硒钴在“土—草—饲—畜链”(SPFAC)中对草畜生长与营养的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硒和钴是动植物重要的微量元素,不但对牧草的产量和品质有显著的影响,而且也是畜禽生产中必需的重要营养元素,对动物生长发育及畜产品品质有重要影响。黄河中下游牧草生产基地和绿色奶业示范带多在黄河滩区及黄河故道,土壤多属砂质瘠薄型,硒钴等微量元素缺乏的问题尤其突出,一定程度地影响到当地的草畜生产,也影响到草畜产品的质量和安全性。2006~2009年,在河南省黄河滩区及沿岸地区,进行了苜蓿微量元素田间试验和动物饲养试验,研究硒、钴肥料土壤基施后通过在土壤-牧草-饲料-动物链(Soil-Pasture-Feed -Animal Chain,SPFAC)中的传导,对土壤肥力、牧草生长、饲草营养水平、动物饲料转化效率等的影响,进而探讨硒、钴在合理基施的情况下,通过SPFAC,达到既提高草畜生产水平、又能生产出营养全面且富硒钴的动物产品,实现土壤、牧草、饲料、动物等多级增效的目的,对保证优质牧草生产和动物食品安全具有重要理论意义和实际应用价值。研究结果如下:
     1.硒、钴施用对土壤的培肥效果单施硒肥能够促进0~20 cm土层中根系根瘤菌的生长,提高土壤碱解氮含量,对速效磷和速效钾的含量影响不显著;单施钴肥对0~20 cm土层中碱解氮、速效磷、速效钾以及有机质含量影响均不显著;硒钴配施不但能够提高0~20 cm土层中碱解氮和有机质含量,而且还提高速效钾含量,其中,硒和钴施用量分别在765 g/hm~2和1548 g/hm~2的情况下,碱解氮、速效钾和有机质含量分别提高了8.9 %、7.2 %和7.1 %。
     2.硒、钴施用对苜蓿生长、产量和质量的影响硒、钴的单施和合理配施均能在不同程度上促进苜蓿生长,提高苜蓿饲草产量,改善饲草营养水平以及增加饲草中Se、Co、Mo、Cu、B、Fe、Mn、Zn等元素的含量和积累量。
     (1)对苜蓿生长和产量的影响硒、钴单施和配合基施能够提高苜蓿硝酸还原酶(NR)的活性和氮代谢水平,而且能提高现蕾到开花期苜蓿叶片叶绿素含量和净光合能力,提高苜蓿的单位叶面积生产干物质的速率,有利于苜蓿的花前青干草生产和果实发育,当硒、钴配合基施,用量分别在570 g/hm~2和762 g/hm~2情况下,增产效果显著,青干草可增产8.06 %,果实千粒重可提高12.85 %。
     (2)对苜蓿的抗病性的影响硒、钴配合基施对开花-结实期紫花苜蓿的锈病、普通叶斑病、夏季黑茎病的发生有明显的抑制作用。当硒(765 g/hm~2)和钴(762 g/hm~2、1548 g/hm~2)分别配合基施下,表现出良好的防病效果,生长季节内锈病的发病率可分别降低24.7 %和31.6 %,叶斑病的发病率可分别降低22.7 %和25.2 %,苜蓿夏季黑茎病的发病率可分别降低19.0 %和25.2 %。另外,硒、钴配施对预防根腐病也有一定效果,当硒和钴用量分别在570 g/hm~2和1548 g/hm~2配合基施下,发病率可平均降低19.8 %,其中在结荚-成熟期防病效果最佳。
     (3)对苜蓿常规营养成分的影响当硒、钴配合基施,用量分别在765 g/hm~2和762 g/hm~2情况下,能显著提高苜蓿青干草的粗蛋白和粗脂肪含量,对粗纤维和无氮浸出物影响不显著,饲用价值得到了提高。其它硒、钴配施组合能显著地提高牧草中粗纤维含量,降低粗脂肪含量,对粗蛋白质和无氮浸出物含量影响不显著。
     (4)对苜蓿中硒钴含量的影响施用硒或钴肥料均能相应地提高苜蓿青干草中硒或钴含量;在供试施肥量范围内,硒施用量与苜蓿青干草中硒的积累量呈显著正相关关系,而施用钴量超过一定量后,苜蓿青干草中钴的含量维持相对稳定。虽然单施硒对草中钴积累量影响不大,但硒钴混合肥料可显著提高牧草钴的积累量,肥料中硒量越高草中钴的积累量越多。硒钴的合理配施还能显著提高苜蓿对硒钴的利用率,提高从肥料无机硒向牧草有机硒的转化率,从而增强牧草中硒的有效性和安全性。硒和钴施用量分别在765 g/hm~2和762 g/hm~2的情况下,其配合施用有效地提高苜蓿青干草硒的含量,比对照高1097.52 %,比单施硒高69.39 %;硒和钴施用量分别在765 g/hm~2和1548 g/hm~2的情况下,其混合肥料对提高苜蓿青干草的钴含量效果最有效,比对照高144.44 %,比单施钴高27.02 %。
     (5)对苜蓿饲草中Mo、Cu、B、Fe、Mn、Zn等6种微量元素含量的影响硒钴混合肥料能显著提高苜蓿青干草中Mo、Cu、B、Fe、Mn、Zn等6种微量元素含量,其中Mo的提高幅度最大,为142.34 %~476.20 %、其次为Fe、Mn和Zn,分别提高了48.16 %~59.45 %、32.88 %~41.66 %和37.10 %~96.39 %。Cu和B的提高幅度最小,分别为13.43 %~37.33 %和14.60 %~39.67 %。当硒和钴用量分别在765 g/hm~2和762 g/hm~2配合基施下,6种微量元素的平均含量和积累量达到最佳水平。
     3.硒、钴通过SPFAC对饲料营养价值的影响在荷斯坦奶牛、杜泊羊、新西兰大白兔和三黄鸡的饲料中,添加富硒、富钴和富硒钴苜蓿青干草或草粉(简称为富微牧草),不仅能提高畜禽日粮中Se和Co的含量,而且也能提高日粮中Zn、Mo、B、Cu、Fe和Mn等微量元素含量。在供试的各个动物日粮中,添加富硒钴苜蓿青干草或草粉(当硒和钴用量分别在765 g/hm~2和762 g/hm~2配合基施下生产的)效果最理想,在以上动物日粮中富微牧草适宜添加量为5 %~15 %。另外,该文利用硒钴配合基施生产的富微牧草,进行了饲料化技术研究,制定了富微牧草在以上4种动物日粮中的配制技术。
     4.硒、钴通过SPFAC对动物生长、饲料利用及产品质量的影响采用隔离养殖法,研究了用富微牧草配制的高微饲料日粮对3.5岁荷斯坦奶牛、50日龄杜泊羊、40日龄新西兰大白兔,35日龄三黄鸡和6周龄Wister大白鼠等动物生长性能、饲料转化及产品质量的影响,并制定了具体的利用技术。
     (1)硒、钴通过SPFAC对动物生长和饲料利用的影响在荷斯坦奶牛、杜泊羊、新西兰大白兔和三黄鸡以及Wister大白鼠的饲料中适当添加富硒、富钴和富硒钴3种富微牧草均可促进动物生长和提高饲料饲料转化率。其中在三黄鸡的日粮中添加5 %的富钴和10 %的富硒钴苜蓿草粉后,雏鸡的日增重分别提高19.0 %和26.2 %,饲料转化率分别提高21.2 %和29.5%;在新西兰大白兔的日粮中添加10 %的富钴和富硒钴苜蓿草粉后,幼兔的日增重分别提高12.4 %和11.0 %,饲料转化率分别提高7.6 %和6.1 % ;在荷斯坦奶牛日粮中添加5 %的富硒苜蓿青干草后,饲料转化率可提高13.9 %;在杜泊羊的日粮中添加15 %的富硒和10 %的富硒钴苜蓿青干草后,饲料的转化率可分别提高28.3 %和27.7 %。另外,在Wister大白鼠的日粮中添加4 %和6 %的富硒苜蓿草粉,能在不同程度上提高大白鼠的胃蛋白酶的活力、减少饲料在胃内的残留率,提高小肠对饲料的推动力,有利于饲料的转化与利用,日均增重分别提高了14.9 %和12.7 %,饲料转化率分别提高8.5 %和9.0 %,并且安全无副作用。
