every groups were 216.132.71,105.30±4.25,176.72±4.31 in 12th weeks. Obviously difference were among groups P<0.05. Expression of VEGF continual increase, comparing LBP group with control group had obviously statistics difference P<0.01
     (3) Ultramicrostructure changes under transmission electron microscop In 12w, the nuclear metachromatin in the pericytes and endothelial cells clumped together in a dense mass at the side, the capillaries expanded and the basementmembrane increased. The membrane disk space swere distinctly enlarged, dividing and dissolving locally. Rod cell nuclei showed pyknosis and chromatin condensation. The condrocyte in the inner segments of the rods swelled and even denatured in the DM group. while, the cytochondriome swelled slightly. Basement membrane were thicker slightly. Membrane disks in rods were unclear and spaces between them were slightly enlarged but still maintain the texture.
     3. Mechanism of the protection of LBP on BRB in diabetic rats
     (1) Occludin expression determined by Immunohistochemistry:Occludin expressed at inner four layers of retina and shew yellow or brown. In 12w, gray scale of CON group, DM group, LBP group were 143.70±2.29, 173.18±3.78,153.02±3.59. The value of DM group decreased significantly than CON group's, and following the time prolong, the expression decreased. In 8w, every therapy group expressed Occludin highly than DM group, Effective of F+L group was best. There was no manifest difference between LBP group and Fasudil group.
     (2) Rock1 expression:Rock1 expressed main at retinal ganglial cells layer and internal granular layer, In 12w, gray scale of CON group, DM group, LBP group were178.32±5.92,155.91±2.76,178.82±4.33. The value of DM group began falling from 4 week, and following the time prolong, the expression increased, In 8w, every therapy group expressed Rock1 less than DM group, Effective of F+L group was best. Effective of Fasudil group was better than that of LBP group (p<0.05).
     (3)The expression of Occludin:Accompaning the prolong course of disease, the expression of Occludin decreased gradually. There were obvious difference among groups p<0.01, The value were 3.57±0.58,3.65±0.71,
     4.48±0.53 in LBPgroup, F group, F+L group. The expression of LBP group was litter less than F group of, but there wasn't statistical significance p>0.05.That of F+L group was the highest, nearly CON group's.
     (4) The expression of Rockl by Western blot to test:Accompaning the prolong course of disease, the expression of Rockl increased gradually.There were obvious difference among groups p<0.01, The value were 3.14±0.51,3.05±0.42,2.62±0.51 in LBPgroup,F group, F+L group. The expression of LBP group was litter more than F group of, there was statistical significance p>0.05. That of F+L group was the best, nearly CON group's.
     (5) The expression of P-MLC by Western blot to test Accompaning the prolong course of disease, the expression of Rockl increased gradually, The expression of Rockl by Western blot to test, There were obvious difference among groups p<0.01, The value were 2.97±0.42,2.78±0.53, 2.44±0.47. The expression of LBP group was litter more than F group of, there was statistical significance.p>0.05. That of F+L group was the best, nearly CON group's.
     4. Effects of LBP on the Rho/ROCK signal pathway of retinal vascular endothelial cell in high glucose condition:
     (1)Normal RF/6As are adherent monolayer simple squamous epithelium, Deformed RF/6As were gradually increased with the prolong of time in glucose group in, but the cells shape was near normal in LBP+hing glucose groupone and LBP+hing glucose group two. Only cell became round and the amout of cells were reduced lightly.
     (2)Monolayer RF/6As permeability:The A values of HRP were significantly enhanced in 3,5,7 days after treated in glucose group compared with isoosmia glucose group (P<0.01), especially high glucose group two were Severity. And those in high glucose+LBP group were considerablly declined in comparison with high glucose group in various time points (P<0.01).
     (3)Morphous and distribution changes of F-actin:The rupture of stree fibers contructed by F-actin, deformation and digitation of RF/6As were exhibited in 40 mmol/L glucose group, in 7days,but no similar findings were seen in isoosmia glucose and high glucose+LBP group under the fluorescence microscope.
     (4)Expression of ROCK1:Expression of ROCK1 was gradually arised with the add of glucose concentration comparison with isoosmia glucose group (P<0.01), Expression of isoosmia glucose group, high glucose group one, high glucose group two were 0.54±0.25,0.85±0.31,1.32±0.38, and that in high glucose+LBP group was significantly lower than glucose group (P<0.05). The effect was best in 30 mmol/L glucose+LBP group.
