用于UPFC的串、并联双变流器控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自80 年代以来基于电力电子技术的FACTS 技术得到了广泛重视和研究。在众多FACTS 元件中由串、并联双变换系统组成的统一潮流控制器(UPFC)不仅可以独立作为STATCOM 和SSSC 运行,而且组合在一起构成UPFC 时能实现对所在线路有功、无功潮流的独立控制,因此具有独特的研究价值。本文针对目前UPFC 研究中存在的问题,进行了以下六个方面的工作。
    首先,本文详细分析了UPFC系统在潮流调节的过程中各部分吸收、发出有功/无功功率的变化情况,并首次在三维空间中绘出了各部分的功率运行曲面,为有效选取UPFC各部分的功率容量和判断潮流控制方案的可行性提供了一个直观的手段。通过观察UPFC输出侧线路潮流的运行曲面,可以发现功率曲面上的每一个运行点都是唯一的与一个UPFC串联输出电压相对应的。但对于UPFC串联部分注入电网的功率而言,一定的功率运行点可能对应多个串联输出电压。因此只能通过控制UPFC串联输出电压来控制线路传输功率潮流。通过对UPFC电压控制特性的讨论得出,为了维持UPFC输入端电压恒定必须由其并联部分补偿适当的无功功率,其关系近似呈一种线性关系。同时分析表明,在UPFC输入端电压幅值维持不变的情况下,UPFC输出端线路无功传输潮流的变化和UPFC串联部分吸收的无功功率实际上是由UPFC的并联部分提供的; UPFC端电压幅值的控制既可以从并联侧控制也可以从串联侧控制,同样线路传输无功潮流也可以有两种不同的控制手段。
    其次,针对UPFC 并联变换器的运行要求,指出了其主电路参数选取过程中应注意的问题并给出了一套有效的主电路参数设计方案。通过选择合适的电路参数可以使得并联部分更容易达到相应的控制目标,为整个UPFC 系统的平稳运行提供了保证。在此基础上,本文给出了相应的解耦控制方案和控制器设计方法并针对并联变换器单独作为STATCOM 运行的情况讨论了几种不同的电压控制模式及效果。
    此外,还讨论了SSSC 和DVR 的控制系统及其在实际系统中平滑切入电网的过程,并通过建立SSSC 的小信号模型设计出相应的SSSC 直流母线电压控制器。实验结果表明了所设计的控制系统具有良好的性能。SSSC 到底会不会引发次同步振荡?目前有不同的说法,本文通过分析和实验表明SSSC 在阻抗模拟模式下若控制不适当则有可能引发次同步谐振。
    最后,本文对目前所提出的几种主要UPFC 潮流控制方法做出了详细的分析和
Since 1980’s FACTS system, which is based on the technology of power electronics, have gotten more and more attention. Among the FACTS devices Unified Power Flow Controller composed of a parallel and a series conversion system can not only work separately as a STATCOM or a SSSC but also control the real and reactive power flow alone the transmission line independently. Such characteristics attract the eye ball of the researchers. To solve the problems existed in the research field of UPFC, this paper works in the six areas as listed below.
    First, the real/reactive power absorbed/injected by the components of the UPFC system during power flow changes is plotted in 3D space. That provides an effective method to determine the power rating of the power conversion parts of the UPFC and judge the availability of the control scheme for UPFC. By observing the power map, it can be found that every point of the transmission real & reactive power is corresponding to a certain voltage injected by the series part of the UPFC. However, for the power map of the injected power by the series part of the UPFC one power operating point may corresponding to more than one voltage injected by the series part of the UPFC. So only the series voltage injected by the series part of the UPFC can be controlled to manipulate the transmission power flow. According to the discussion of the voltage control characteristic of UPFC, to maintain the input port voltage of the UPFC constant, the parallel part of the UPFC must compensate proper reactive power and there is a linear relationship between the output reactive power of the parallel part and the input port voltage amplitude of the UPFC. On the other hand the analysis also indicates that when the voltage amplitude of the input port of the UPFC is controlled to be constant during the power flow variation, it is the shunt part of the UPFC that provides all the reactive power needed by the transmission reactive power variation and the variance of the reactive power absorbed by the series part of the UPFC. And it is shown that the input port voltage of the UPFC can be controlled by the shunt part of the UPFC as well as by the series part of the UPFC, while the reactive power flow of the transmission line can be controlled in two different way too.