     (2)硒、钴通过SPFAC对奶产品品质的影响在荷斯坦奶牛日粮中添加富硒苜蓿青干草会明显降低牛奶中乳脂和乳蛋白的含量,但对乳糖以及非脂固形物含量影响不大;添加富硒钴苜蓿青干草能显著地提高牛奶中乳脂的含量,提高幅度为22.2 %,但会显著降低牛奶中乳糖以及非脂固形物含量,对乳蛋白的含量影响不大。
     (3)硒、钴通过SPFAC对动物肉产品品质的影响在新西兰大白兔和三黄雏鸡的日粮中添加富微牧草青草(或草粉)对肉产品中蛋白质、脂肪和碳水化合物的含量影响不显著的,但能适当提高肉产品中Fe、Cu和Zn的含量,显著提高肉产品中Se的含量,肝脏对微量元素的富积效果好于其他部位。
     (4)硒、钴通过SPFAC对动物产品中硒积累量的影响在新西兰大白兔和三黄雏鸡及Wister大白鼠等动物日粮中适当添加富硒和富硒钴苜蓿草粉,能显著地提高这些动物产品中骨骼肌、肝脏、心脏和肾脏中硒的含量和积累量,在动物产品中肌肉中硒的积累量最多,肝脏的硒浓度最高,动物产品中硒的积累量与土壤施硒量以及牧草中硒的积累量3者之间呈显著的正相关性。由于动物对饲料中的硒有很强的富积能力,所以富微苜蓿草不适宜在日粮中连续添加,而应该根据动物生长特点和需要间隔利用,做到既经济又高效。
     本文通过研究硒钴在“土-草-饲-畜链”(SPFAC)传导中对草畜生长与营养的调控,分析二者在土-草-饲-畜系统的多级增益效应及相应技术,明确了“土-草-饲-畜”(SPFAC)中涉及牧草种植、饲料添加及动物养殖等环节的中硒、钴微量元素应用的关键技术与指标参数,建立了一套解决动物微量元素营养问题的技术途径,即通过在土壤基施硒、钴肥料,使矿物态硒钴富集到牧草体内转化为有机态,根据动物营养需要,把富集硒钴的牧草进行饲料化应用,生产出具有高附加值畜产品,体现了增产提质、食品安全、生态健全和物质良性循环的理念。
Selenium(Se)and cobalt (Co) are two kinds of important essential trace elements to forage and animal production. In Henan Province, the fine grass and green milk production zones are mainly distributed along the Yellow river beach where soils are sandy and sterile with lower Se and Co contents. Deficiency of Se and Co in soils affects local forage and animal production level as well as the qualities and securities of fodder and animal products. This paper put forward a concept of nutrient flow in Soil-Pasture-Feed -Animal Chain(SPFAC), and conducted a seris of field trials and animal experiments from 2006 to 2009 in order to study the multiple effects of Se and Co on soil fertility, growth and nutrition of forage plant(alfalfa[Medicago sativa L.]), animal feed conversion efficiency, and feasible concrete measurements to enhance production levels of grass and animal products rich in Se,Co and other nutrients, furtherly, established a set of effective technical ways to solve trace element gaps of soil, forage plant and animal diets, i.e. by basal fertilization of Se and Co fertilizers in soil, inorganic Se and Co could be accumulated in alfalfa plants by root absorption and transformed into organic Se and Co mostly, the pasture rich in Se and Co could also be uesed as fodder to produce animal products with higher extra values.
     The results showed as following:
     1. The effects of Se and Co on soil fertility Se fertilization could promote the growth of root nodule of alfalfa in a depth of 0-20cm soil, and improve top soil structure and increase available N and organic matter significantly. Co fertilization had less effects on soil fertility mentioned above. Combined application Se and Co not only raised the contents of available N and organic matter significantly, but also enhanced content of available K. When applying rates of Se and Cobalt being 570 g/hm~2 and 1548 g/hm~2, contents of available N, available K and organic matter could raise by 8.9 %, 7.2 % and 7.1 %, respectively.