     (5)Expression of P-MLC:Expression of ROCK1 was gradually arised with the add of glucose concentration comparison with isoosmia glucose group (P<0.01), Isoosmia glucose group expressed 1.34±0.25, high glucose group one expressed 2.45±0.31、high glucose group two expressed 3.32±0.38, LBP canrefrain the increase of P-MLC.
     (6)Expression of Occludin by Western blot:Expression of ROCK1 was gradually declined with the add of glucose concentration comparison with isoosmia glucose group (P<0.01),30 mmol/L glucose+LBP group expressed 0.90±0.16,40 mmol/L glucose+LBP group expressed 0.69±0.14, LBP can enhance obviously the expression of Occludin in high glucose environment Conclusion:
     1. LBP significantly decreases blood glucose, blood-fat and BRB leakage in diabetes Rats.
     2. LBP decreases the expression of VEGF on retina micrangium in diabetes Rats, as well as improves the edema of vascular endothelial cells, and pericytes, ameliorate basement membrane thickening, prevent the damage of visual cells.
     3. ROCK pathway is activated in the pathology of DR. The expression of ROCK and its substrate P-MLC increase, which is blocked by LBP and leads to the decreased expression of the molecular signal, stabilizes the expression of occluding, protects BRB.
     4. LBP significantly decreases the leakage of monolayer permeability of vascular endothelial cell under the condition of high glucose, which maintains the tight junction via inhibiting ROCK and its substrate P-MLC signal pathway and stabilizes the cytoskeleton.
引文
[1]Fong DS, Aiello L,l. Diabetic retinopathy. Gardner Diabetes Care,2003; 26:226-229
    [2]向红丁等.1997年全国糖尿病流行病学特点基线调节报告[J].中国糖尿病杂志,1998,6:131
    [3]Lorenzi MGC. Early eellularnad moleeular changes in dueed by diabetes in the retina. Dibaetologia,2001,44:791-804
    [4]Gotte M, Joussen AM, Klein C, etal. Role of syndecan-1 in leukocyte-endothelial interactions in the ocular vasculature[J]. IOVS,2002, 43(4):1135-1141
    [5]马晓萍;袁非,血管内皮生长因子与早期糖尿病大鼠视网膜屏障破坏的相关性[J]复旦学报(医学版)2008,35(3):427-430
    [6]Itoh M, Furuse M, Morita K, et. al.Direct Binding ofThree Tight Junction-Associated MAGUKs,ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins[J]. J Cell Biol,1999,147(6):1351-1363
    [7]刘学政,萧鸿,王中彬,等.糖尿病早期大鼠视网膜毛细血管细胞凋亡研究[J].眼科研究,2001,19:35—38
    [8]KernTS, Tang J, Mizutani M, etal. Respone of capillary cell death to aminoguanidine prediets the development of retinopa-thy:comparison of diabetes and galactosemia. Invest Ophthal-mol Vis Sci,2000,41:3972-3978
    [9]Joussen AM, Poulak iV, Mitsiades N, etal. Suppression of Fas-FasL-indueced endothelial cell apoptosis prevents diabetie blood-retinal barrier in a model of strepeozotocin-in-duced diabetes. FASEBJ,2003, 17:76-78
    [10]Mashima T, Naito M, Tsuruo I. Caspase-mediated cleavage of cytoske-letal actin plays a positive role in the process of morphological apoptosis[J]. Oncogene,1999,18(15):2423-2430
    [11]Kamada S, Washidn M, Hasegawa JI, et al. Involvement of caspase-4 (-like) protease in Fas-mediated apoptotic pathway[J]. Oncogene, 1997,15(3):285-290
    [13]Matsui T, Amano M, Yamaoto T,etal. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for the small GTP binding protein Rho[J].EMBO J,1996,15 (9):2208-2216
    [12]Wibberley A, Chen Z X, HU E, et al. Expression and functional role of Rho-kinase in rat urinary bladder smooth muscle[J]. BrJPharmacol, 2003,138(5):757-766
    [14]Gutjahr MC, Rossy J, NiggliV. Role of Rho, Rac, and Rho-kinase in posphorylation of myosin light chain, development of polarity, and spontaneousm igration of Walker256 carcinosarcoma cells [J]. Exp CellRes,2005,308(2):422-438
    [15]Wetts chureckN, OffermannsS. Rho/Rho-kinasemediated signaling in gphys iol-ogy and pathophysiology [J]. J Mol Med,2002,80(10): 629-638
    [16]Takai Y, Sasaki T, Matozaki T. Small GTp-binding proteins [J]. PhysiolRev,2001,81(1):153-208
    [17]Adamson R H, Curry F E, Adamson G, et al. Rho and rho kinase modulation of barrier properties:cultured endothelial cells and intact microvessels ofrats andmice[J]. JPhysio,1 2002,539(Pt1):295-308
    [18]Carbajal JM, Schaeffer RC. RhoA inactivation enhances endothelialr function. Am J Physiol,1999;277:C955-C964barrie
    [19]田丽梅.近年来中药枸杞的研究进展[J].中国中药杂志,2006,31(19):1603-1607
    [20]王淑静,杨建军·两种中药多糖对巨噬细胞超微结构影响的分析[J]·宁夏医学院报,2000,22:315-317
    [21]邱世翠,李海滨,彭启海,等·枸杞对小鼠淋巴细胞增殖和IL-2产生的影响[J]·中国中药科技,2001,8:166
    [22]杨建军,胡淑婷,张焱,等·枸杞多糖对培养心肌细胞自由基损伤的超微结构影响[J]·中国中医基础医学杂志,2001,7:37-39
    [23]王建华,张民,甘璐,等·枸杞多糖-1对羟自由基所致小鼠肝线粒体损伤的作用[J]·中国药学杂志,2001,36:669-672
    [24]朱彩平,张民.枸杞多糖的组成及结构分析[J].中草药,2006,37(6):872-874
    [25]杨建军,胡淑婷,张淼,等.枸杞多糖对排演心肌细胞自由基损伤的超微结构的影响[J].中国中医基础医学杂志,2001,7(1):37
    [26]吕小迅,黄瑶,等.枸杞多糖对地塞米松诱导的小鼠脾脏细胞凋亡的影响[J].广东药学院学报,2007,23(2):37-178
    [27]何剑峰,周伟平,仇宜解.糖尿病视网膜病变患者红细胞免疫功能的变化及枸杞的治疗效应[J].中国中医眼科杂志,1998,8(2):70-73
    [28]何剑峰,周伟平,仇宜解,等.枸杞对糖尿病视网膜病变患者抗氧化反应作用的临床研究[J].中国中医眼科杂志,1998,8(2):74-76
    [29]何剑峰,仇宜解,鲍连云,等.枸杞在糖尿病大鼠视网膜组织抗氧化反应中的作用[J].中国中医眼科杂志,1997,7(3):131-134
    [30]Lee AY, Chung SK, Chung SS. Demonstration that polyol accumulation is respon-sible for diabetic cataract by the use. of transgenic mice expressing thealdose reductase gene in the lens.Proc Natl Acad Sci,1995:92:2780-2784
    [31]Brownlee M. Advanced protein glycosylation in diabetes and aging. AnnuRev Med,1995:46:223-234