     2. The effects of Se and Co on the growth, yield and fodder quality of alfalfa Single or rational combined application Se and Co fertilization could promote the growth of alfalfa, raise forage yields,improve nutrition levels of fodders and add contents and accumulation volumes of trace elements (such as Se, Co, Mo, Cu, B, Fe, Mn and Zn) in alfalfa plant.
     (1)The effects of Se and Co on the growth, yield of alfalfa plant Rational basal single and combined application of Se and Co all could not only enforce nitrate reductase activities and nitrogen metabolitic levels, but also promote net photosythetic efficiency,decrease plant respiration loss, enhance production rate of dry matter as well as seed growth from ramification to florescence, and raise alfalfa hay production before florescence. When application rates of Se being 570 g/hm~2, 762 g/hm~2, Se-Co combined fertilizers had best application effects on forage production and grain development, alfalfa hay was increased by 8.06 %(P<0.05)and 1000-grain weight was increased by 12.85 %(P<0.05).
     (2)The effects of Se and Co on disease-resistance of alfalfa plant Se and Cobalt combined basal fertilizer had great disease prevention effects on rust、brown spot、summer black stem and appeared more obvious effects in flowering-ripening stage. Under combined basal fertilization when application rate of Se was 765 g/hm~2, that of Cobalt was 762 g/hm~2 1548 g/hm~2, respectively, rust, brown spot, summer black stem could be prevented effectively, and alfalfa rust could be decreased by 24.7 % and 31.6 %, respectively, brown spot could be decreased by 25.2 % and 22.7 %, respectively, summer black stem could be decreased by 25.2 % and 19.0 %, respectively. Furthermore, Se and Co combined basal fertilizer also had obvious preventing effects on root rot which could be decreased by 19.8 % and showed more obvious effects in pods formation-ripening stage when Se application rate being 57 g/hm~2 and Cobalt application rate being 1548 g/hm~2.
     (3)The effects of Se and Co on major nutrients of alfalfa hay Se and Co single and combined fertilization had significant effects on major nutrients of alfalfa hay. When application rates of Se being 765g/hm~2, 762 g/hm~2, Se and Co single and combined fertilization had optimal applied effects which enhanced the contents of crude protein (CP)and ether extract(EE), kept stabilities of crude fiber(CF) and nitrogen-free extract(NFE) and enhanced feed values of alfalfa hay. Other single and combined fertilizers could enhance the content of CF more significantly,decrease the content of EE, and had no significant effluence on the of CP and NFE.
     (4)The effects of Se and Co fertilization on the contents of Se and Co in alfalfa hay Alfalfa had stronger capacities to absorb,transfer and utilize Se and Co from soil to plant root. Single basal application of Se and Co could increase the contents of Se and Co of alfalfa hays (and more Se in soil,more Se in hays).Within all Se and Co single and combined fertilization,there were more significant correlation(P﹤0.01)between Se applied amount and Se accumulation amount of alfalfa hay. Co accumulation amount of alfalfa hay kept stable. When Co applied rate increased the certain level, if more Co was applied in soil, some surplus Co might be wasted. Rational combined application of Se and Co could raise utilization rate of Se and ratio of transfor from inorganic Se from fertilizers to organic Se in forage. Effectiveness and securement of Se were all enhanced obviously. When applied rates of Se being 765 g/hm~2 and 762 g/hm~2, Se and Co combined use can raise Se accumulation amount effectively by 1097.52 % and 69.39 % in comparation with the control and Se single use. When applied rates of Se being 765 g/hm~2 and 1548 g/hm~2, Se and Co combined application can raise Co accumulation amount effectively by 144.44 % and 27.02 % in comparation with the control and Co single fertilization.
     (5)The effects of Se and Co fertilization on the contents of Mo, Cu, B, Fe, Mn and Zn in alfalfa hay Se and Cobalt applied fertilizers could enhance the contents of Mo, Cu, B, Fe, Mn and Zn more significanly(P﹤0.05). Of all 6 kinds of trace elements, the contents of Mo had most significant increasing levels (142.3% -476.2 %), next to Fe, Mn and Zn ( 48.1%-59.4 %, 32.9%-41.7% and 37.1 %-96.4%, respectively), Cu and B had lower increasing levels (13.4 %-37.3 % and 14.6 %-39.7%, respectively). When application rates of Se and Co being 765g/hm~2and 762 g/hm~2, respectively. The contents and accumulation of 6 trace elements mentioned above can reach optimal levels.
     3. The effects of Se and Co on feed nutrition levels while transmitted through SPFAC Supplement of alfalfa dust (rich in Se and Co)can raise the contents of Se, Co, Zn, Mo, B, Cu, Fe and Mn of animal(Holstein cows, Dorper sheep, New-Zealand rabbits and San Huang chicken)diets.Alfafa dust rich in Se and Co(produced when combined application rates of Se and Co being 765 g/hm~2,1548g/hm~2 respectively)had optimal effects on animal production. When alfalfa dust (rich in Se and Co)were supplemented with 5 %-15 %,.animal production were more efficient and safe. Based on studies and analysis of feedlize techniques about alfalfa produced by Se and Co basal fertilization,feed rationing techniques of high trace elements were formulated in animals(milk cattle,dorper sheep,rabbit and chicken).
     4. The effects of Se and Co on growth , feed utilization level and product quality of animal production while transmitted through SPFAC Adopting separate feeding, the effects of diets supplemented with alfalfa hay or dust (rich in high trace elements) on growing performances, feed conversion level and animal product quality were studied in some animal production coorporation and bases, such as Henan Sino-Dutch Dairy Technology and Development Co., Ltd, Xinmi New-star Rabbit Raising Base and Zhongmou Dorper Sheep Extension Base, etc. According to the animal growing and producing performances, more effective feed techniques along with multiple benefits were formulated simultaneously, some key techniques and index parameter were definited clearly concerning with grass planting and animal raising in SPFAC.