    [32]Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes,1998:47:859-866
    [33]Giardino I, Edelstein D, Brownlee M. BCL-2 expression or antioxidant sprevent hyperglycemia-induced formation of intracellular advanced glycationend productes in bovine endothelial cells. J Clin Invest,1996:97:1442-1428
    [34]Diabetes control and complications trial research group. The effect ofintensive treatment of diabetes on the development and progression of long termcomplications in the insulin-dependent diabetes mellitus. NEng JMed 1993:329:977-986
    [35]UKPDS group. Intensive blood-glucose control with sulphonylureas orinsulin compared with conventional treatment and risk or complications inpatients with type 2
    [36]孙兴珍,王大为,李军.缺氧性肺动脉高压大鼠肺组织小G蛋白Rho相关激酶1的表达及其干预作用[J].2006,21(1):26—28。
    [37]朱彩平,张声华.枸杞多糖对高脂血症小鼠血脂及脂质过氧化的影响[J].营养学报,2005,27(1):79。
    [38]苏菁,徐宗佩.中药防治脂肪肝实验研究进展[J].时珍国医国药,2006,17(7):1287
    [39]齐春会,张永祥,赵修南.枸杞粗多糖的免疫活性[J].中国药理学与毒理学杂志,2001,15(3):180
    [40]田丽梅.近年来中药枸杞的研究进展[J].中国中药杂志,2006,31(19):1603-1607
    [41]刘长建,姜波,刘亮,等.枸杞子多糖提取工艺优化及体外抗氧化活性研究[J].时珍国医国药,2009,20(3):661-663
    [42]王红丽,杨孝来.枸杞多糖的抗脂质过氧化作用研究[J].卫生职业教育,2009(17):112-113
    [43]包海花,袁晓环.枸杞对老年大鼠脑NO、GSH-PX、LIP含量影响的实验研究[J].牡丹江医学院学报,2007.28(6):18-20
    [44]宋育林,曾民德,陆伦根,等.杞多糖对高脂饮食诱导的脂肪肝大鼠模型的影响[J].安徽医药,2007:11(3):202-204
    [45]李德远,汤坚,徐现波,等.枸杞多糖对慢性辐射小鼠细胞凋亡及bcl-2基因表达的影响[J].营养学报.2005,27(3):236-237
    [46]汪朝阳,黄秀榕.枸杞多糖对氧化损伤大鼠晶状体上皮细胞凋亡的调控眼[J].眼视光学杂志,2003,5(2),89-71
    [47]吕小迅,黄瑶.枸杞多糖对地塞米松诱导的小鼠脾脏细胞凋亡的影响[J].广东药学院学报.2007,23(4):178-181
    [48]田丽梅,王秀梅.枸杞液治疗2型糖尿病35例[J]实用中医药杂志,2004,20(6):337
    [49]方建国,丁水平,田庚元,等.枸杞多糖药理作用与临床应用[J].医药导报,2004,23(7):484
    [50]罗琼,李瑾伟,张声华,等.枸杞多糖-X组分对糖尿病家兔降血糖的效果[J].营养学报,1997,19(2):173-176
    [51]王玲,张才军,李维波,等.枸杞多糖-D对四氧嘧啶糖尿病小鼠高血糖的防治作用[J].河北中医,2000,22(2):159-160
    [52]田丽梅,陈卫.枸杞多糖对α-葡萄糖苷酶的抑制作用[J].华西药学杂志,2006,21(2):131-133
    [53]徐曼艳,张红锋,王煜飞,等.枸杞多糖对四氧嘧啶损伤的离体大鼠胰岛细胞的作用[J].河北中医,2002,24(8):636-638
    [54]张新,项树林,崔晓燕,等.枸杞多糖对小鼠淋巴细胞信号系统的效应[J].中国免疫学杂志,1997,13(5):289-292
    [55]Arthur W, Dan R L. Signal tansduction by lymphocyte antigen receptors [J]. Cell,1994:76:263
    [56]李海波,朱帆,梅之南.枸杞多糖抗肿瘤作用的免疫学机理的探讨[J].中国医院药学杂志,2005,25(2):115-117
    [57]齐春会,张永祥,陈保文,等.枸杞多糖体外对正常及衰老小鼠免疫细胞功能的作用及作用机理的初步研[J].中国免疫学杂志1999,15(9):419
    [58]刘淼,唐其柱,王晓玲,等.枸杞多糖对大鼠心室肌细胞L型钙电流的影响[J]武汉大学学报,2009,30(1):57-60
    [59]何剑峰,周伟平,仇宜解,等.糖尿病视网膜病变患者红细胞免疫功能的变化及枸杞的治疗效应[J].中国中医眼科杂志,1998,8(2):70-73
    [60]何剑峰,仇宜解,鲍连云,等.枸杞在糖尿病大鼠视网膜组织抗氧化反应中的作用[J].中国中医眼科杂志,1997,7(3):131-134
    [61]何剑峰,周伟平,仇宜解,等.枸杞对糖尿病视网膜病变患者抗氧化反应作用的临床研究[J].中国中医眼科杂志,1998,8(2):74-76
    [62]穆冰,刘晓峰.枸杞多糖的急性毒性及致突变性[J]·环境与职业医学,2002,19:201-202.
    [63]Robison WG, Laver NM, Jacot JL. Efficacy of treatment after measure-able diabetic like retinopathy in galactose fedrats [J]. Invest Ophthal MolVis Sc, i 1997,38(6):1066-1073
    [64]Hirschi KK, DAmore PA. Pericytes in the microvasculature f[J].Cardiovasc Res,1996,32(4):687-698
    [65]Chibber R, Ben-mahmud BM, Chibber S, et al Leukocytes in diabetic retinopathy[J]. Curr Diabetes Rev,2007,3(1):3-14
    [66]Hosoda Y, Okada M, Matsumura M et al. Epiretinal membrane of proliferative diabetic retinopathy:an immunohistochemical study[J]. Ophthalmic Res 1993;25(5):289-94
    [67]Wettschureck N, Offermanns S.Rho/Rho-kinase mediated signaling in physiology and pathophysiology. [J] Mol Med,2002,80(10):629-638
    [68]Wennerberg K, Rossman KL, DerCJ. The Ras superfamily at a glance[J]. JCell Sc, i 2005,118 (5):843-846
    [69]WilliamsCL. The polybasic region of Ras and Rho family small GTP ases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences[J]. Cell Signal 2003, 15(12):1071-1080
    [70]Mueller BK, Mack H, Teusch N. Rho kinase, a promising drug target forneurological disorders [J]. Nat Rev Drug Discov,2005,4:387-398
    [71]Riento K, Ridley AJ. Rocks:multifunctional kinases in cell behaviour [J]. Nat Rev Mol Cell Bio,l 2003,4:446-456
    [72]Yamaguchi H, Miwa Y, KasaM, et al. Structural basis for-induced-fit binding of Rho-kinase to the inhibitor Y-27632 [J]. J Biochem(Tokyo),2006,140:305-311
    [73]van NieuwAmerongen GP, van Delft S, VermeerMA, et al. Activation of RhoA by thrombin in endothelial hyperpermeability:role of Rho kinase and protein tyrosine kinases[J]. Circulation research,2000,87(4): 335-340
    [74]Riento K. RidleyAJ. Rocks multifunctional kinases in cell behaviour [J].Nat Ret Mol Cell Biol.2003.49(6):446-456
    [75]BrownJH. Del RE. DP. Sussman MA. The Rac and Rho hall of fame:a decade of hypertrophic singaling hits [J].Circ Bes.2006.98(6):730-742
    [75]张永伟,刘卓,左瑾,等·细胞骨架与血糖调节[J]·生命科学,2005;7(2):159-164
    [76]Brown RC, Davis TP·Hypoxia/aglycemia alters expression of occl-uding and actin in brain endothelial cells [J]·Biochem BiophysResCommun,2005; 327(4):1114-23
    [77]Goode BL, Drubin DG, BarnesG. Functional cooperation between themicrotubule and actin cytoskeletons. CurrentOpinion in CellBiology,2000,12:63-71
    [78]Keezer SM, IVIE SE, Krutzsch HC, et a.l Angiogenesis inhibitors target the endothelial cell cytoskeleton through altered regulation of heat shock protein 27 and cofilin, Cancer research,2003,63: 6405-6412
    [79]Jackson SJ, Singletary KW, Venema RC, et a.1 Sulforaphane suppresses angiogenesis and disrupts endothelial mitotic progression and microtu-bule polymerization. Vascular Pharmacology,2007,46:77-84
    [80]KreisS, SchfnfeldHJ, MelchiorC, eta.l The intermediate filament prot-ein vimentin binds specifically to a recombinant integrin a2 /h1 cytoplasmictail complexand co-localizes with native a2/h1 in endo-thelial cell focal adhesions. ExperimentalCellResearch,2005, 305:110-121
    [81]Shay-SalitA, ShushyM, WolfovitzE, et a.l VEGF receptor-2 and the adherens junction as amechanical transducer in vascular endothelial cells Proceedings of the NationalAcademy of Sciences of the Unite States ofAmerica,2002,99:9462-9467
    [82]Charles CD, Ide L, DavisME, et a.1 Actin cytoskeleton organization and posttranscriptional regulation of endothelial nitric oxide synthase during cell growth. Circulation Research,2004,95:488-495
    [83]Malek AM, Zhang J, Jiang J, et a.1 Endothelin-1 gene suppression by shear stress:pharmacological evaluation ofthe role of tyrosine kinase, intracellular Calcium, cytoskeleton, and mechanosensitive channels. Journal of Molecular and CellCardiology,1999,31:387-399
    [84]Klein R. Hyperglycemia and microvascular and macrovascular disease in diabetes[J]. Diabetes Care,1995,18(3):258-268
    [85]马建芳,杨中汉,宋志宏,郭颖,蔡卫斌,刘倩平.大剂量葡萄糖诱导人视网膜内皮细胞凋亡[J].第一军医大学学报2003;23(5):435-438
    [86]赵克森,黄巧冰。血管通透性增高的基本机制。中国病理生理杂志,2003,19(4):549-553
    [87]Dudek SM, Garcia JG, Cytoskeletal regulation of puimonary vascular permeability[J]Appl Physiol 2001;91(4):1487-1500
    [88]彭红艳,常青·血管内皮细胞骨架及其与心血管疾病的关系[J]·中国循环杂志,2007:22(5):394-396
    [89]Wojciak-Stothard B, RidleyAJ·Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases[J] JCellBio,1 2003; 161:429-439