     (1)The effects of Se and Co fertilization on animal growth and feed utilization while transmitted through SPFAC When supplemented with three kinds of alfalfa dusts(rich in Se,Co and Se+Co) in diets of animals(including 3.5-year-old Holstein Lactating cows, 50-day-old Dorper sheep, 40-day-old weaned New-Zealand rabbits, 35-day-old San Huang chicken and 6-week-old Wister rat), not only daily gain and total gain were raised ,but also feed conversion rate were enhanced significantly.Of all experimental animals,chicken had best feeding effects, average daily gain and feed conversion rate were raised by 26.2% and 29.5 %, respectively when supplemented with 10 % alfalfa dust rich in Se and Co. Next to rabbit, average daily gain and feed conversion rate were raised by 12.4 % and 7.6 % respectively when supplemented with 10 % alfalfa dust(rich in Co). and raised by 11.0 % and 6.1 % respectively when supplemented with 10 % alfalfa dust(rich in Se and Co). Feed conversion rate of milk cow was raised by 13.9 % when supplemented with 5 % alfalfa dust(rich in Se). Feed conversion rate of sheep was raised by 28.3 % and 27.7 %, respectively when supplemented with 15 % alfalfa dust(rich in Se). and 10% dust(rich in Se and Co).
     All diets could enhance pepsin activities, decrease gastric remains feed, increase intake rate of Wister rat in early stage and enhance feed conversion efficiency(8.5 %~9.0 %) without harmful side effects compared with common alfalfa dust when application rates of alfalfa dusts with high contents of Se being 4 % and 6 %.
     (2)The effects of Se and Co fertilization on the quality of milk quality while transmitted through SPFAC Although alfalfa hay (rich in Se) could enhance cows forage conversion efficiency,they affect milk qualities, fat and protein in milk were decreased by 5 %-10 %, Lactose and SNF kept relative stable. Alfalfa hay( rich in Se and Co) could enhance fat 22.15%, protein kept stable, Lactose and SNF were dicreased significantly.
     (3)The effects of Se and Co fertilization on the quality of animal products while transmitted through SPFAC Alfalfa dust( rich in Se and Co) had no significant effects on contents protein, fat and Carbohydrate on rabbit and chicken, contents of some trace elements ,such as Fe、Cu and Zn were raised to some extent, contents of Se was enhanced more significantly.
     (4)The effects of Se and Co fertilization on Se content of animal products while transmitted through SPFAC When additive contents of alfalfa meal (rich in Se and Co)account for 5% of ration, Se contents of animal products (rabbit , chicken and rat)could be enhanced significantly, there were more significant conrelation(P﹤0.01)among Se accumulation amount in animal products, Se accumulation amount in pasture and Se applied amount in soil .
     This paper analysed additional benefits and critical techniques of Se and Co utilization in SPFAC, aims of which was to not only secure application of trace elements in forage and animal production, but also realize their multiple benefits in SPFAC. The results have great theoritical meaning and pratical value for safe production of forage and animal food products, which also was vital important to set up standardization production regulations as well as promote animal husbandry industrialization.
引文
[1]杨志强.微量元素与动物疾病[M].北京:中国农业科技出版社,1998,70-77
    [2]戴伟,耿增超.土壤硒的研究概况[J].西北林学院学报,1995,10(3): 93-97
    [3]冯彩霞,刘家军等.硒资源及其开发利用概况[J].地质与资源,2002, 11(3): 152-156
    [4]彭大明.中国硒矿资源概述[J].化工矿产地质,1997,19(1):36-52
    [5]文贵辉,张彬.微量元素硒在动物中的研究与应用[J].中国饲料.2004; (11)9: 11-14
    [6]万春云,郭定宗.微量元素硒生物学作用研究进展[M],畜禽业,2004(1):20-21
    [7] Patterson,E.L.,Milstrey,R.,and Stoksyad,E.L.R.1957.Effect of selenium in preventing exudative diathesis in chicks.Proc.Soc.Exp.Biol.Med.95:617-620
    [8] Schwarz,K. and C.M.Foltz.1958. Factor 3 activity of selenium compounds. J.Bio.Chem.233:245
    [9]张子仪.中国饲料学[M].北京:中国农业出版社,2000,184-187
    [10]赵承宏.微量元素硒在畜牧上的研究与应用[J].辽宁畜牧兽医,1997, (4 ):36-38
    [11] Raymond F Burk.硒在营养中的新作用[J].国外畜牧学--饲料.1991,(1):27-30
    [12]廖自基.环境中微量重金属元素的污染危害与迁移转化[M].北京:科学出版社.1989, 193-200
    [13]赵美芝.影响土壤中硒有效性的若干因子[J].土壤, 1991, 23( 5): 236-240
    [14]瞿建国,徐伯兴.连续浸提技术测定土壤和沉积物中硒的形态[J].环境化学,1997,16(3):277-283,
    [15]瞿建国,徐伯兴.上海不同地区土壤中硒的形态分布及其有效性研究[J].土壤学报,1998,35(3):398-403,.