    [90]韩雅玲,张效林,康建,等·RhoA介导凝血酶或脂多糖诱导内皮细胞株单层通透性增高[J]·基础医学与临床,2006;26:386-91
    [91]Carbajal JM, Schaeffer RC. RhoA inactivation enhances endothelial barrier function. Am J Physiol,1999,277(5 Pt 1), C955-C964
    [92]Verin AD, Patterson CE, Day MA, et al.Regulation of endothelial cell gap formation and barrier function by myosin-associated phosphatase activities. Am J Physiol,1995,269(1 Pt 1);L99-108
    [93]Wojciak-Stothard B, Potempa S, Eichholtz T, et al. Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci,2001,114 (Pt 7):1343-1355
    [94]Seasholtz TM, Majumdar M, Kaplan DD, et al. Rho and Rho Kinase Mediate Thrombin-Stimulated Vascular Smooth Muscle Cell DNA Synthesis and Migration. Circ Res,1999,84(10):1186-93
    [95]van Nieuw Amerongen GP, Koolwi jk P, Versteilen A, et al. Involvementof Rho A/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro.Arterioscler Thromb Vase Biol,2003,23(2):211-217
    [96]Petrache I, Verin AD, Crow MT, et a.1 Differential effect of MLCkinase in TNF-α induced endothelial cell apoptosis and barrier dysfunction [J]. Am J Physiol Lung Cel.lMol Physio,2001,280(6): L1168-1178
    [97]WainwrightMS, Rossi J, Schavocky J, et a.1 Protein kinase in-volved in lung injury susceptibility:evidence from enzyme isoform genetic knockoutandin vivoinhibitor treatment[J]. ProcNatlAcad SciUSA,2003,100(10):6233-6238
    [98]Tinsley JH, TeasdaleNR, Yuan SY. Myosin light chain phosphorylation and pulmonary 吧 endothelial cell hyperpermeability in burns [J]. Am J Physiol LungMol Physio,12004,286(4):L841-847
    [99]KawkitinarongK, Linz-McGillem L, BirukovKG, et a.1 Differential rentiation-dependent signaling events[J]. J Boil Chemistry 2006,281(36):26205-26215
    [102]IshizakiT, UehataM, Tamechika I, etal. Pharmacologicalprop erties of Y-27632, a specific inhibitor ofRho-associated kinase[J]. Mol Pharmacol,2000,57(5):976-983
    [103]Wettschureck N, Offermanns S. Rho/Rho-kinase mediated signaling in physiology and pathophysiology[J]. JMolMed,2002,80(10):629-638
    [104]Xu Q, Qaum T, Adam is AP. Sensitive blood-retinal barrier breakdown quantitation using Evans blue[J].Invest Ophthalmol Vis Sci 2001; 42:789-794
    [105]管怀进,龚启荣.现代基础眼科学.人民军医出版社,1998,285-286
    [106]Vinores SA, Derevjanik NL, OzakiH, Okamoto N, Campochiaro PA.Cellular mechanism of blood-retinal barrier dysfunction in macular edema[J]. DocOphthalmol 1999; 97(3-4):217-228
    [107]Ishida S,Usui T, Yamashiro K, et al. VEGF164 is proinflammatory in the diabetic retina. Invest Ophthalmol Vis Sci,2003,44(5):2155-2162
    [108]Zhang SX, Ma JX, Sima J, et al. Genetic difference in susceptibility to the Blood-retina barrier breakdown in diabetes and oxygen-induced retinopathy. Am J pathol,2005,166(1):313-321
    [109]Giebel SJ, Menicucci G, McGuire PG, DasA. Matrixmetalloproteinases in early diabetic retinopathy and their role in alteration of the blood retinal barrier[J]. Lab Invest2005; 85(5):597-607
    [110]侯庆宁,何兰杰.枸杞多糖对2型糖尿病大鼠血糖、血脂及TNF-α水平的影响[J].宁夏医学杂志,2009,31(3):201-202
    [111]马灵筠,孙海双,陈群力,等.枸杞多糖对动脉粥样硬化内皮细胞功能及炎反应的影响[J].江苏中医药,2006,27(5):61-63
    [112]Kohner E, Henkind P. Correlation of fluorescin an-giogram and retinaldigest in diabetic retinopathy. Am J Ophthalmol,1977,69:403
    [113]Carson DA, Ribeiro JM. Apoptosis and diseases. The Lancet 1993;341: 1251-1258
    [114]Brownlee M, Gerai A, Vlassara H. Advanced glycosylation end products in the tissue and the biochemical basis of dibetic complications [J]. N Engl J Med 1988;318:1315-1321
    [115]Tammi Q, Qingwen X, Antonia M, etal. VEGF-initiated blood-retinal barri barrier break down in early diabetes. Invest Ophthalmol VisSci 2001:42(10):2408-2413
    [116]ZhangXL, Qiu SD, ChenYJ, etal. An overview of the pathogenesis of diabetic retinopathy. Int J Ophthalmol(Guoji Yanke Zazhi)2005; 5(6):1239-1241
    [117]Li H, Hu XL. Role of vascular endothelial growth factor in the progress of diabetic retinopathy. Int J Ophthalmol (Guoji Yanke Zazhi) 2008;8(5):990-993
    [118]PoulakiV, JoussenAM, MitsiadesN, et al. Insulin-like growth fact or-I plays a pathogenetic role in diabetic retinopathy. Am J Pathol 2004; 165(2):457-469
    [119]TolentinoMJ, McLeod DS, TaomotoM, et al. Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate[J]. AmJ Ophthalmol,2002,133(3):373-385.
    [120]Odwyer KJ, ChakravartyRD, EslerCA. Intramedullary nailing technique and its tibial shaft fractures. Injury 1994;25(7):461-464
    [121]卢海,张风.增殖性糖尿病视网膜病变眼内组织纤溶酶原激治物及其抑制物的表达与VEGF表达的相关性研究.国际眼科杂志2006,35(4),215-219
    [122]Folkman J. Successful treatment of an angiogenic disease. N Engl JMed,1989,320:1211-1212.
    [123]Gotte M, Joussen AM, Klein C, etal. Role of syndecan-1 in leukocyte-endothelial interactions in the ocular vasculature[J]. IOVS,2002, 43(4):1135-1141
    [124]Fuurse M, Hiasre T, Itoh M, Nagaufehi A, Yonemuar S, Tsukiat S. Occludin:a novel integral Membnare Portein localizing at tight junetions [J].Cell Biol.1993,123(6):1777-1788
    [125]Vega-Salas DE,Salas PJ,Gundesren D, Rodriguez-Bouln E. Fomration of the apical pole of epithelial (Mdain-Darby canine kidney) cells: polarity of an paieal protein is independent of tight junctions while segregation of abasolatearl marker rerquierseell cell-cell inetacrtions[J].Cell Biol.1987,104(4):905-916
    [126]Matter K, Balda MS. Biogenesis of tight junetions:the C-etmrinal domain of occluding mediates blraitaring[J].Cell Biol.1998, 111Pt4:511-519
    [127]Hammes HP, Lin J, Wagner P, et al. Angiopoietin-causes Pericyte dropout in the normal retina:evidence for involvement in diabetic retinopathy. Diabetes,2004,53 (4):1104-1110
    [128]HirookaY, ShimokawaH. Therapeutic potential of Rho kinase inhibitors in cardiovascular diseases [J]. Am J Cardiovasc Drugs, 2005,5:31-39
    [129]Mueller BK, Mack H, Teusch N. Rho kinase, a promising drug target for neurological disorders [J]. Nat Rev Drug Discov,2005,4:387-398
    [130]Rymaszewski Z, Szymanski PT, Abplanalp WA, et al. Human retinal vascular cells differ from umbilical cells in synthetic functionas and their response to glucose[J].J Clin Invest,1986,77(3):322-5
    [131]Baumgartner-Parzer SM, Wagner L, Petterman M et al. High-glucse-triggered in cultured endothelia cells [J]. Diabetes,1995,44 (13):1323-7
    [132]Essler M, Retzer M, Bauer M, et al, Mildly oxidized low density lipoprotein induces contraction of human endothelial cells through activation of Rho/Rho kinase and inhibition of myosin light chain phosphatase. [J]. Biol. Chem. Vol.1999,274:30361-30364
    [133]Lou DA, Hu FN. Specific antigen and organelle expression of a long-term rhesus endothelial cell line. In Vitro Cell Dev Biol 1987; 23(2):75-85
    [134]Lou DA, Hu FN. Co-distribution of von Willebrand factor and fibronectin in cultured rhesus endothelial cells. Histochem [J]. 1987; 19(8):431-438
    [135]Robert L, Gendron, William V, et al. Suppressed Expression of Tubedown-1 in Retinal Neovascularization of Proliferative Diabetic Retinopathy. Investigative Ophthalmology and Visual Science 2001; 42:3000-3007
    [136]Brown RC, Davis TP·Hypoxia/aglycemia alters expression of occluding and actin in brain endothelial cells [J].Biochem Biophys Res Commun,2005; 327(4):1114-23
    [137]La Selva M, Beltramo E, Pagnozzi F, et al. Thiamine corrects delayed end-products in bovine retinal and human umbilical vein endothelial cells cultured under high glucose conditions. Diabetologia 1996; 39(11):1263-8