    [16]奥贝尔H.潘塔M著.刘铮,朱其清,唐丽华等译.土壤中的微量元素[M].北京:科学出版社,1982.65-73
    [17]刘铮等编著.微量元素的农业化学[M].北京:农业出版社,1991.273-295
    [18]中国环境监测总站主编.中国土壤元素背景值[M].北京:中国环境科学出版社,1990
    [19]樊文华,池宝亮,五台山草地自然保护区土壤中钴的含量分布及影响因素[J].生态学报1999(1):123
    [20]中国科学院南京土壤研究所微量元素组编著.土壤和植物中微量元素分析方法[M].北京:科学出版社, 1976
    [21] Hewitt E J and Smith T A. Plant Mineral Nutrition. The English Universities Press,Ltd,1975
    [22]邹帮基.植物的微量元素营养.见:刘铮编.微量元素的农业化学[M].北京:农业出版社,1991.48-49
    [23] Chen D, Ren S, Lu W. Effect of applying selenium fertilizer to improve soil and increase selenium level in food for prevention and treatment of Kaschin-Beck disease. J Environ Sci, 1993,5(3)∶299-309
    [24] Yokota A, Shigeoka S, Onishi T et al. Selenium as inducer of glutathione peroxidase in low-CO2-grown chlamydomonas reinhardtii. Plant Physiol,1988,86∶649-651
    [25]薛泰麟,侯少范,谭见安,刘更另.硒在高等植物体内的抗氧化作用——Ⅱ.非酶机制的探讨,科学通报. 1993(3-4):23-26
    [26] Saben F, Wright T, Norton SF. Purification and characterization of a glutathione peroxidase from Aloe vera plant. Enzyme Protein, 1993,47(2)∶92-98
    [27] Neuhierl B, Bock A. On the mechanism of selenium tolerance in selenium-accumulating plants. Eur J Biochem,1996,239∶235-238
    [28]柴之芳,祝汉民.微量元素化学概论[M].北京:原子能出版社.1994.189-199
    [29]陈铭,刘更另.高等植物的硒营养及在食物链中作用[J].土壤通报.1996,27(2)∶88-89
    [30]李书鼎,张少兰.低硒土壤中75Se的形态转化[J].生态学报,1990,27∶280-282
    [31]施和平,张英聚,刘振声.番茄对硒的吸收、分布和转化[J].植物学报,1993,35(7)∶541-546
    [32] Johnsson L. Selenium uptake by plants as a function of soil type,organic matter content and pH. Plant Soil, 1991,133(1)∶57-6
    [33] Haygarth PM, Harrison AF, Jones KC. Plant selenium from soil and the atmosphere. J Environ Qual, 1995,24(4)∶768-771
    [34] Tomokazu M, Yoshiyuki T. Effects of pH of acid irrigation water on the transfer of elements into rice plant from soils. Radioisotopes,1996,45(3)∶166-175
    [35] Arvy MP. Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris). J Exp Bot, 1993,44(263)∶1083-1087
    [36]龚晓钟,欧阳政,蔡瑞仁.富硒茶叶和富硒大蒜中硒的有机形态[J].天然产物研究与开发,1996,8(1)∶59-62
    [37]谢申猛,王子健,宋维平等.不同硒水平地区大豆组分中硒的分布[J].营养学报,1995,17(3)∶274-278
    [38]吴应亮,蔡宗源,何康明等.富硒植物中硒化合物的提取和分析[J].暨南大学学报(自然科学版),1994,15(3)∶70-73
    [39]陆景陵.植物营养学[M].北京:中国农业大学出版社, 2003,117-125
    [40] Mutanen M, Koivistoiven P, Morris VC et al. Relative nutritional availability to rats of selenium in Finnish spring wheat, fertilized or sprayed with sodium selenate and in an American winter bread wheat naturally high in selenium. Br J Nutr, 1987,57(3)∶319-329
    [41] Biacs PA, Daood HG, Kodar I. Effect of Mo, Se, Zn, and Cr treatments on the yield, element concentration, and carotenoid content of carrot. J Agric Food Chem, 1995,43∶589-591
    [42]谭周.硒在水稻上的应用研究[J].湖南师范大学自然科学学报.1995,18(4)∶58-61
    [43] Wang X, Ren S, Liu W et al. A study on selenium application for improving the soil in the environment at lower selenium level. J Environ Sci (China),1989,1(1)∶115-119
    [44]司丽,刘作清,李其萍.内蒙古草原土壤与优良牧草中硒含量水平研究[J].内蒙古农牧学院学报. 1999, 20(1)
    [45] Munshi CB, Mondy NI. Glycoalkaloid and nitrate content of potatoes as affected by method of selenium application. Biol Trace Elem Res,1992,33∶121-127
    [46] Munshi CB, Combs GFJ, Mondy NI. Effect of selenium on the nitrogenous constituents of the potato. J Agric Food Chem, 1990,38(11)∶2000-2002
    [47] Mikkelsen RL, Wan HF. The effect of selenium on sulfur uptake by barley and rice. Plant Soil, 1990,121(1)∶151-153
    [48] Andrew E, Lin W. Selenium assimilation and differential response to sulfate and chloride salt concentration in two saltgrass ecotypes. Ecotoxicol Environ Saf, 1995,32(2)∶171-178
    [49] Bailey FC, Knight AW, Ogle RS et al. Effect of sulfate level on selenium uptake by Ruppia maritima. Chemophere, 1995,30(3)∶579-591
    [50] Tveitnes S, Sinhg BR, Rund L. Selenium concentration in spring wheat as Effectsd by basal application and top dressing of selenium enriched fertilizers. Fert Res,1995,45(2)∶163-167
    [51] Aslam M,Harbit KB, Huffaker RC. Comparative effects of selenite and selenate on nitrate assimilation in barley seedlings. Plant Cell Environ,1990,13(8)∶773-782
    [52] Singh M,Singh N, Relan PS. Adsorption and desorption of selenite and selenate selenium on different soils. Soil Sci,1981,132∶134-141
    [53] Singh M, Molhotra PK. Selenium availability in berseem (Trifolium alexandrinum) as affected by selenium and phosphorus application. Plant Soil,1976,44∶261-266
    [54] He Z, Yang X, Zhu Z et al. Effect of phosphate on the sorption, desorption and plant-availability of selenium in soil. Fert Res,1994,39∶189-197
    [55] Wu L, Huang ZZ. Selenium assimilation and nutrient element uptake in white clove and tall fescue under the Effects of sulfate concentration and selenium tolerance of the plants. J Exp Bot,1992,43(249)∶549-555
    [56]王永锐,陈平.水稻对硒吸收、分布及硒与硅共施效应[J].植物生理学通报,1996,27(2)∶88-89
    [57]陈铭,刘更另.高等植物的硒营养及在食物链中的作用[J].土壤通报,1996,27(2)∶88-89
    [58] Cary EE. Effect of selenium and cadmium additions to soil on their concentration in lettuce and wheat. J Agron,1981,73∶703-708
    [59] Shanker K, Mishra S, Srivastava S et al. Studies on Cd-Se interaction with reference to the uptake and translocation of cadmium in kidney bean. Chem Speciation Bioavailability,1995,7(3)∶97-100
    [60] Landberg T, Greger M. Effects of selenium on uptake and toxicity of copper and cadmium in pea and wheat. Physiol Plant,1994,90(4)∶637-644
    [61]杜式华,于志洁.汞与硒在植物中的相互作用[J].环境科学,1987,8∶43-46
    [62] Shanker K, Mishra S, Srivastava S et al. Effect of selenite and selenate on plant uptake and translocation of mercury by tomato (Lycopersicum esculentum). Plant Soil, 1996,183∶233-238
    [63]张福锁.土壤与植物营养研究新动态[M].北京:北京农业大学出版社, 1992
    [64]胡坚主编.动物饲养学[M].长春:吉林科学技术出版社,1990.90-91
    [65] Rotruck J T, Pope A L, Ganther H E et al. Selenium: Biochemical role as a component of glutathione peroxidase[J]. Science,1973,179:588-590
    [66]Bell J. G.,Cowey C.B. and Adron J.W.1987.Some effects of selenium deficiency on enzyme activities and indices of tissue peroxidation in atlantic salmon parr(Salmo salar).Aquac.,65:43-53
    [67] NRC.1998.Nutrient requiremens of swine 10th Rev.Ed
    [68] Drake, C., A. B. Grant and W. J. Hartley. Effect of inorganic versus organic selenium on hen production and egg selenium concentration《Chicken Science》2005 ,84(02):230-240。
    [69] Hilto J.W.,Hodson P.V. and Slinger S.J.1980.The requirement and toxicity of selenium in rainbow trout(Salmo gairdneri).J.Nutr.,110:2527-2535
    [70]Galtlin D.M. and Wilson R.P.1984. Dietary selenium requirement of fingerling channel catfish.J.Nutr.,114:627-633
    [71]柳风祥.硒在饲料中的安全添加量及补硒方法[J].饲料工业,1986(9):22-24.
    [72]刘华忠罗萍.动物体内的微量元素硒[J].国外畜牧学:猪与禽,2000,(1):19-20
    [73]黄兴国,贺建华,鲁玖华,左建军.硒的营养作用及其在畜禽生产中的应用[J].湖南农业大学学报(自然科学版),2002(01)
    [74] T.W.Perry.硒在畜禽营养中的作用[J].国外畜牧科技,1988(6):24-26.
    [75]柳风祥.硒在饲料中的安全添加量及补硒方法[J].饲料工业,1986(9):22-24.
    [76]Hoekstra,W.G. 1957. Biochemical function of selenium and its relationship to vitamin E.Fed.Proc.34:2083-2089
    [77]Turk,J.L.,Jr., and Kratzer F.H. 1960.The effects of cobalt in the diet of the chicks. Poultry. Sci.39: 1302(Abstr.)
    [78]吴军刘秀芳徐汉生,硒在植物生命活动中的作用[J].植物生理学通讯,1999(35)5
    [79] Razak AA, El-Tantawy H, El-Sheikh HH et al. Effects of selenium on the efficiency of fungicide action against certain fungi. Biol Trace Elem Res, 1991,28(1)∶47-56
    [80]薛泰麟,候少范,谭见安等.硒在高等植物体内的抗氧化作用[J].科学通报,1993,38(3,4)∶274- 277,356-358
    [81]赵林川,俞炳杲.硒对玉米叶片衰老调节作用[J].南京农业大学学报,1996,19(1)∶22-25
    [82]陈春英,贺海鹰.环境中的硒.见:徐辉碧主编.硒的化学、生物化学及其在生命科学中的应用[M]..武汉:华中理工大学出版社,1994.277-281
    [83]张福锁,李孙荣.非生物害源引起的植物受害表征与诊断.见:管致和主编.植物医学导论.北京:中国农业大学出版社,1996.323-325
    [84]万洪富.生态环境中的硒及植物对它的吸收和转化.土壤学进展,1988,16(6)∶1-9
    [85] Singh M, Molhotra PK. Selenium availability in berseem (Trifolium alexandrinum) as affected by selenium and phosphorus application. Plant Soil, 1976,44∶261-266
    [86] Joanne M.B. Vickie L.S., Morris JS, et al. Effects of selenium deficiency on tissue selenium content, deiodinase activity, and thyroid hormone economy in the rat during development[J ]. Endocrinology,2000, 141 ( 7 ) : 2490-2500.
    [87]徐辉碧.硒的化学,生物化学及其在生命科学中的应用[M].武汉:武汉华中理工大学社出版社
    [88] Caravaggi,D., F.L.Clark,and A.R.B.Jackson.1970.Acute selenium toxicity in lambs following intramuscular injection of sodium selenite. Res.Vet.Sci.11:146
    [89]樊文华,池宝亮,五台山草地自然保护区土壤中钴的含量分布及影响因素[J].生态学报(1)
    [90]刘英俊等编著.元素地球化学[M].北京:科学出版社,1986.101-102。
    [91]康世良.富硒蛋的研制[J].微量元素与健康研究.1994,(92):40-41.
    [92] Oldfield J E.Selenium its Use in Agricultuer, Nutrition,Health,Environment, Darien Selenium-Tellurium Development Association,Inc.,1990.
    [93]施一江,黎钧耀,李茂生.硒与癌中国医学科学院学报[J].1983(5)3
    [94]仲兆金,硒的生物大分子化合物在抗肿瘤研究中应用进展[J].首都医学2002(12)
    [95] Combs G F Jr , Clark L C , Tumbullb W.1997.Reduction of cancer risk with oral supplement of selenium.Biomed Environ.Sci., 10:227-234.