    [138]Williamson. JR, Chang k, Frangos M. Hyperglycaemic pseudohypoxia and diabetic complications. Diabetes 1993; 42:801-813
    [139]Mizutani M, Kern TS, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest 1996; 97:2883-90
    [140]Lorenzi M, Montisano DF. Toledo S, et al. High glucose induces DNA damage in cultured endothelial cells[J].J clin Invest 1986,77:322-325
    [141]Sabina M, Baumgartner-Parzer SM, Wagner L, et al. High-glucose-triggered apoptosis in cultured endothelial cells. Diabetes 1995; 44 (11):1323-7
    [142]Graier WF, Grubenthal I, Dittrich P; et al. Interacellar mechanism of high D-glucose-induced modulation of vascular cell proliferation. Diabetes 1996; 24:352-355
    [143]Schonfelder U, Hofer A, Paul M, et al. In situ observation or living pericytes in rat retinal c apillaries[J]. Microvas Res 1998; 56: 22-29
    [144]Klein R. Hyperglycemia and microvascular and macrovascular disease in diabetes [J]. Diabetes Care,1995,18(3):258-268.
    [145]马建芳,杨中汉,宋志宏,郭颖,蔡卫斌,刘倩平.大剂量葡萄糖诱导人视网膜内皮细胞凋亡[J].第一军医大学学报2003;23(5):435-438
    [146]Wojciak-Stothard B, RidleyAJ·Shear stress-induced endothelial cell polarizatin is mediated by Rho and Rac but not Cdc42 or PI 3-kinasesJ).JCellBio,1 2003; 161:429-39
    [147]韩雅玲,张效林,康建,等·RhoA介导凝血酶或脂多糖诱导内皮细胞株单层通透性增高[J]·基础医学与临床,2006;26:386-91
    [148]Carbajal JM, Schaeffer RC.RhoA inactivation enhances endothelial barrier function. Am J Physiol,1999,277(5 Pt 1), C955-C964
    [149]Petrache I, Verin AD, Crow MT, et a.1 Differential effect of MLCkinase in TNF-α induced endothelial cell apoptosis and barrier dysfunction [J]. Am J Physiol Lung CellMol Physio,12001,280(6): 1168-1178
    [150]WainwrightMS, Rossi J, Schavocky J, et a.1 Protein kinase in-volved in lung injury susceptibility:evidence from enzyme isoform genetic knockoutandin vivoinhibitor treatment[J]. ProcNatlAcad SciUSA,2003,100 (10):6233-6238
    [151]Tinsley JH, TeasdaleNR, Yuan SY. Myosin light chain phosphorylation and pulmonary 吧 endothelial cell hyperpermeability in burns [J]. Am J Physiol LungMol Physio,l2004,286(4):L841-847
    [152]KawkitinarongK, Linz-McGillem L, BirukovKG, et a.l Differential regulation of human lung epithelial and endothelial barrier function by thrombin[J]. AmJ Respir Cell Mol Biol,2004,31(5):517-527
    [153]Wadgaonkar R, Linz-McGillem L, Zaiman AL, et a.l Endothelial cellmyosin light chain kinase(MLCK) regulates TNFα-induced NFκB activity[J]. J Cell Biochemistry,2005,94(2):351-364
    [154]Graham WV, Wang F, Clayburgh DR, eta.l Tumornecrosis factorinduced longmyosin light chain kinase transcription is regulated by differentiation-dependent signaling events[J]. J Boil Chemistry, 2006,281 (36):26205-26215
    [155]Mandarino LJ, Finlayson J, Hassell JR. High glucose down regulates glucose transport activity in retinal capillary pericytes but not endothelial cells [J]. Invest Ophthalmol Vis Res,1994,35(8):964-972
    [156]Van NieuwAmerongen GP, van Delft S, VermeerMA, et al. Activation of RhoA by thrombin in endothelial hyperpermeability:role of Rho kinase and protein tyrosine kinases[J]. Circulation research, 2000,87(4):335-34
    [157]刘学政,左中夫,冯闯等.Ang-1对高糖环境中RF/6A单层的保护作用[J].眼科研究,2009,5 27(5):380-383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700