    [96]饶军,袁凤辉,陈琨;持续农业的关键──土壤的持续利用[J];抚州师专学报; 1999年03期; 54-59,
    [97]胡坚.动物饲养学[M].长春:吉林科学技术出版社,1990. 90-91Hu Jian.Animal feeding science[M].Changchun:Jilin Science and Technology Press,1990.90-91
    [98] ] Singh M, Singh N. The effect of forms of selenium on the accumulation of Se, S and forms of N and P in forage cowpea [J]. Soil Sci.,1979,(12):157-160
    [99] Mackenzie A.M, Kendall N R, Illingworth D V et al.The Effect of a Copper, Cobalt, and Selenium Bolus on Sheep from Three Upland Scottish Farms[M]. New York,Springer Publishing Company,2000: 749-752
    [100]张洪荣,周志宇.微量元素对紫花苜蓿的效应[J].草业科学, 1990,(2):68-69
    [101]胡华锋,介晓磊,刘芳.硒对紫花苜蓿产草量和品质的影响[J].草地学报,2008,16(3):502-503
    [102]章杏杏,刘贵河,王堃,等.施肥对紫花苜蓿草产量及经济效益研究[J].河北北方学院学报,2005,21(2):42-45
    [103]马闯,崔海燕,刘世亮,等.喷施硫酸钴对紫花苜蓿鲜草产量及品质的影响[J].中国农学通报,23 (9):58-62
    [104]刘世亮,马闯,介晓磊.喷施亚硒酸钠对紫花苜蓿干草产量和品质的影响[J].草业科学,25(8):73-78
    [105]安军,陈雷,叶嘉,等.有机硒在动物生产中的应用探讨[J].河北农业科学, 2008,12(3):127-128
    [106] Berrow M L , Ure A M. Trace element distribution and mobilization in Scottish soils with particular reference to cobalt, copper and molybdenum[J]. Environmental Geochemistry and Health,1986,8(1): 19-24
    [107] Singh M,Singh N. The effect of forms of selenium on the accumulation of Se, S and forms of N and P in forage cowpea [J]. Soil Sci.,1979,(12):157-160
    [108] Mackenzie A.M, Kendall N R, Illingworth D V et al.The Effect of a Copper,Cobalt, and Selenium Bolus on Sheep from Three Upland Scottish Farms[M]. New York,Springer Publishing Company,2000: 749-752
    [109] Abdelrahman M M, Kincaid R L, Elzubeir E A. Mineral deficiencies in grazing dairy milk cowin Kordofan and Darfur regions in western Sudan[J]. Tropical Animal Health and Production,1998,30(2): 123-135
    [110]王成章,田玮,杨雨鑫,等.国内外l0种紫花苜蓿引种试验研究[J].西北农林科技大学学报(自然科学版),2004,32(3): 23
    [111]高永革,李黎,刘祥.黄河滩区紫花苜蓿生产性能比较研究[J].草业科学,2008,(7):63-68
    [112]胡华锋,介晓磊,刘世亮,等.喷施微肥对紫花苜蓿微量元素含量及积累量的影响[J].草业学报,2008,17(1):15-19
    [113]陈宝书.牧草饲料作物栽培学[M].郑州:中国农业大学出版社,1994. 207-210
    [114]罗汝英.土壤学[M].北京:中国林业出版社, 1990.
    [115]傅兰英,柴家林,张志生.“耐保力”制剂强化词料对大白鼠血红蛋白与微量元素影响的实验研究[J].北京体育大学学报,2000,23(1):62-64
    [116]徐振华,李福昌,秦应和.日粮锌水平对肉兔生产性能、血清肝脏抗氧化酶活性和金属硫蛋白-1基因表达的影响[J].动物营养学报,2008,20(3):337-342
    [117]田福平,王锁民,郭正刚,等.紫花苜蓿脯氨酸含量和含水量、单株干质量与抗旱性的相关性研究[J].草业科学,2004,21(1):3-6
    [118]陈薇,张德颐.植物组织中硝酸还原酶的提取、分离和纯化[J].植物生理学通讯,1980,(4):45-49
    [119]中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983.
    [120]绉琦.植物生理学实验指导[M].北京:中国农业出版社,2000:89-92
    [121]王红丽,张珍,曹致中;赵文宝;张景昌;.紫花苜蓿叶绿素微波萃取的最佳工艺条件[J].甘肃农业大学学报,2007,42(6):134-137
    [122]汪诗平,王艳芬,李永宏,等.不同放牧率对草原牧草再生性能和地上净初级生产力影响[J].草地学报, 1998,(4):48-50
    [123]黄德华,王艳芬,陈佐忠.内蒙古羊草草原均腐土营养元素生物积累[J].草地学报,1996,(4):231-239
    [124]任继周.草业科学研究方法[M].北京:中国农业出版社, 1998. 201-223
    [125]中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社.1983.
    [126]尚庆茂,李平兰,高丽红.水培生菜对硒的吸收和转化[J].园艺学报,1997,24 (3):255-258
    [127]王晋明,赵之重,李国荣.硒对胡萝卜硒量、产量及品质的影响[J].植物营养与肥料学报,2006,12(2):240-244
    [128]连槿,欧阳英.石墨炉原子吸收法测定饲料中的硒[J].广东饲料,2004,13(4):41-42
    [129]鲁如坤.土壤农业化学分析法[M].北京:中国农业科技出版社,2000.
    [130] Barber M J, Desai S K, Marohnic C C et cd. Synthesis and bacterial expression of a gene encoding the heine domain of assimilatory nitrate reductase. Arch Biochem Biophys, 2002,402(1) :38 - 50.
    [131] Curtis I S, Power J B, De Laat A M M et al. Expression of a chimeric nitrate reductase gene in transgenic lettuce reduces nitrate in leaves.Plant Cell Reprots, 1999,18( 11 ) : 889 - 896.
    [132]马瑞昌,宋书娟,喻梅辉.冰草属牧草硝酸还原酶的活性与其产量营养的关系[J].中国草地学报,1998(2):23-25
    [133]贺春贵.紫花苜蓿病虫草鼠害防治[M].北京:中国农业出版社,2004.90-101
    [134]石岩,梅世昌.医学动物试验实用手册[M].北京:中国农业出版社,2002.242-246
    [135]潘瑞枳.植物生理学.北京:高等教育出版社, 2004. 31-33
    [136] Bjorn M,Kebede H,Rilling C.Photosythetic difference among Lycopersicon species and Triticum aesticum cultivars[J].Crop Science,1994,34(1):113-118.
    [137]董宽虎.紫花苜蓿产业化生产与加工利用[M].北京:金盾出版社, 2002.66-67
    [138]吴军,刘秀芳,徐汉生.硒在植物生命活动中的作用[J].植物生理学通讯,1999,35(5):417-424
    [139] Mutanen M, Koivistoiven P, Morris VC et al. Relative nutritional availability to rats of selenium in Finnish spring wheat, fertilized or sprayed with sodium selenate and in an American winter bread wheat naturally high in selenium. Br J Nutr,1987,57(3)∶319-329
    [140]刘磊,陈立波,田占标,卫智军.晚秋刈割对不同秋眠类型紫花苜蓿根系游离脯氨酸含量的影响[J].中国草地学报,2007,29(2):112-116
    [141]马青枝,李造哲.干旱胁迫下紫花苜蓿体内游离脯氨酸的积累[J].内蒙古农牧学院学报,1992,13(4):137-139
    [142]马宗仁,刘荣堂.牧草抗旱生理学[M].兰州:兰州大学出版社,1993
    [143]潘瑞枳.植物生理学.北京:高等教育出版社, 2004. 31-33
    [144] Hu Z Z,Wen F W,Lu T A.Micro Elements and The Meaning in Soil-Grass-Animal System of Tan-Sheep [J].Acta Pratacltu Sinica, 1999,8(2):60-65
    [145]慕康国,赵秀琴,李健强,刘西莉.矿质营养与植物病害关系研究进展[J].中国农业大学学报2000, 5(1):84-90
    [146] Munshi C B, Combs G F J, Mondy N I; Effect of selenium on the nitrogenous constituents of the potato[M].Agric Food Chem; 1990.
    [147] Gupta G K,Singh D, et al. Downy mildew control in pearl millet through nutrient application [J].Indian Phytopatho, 1995,18(3):45-47
    [148]邢会琴,李敏权,徐秉良.不同肥料及用量对紫花苜蓿白粉病的影响[J].中国草地学报, 2006, 28(4):45-48
    [149]薛福祥,李敏权,李金花,张睿.不同施肥水平对紫花苜蓿霜霉病抗病性的研究[J].草业科学,2003,20(4):34-36
    [150]董爱香,胡林,赵美琦,张新民,张福锁.夏季施氮、钾肥对高羊茅褐斑病的影响[J].草地学报, 2002, 10(3):203-206
    [151]袁庆华,张文淑.紫花苜蓿抗褐斑病遗传资源离体叶筛选及田间评价[J].草地学报, 2003,11(3):205-207
    [152] Vos J,P E L van der Putten,Leffelaar P A.Field observation on nitrogen catch crops.Ⅱ.Root length and root length distribution relation to secies and nitrogen supply[J].Plant and Soil,1998,201(1):149-155.
    [153] Wang X CH,Xiong SH P,Ma X M.Effects of different nitrogen forms on key enzyme activity involved in nitrogen metabolism and grain protein content in speciality wheat cultivars[J].Acta Ecologica Sinica,2005,25(4):802-807.
    [154]杨黎芳,李贵桐,赵小蓉,林启美.栗钙土不同土地利用方式下有机碳和无机碳剖面分布特征[J],生态环境, 2007 ,16(1) :59-63
    [155]赵宏伟,马凤鸣,李文华.氮肥施用量对春玉米硝酸还原酶活性及产质量的影响[J].东北农业大学学报,2004,35(3):276-281.
    [156]瑜敏,王运华,胡承孝.种子钼对冬小麦硝酸还原酶活性、干物质重及产量的影响[J].植物营养与肥料学报,2007,6(2):220-226.
    [157] Bjorn M,Kebede H,Rilling C.Photosythetic difference among Lycopersicon species and Triticum aesticum cultivars[J].Crop Science,1994,34(1):113-118.
    [158]张秀梅,孙效文,孙桂玲.硒对玉米发芽率及植株生长的影响[J].农业科技通讯,2005,(8):18-20
    [159]李会芳,白云生,樊文华,黄艳娟.不同浓度的硒对大豆种子发芽率及幼苗生长的影响[J].山西农业大学学报(自然科学版),2006,26(3):256-258
    [160]彭诚,丁莉,王军.硒对白菜种子发芽率及幼苗生长的影响[J].湖北民族学院学报(自然科学版),2006,24(1):90-93
    [161]谢丽玲,熊兴东.硝酸钴对大白菜子叶组培苗生长的效应[J].植物生理学通讯,2002,32(5):445-447
    [162]介晓磊,马闯,刘世亮,等.喷施硫酸钴对苜蓿产量及微量元素吸收的影响[J].安徽农业科学, 2007,(35):190-192
    [163]宋家永.硒肥对小麦花后旗叶生理特性和子粒含硒量及产量的影响[J].华北农学报,2006,21(6):68-71
    [164]宋家永,李敬光,王永华,等.喷施硒肥对小麦生理特性、子粒硒含量的影响[J].河南农业大学学报,2005,39(2):139-142
    [165]王金英,江川,郑金贵.硒肥和锌肥对水稻产量及糙米矿质营养的影响[J].中国农学通报,2006,22 (3):217-220
    [166]鲁鸿佩.根瘤菌对苜蓿产草量的影响试验研究[J].草原与草坪,2007,(2):60-63
    [167]陈远学,徐开未,张小平,等.花生根瘤菌对微量元素耐性的筛选[J].中国土壤与肥料,2007,(4):76-80
    [168] Neuhierl B, Beok A. On the mechanism of selenium tolerancein selenium-accumulating plants.Eur J Biochem, 1996,239,239:235-238 .
    [169] Arvy M P. Selenate and selenite uptake and translocation in bean plants(phaseolus vulgaris)[J]. J. Exp.Bot.,1993,23:279-291
    [170]王晋明,赵之重,李国荣.硒对胡萝卜硒量、产量及品质的影响[J].植物营养与肥料学报,2006,12(2):240-244
    [171] Neuhierl B, Beok A. On the mechanism of selenium tolerancein selenium-accumulating plants.Eur J Biochem, 1996,239,239:235-238 .
    [172]魏克循.河南土壤地理[M].:河南科学技术出版社,1998.
    [173]樊文华,李莉.硒钴配施对番茄产量、番茄红素及硒、钴含量的影响[J].山西农业科学,2009,37(10) :19-22
    [174]张桂兰.主要农作物配方施肥[M].:河南科学技术出版社,1991.
    [175] Wu L, Huang Z Z. Selenium assimilation and nutrient element uptake in white clove and tall fescue under the influence of sulfate concentration and selenium tolerance of the plants. J Exp Bot,1992,43(249)∶549-555
    [176]王永锐,陈平.水稻对硒吸收、分布及硒与硅共施效应[J].植物生理学通报,1996,27(2)∶88-89
    [177]陈铭,刘更另.高等植物的硒营养及在食物链中的作用[J].土壤通报,1996,27(2):88-89
    [178]张化.锌、硒及其互作对春小麦产量、养分吸收和锌、硒富集的影响[D].呼和浩特:内蒙古农业大学硕士论文, 2005.
    [179]吴军,刘秀芳,徐汉生.硒在植物生命活动中的作用[J].植物生理学通讯,1999,35(5):417-424
    [180] Mutanen M, Koivistoiven P, Morris VC et al. Relative nutritional availability to rats of selenium in Finnish spring wheat, fertilized or sprayed with sodium selenate and in an American winter bread wheat naturally high in selenium. Br J Nutr,1987,57(3)∶319-329

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700