    Second, according to the operation requirement of UPFC and STATCOM this paper presents effective methods and formulations to calculate and select the best circuit parameters for the parallel part of the UPFC. With the proper circuit parameters it is easier for the parallel part to realize it control target, and that ensures the stable operation of the UPFC system. Based on the analysis, the decoupling control strategy and the controller design procedure are presented. With the proposed control scheme and control parameter the parallel part works separately as a STATCOM is tested with experimental works, and the effects of several voltage control schemes are discussed. Third, in this paper the control system of the SSSC/DVR and the procedure of inserting the series device smoothly into the transmission line are discussed. The little signal model of the SSSC is established and used to design the dc bus controller for the SSSC. Experimental results indicate that the control system has good performance. Would SSSC cause Sub-Synchronous Resonance? Till now there are different opinions. In this paper analysis and experimental works are done to prove that SSSC will cause SSR with non-proper control in the capacitor simulation mode. At last, the main power flow control strategies for the UPFC are analyzed and compared. Simulation and experimental works are done to test the conclusions. The results prove that the cross coupling power flow control scheme has slow dynamic response performance, and the influence between the real and reactive power flow is small. The cross decoupling control scheme gets a faster response but during the power flow changes there will be a large power flow variation caused by coupling phenomenon. Coordination control add forward-feed signal to the real & reactive power reference of the parallel part of the UPFC, and it can improve the dynamic performance of the dc bus voltage control and the input port voltage control, however this control method can not improve the reactive power flow dynamic control performance. Based on the real & reactive power balance analysis, this paper proposes a novel control scheme for UPFC firstly, which is different to the conventional strategies. In this control scheme the parallel part of the UPFC is used to control the dc bus voltage and the transmission reactive power, the series part of the UPFC is applied to control the UPFC input port voltage and the transmission real power flow. Because the series part controls
    the UPFC input port voltage directly and acts as a DVR with real power flow control function, a less input port voltage variation is expected during the power floe changes. On the other hand because the reactive power output of the parallel part is controlled directly to manipulate the transmission reactive power flow, a faster reactive power flow performance is expected. Simulation and experimental works proved the effectiveness of the proposed control scheme, although this scheme does nothing to improve the dynamic performance of transmission real power flow control, its reactive power flow control performance is better than cross coupling control and there is little real power variation caused by coupling during the reactive power changes. Analysis indicates that this control scheme is insensitive to the transmission line parameter variation, so this proposed control scheme is an effective method to improve power flow control performance, when the transmission line parameter is not properly known. In this paper a hardware experimental system is established to test various control schemes of UPFC. And those are the first effective experimental results gotten in the nation. These works study the control characteristics of UPFC and make a useful exploration of the powerful FACTS device for future application in China.
引文
[1] 谭伟璞. 统一潮流控制器的研究[博士学位论文]. 哈尔滨工业大学图书馆, 1999
    [2] 王建. 基于统一潮流控制器(UPFC)的电力系统潮流分析、优化和控制研究[博士学位论文]. 华南理工大学图书馆, 2001
    [3] The EPRI Journal for April-May 1986 addresses flexible ac transmission
    [4] Hingorani, N. G. FACTS technology and opportunities. Flexible AC Transmission Systems (FACTS) -The Key to Increased Utilization of Power Systems, IEE Colloquium on (Digest No. 1994/005), 12th, Jan, 1994: 4/1-4/10
    [5] Hingorani, N. G. Flexible AC transmission. Spectrum, IEEE, April 1993, 30(4): 40-45
    [6] Hingorani, N. G. Future role of power electronics in power systems. ISPSD '95. Proceedings of the 7th International Symposium on Power Semiconductor Devices and ICs, Yokohama, Japan, 23-25th, May, 1995: 13 -15
    [7] Narain G. Hingorani, Laszlo Gyugyi. Understanding FACTS: concepts and technology of flexible AC transmission systems. 1st Edition, 3 park Avenue, 17th Floor, New York, NY 10016-5997, U. S. A. Institute of Electrical and Electronics Engineers, Inc, 1999
    [8] Hingorani, N. G. Flexible AC transmission. Spectrum, IEEE, April, 1993, 30(4): 40-45
    [9] 郑文斌, 胡国文, 王仲鸿. 伊敏—冯屯输电线TCSC 动态模拟实验装置的特性研究. 清华大学学报(自然科学版), 1997, 37(7): 59-62
    [10] 曹继丰. 平果可控串补工程及其在南方电网中的作用. 电网技术, 2004, 28(14): 6-9
    [11] K Braun, G Thumn, L Kirschnet. 亚洲首个500kV 可控串补TCSC 工程——天广交流输变电平果站可控串补一次系统设计方案. 国际电力, 2004, 8(4): 49-54
    [12] Nyati S et al. Design Issue for a Single Core Transformer Thyristor Controlled Phase-Angle Regulator. IEEE Transaction on Power Delivery, 1995, 10(4): 2013-2019
    [13] 何大愚. 柔性交流输电技术及其控制器研制的新发展-TCPST, IPC(TCIPC)和SSSC. 电力系统自动化, 1997, 21(6): 1-6
    [14] Dash, P. K. Mishra, S. Panda, G.. Damping multi-modal power system oscillation using a hybrid fuzzy controller for series connected FACTS devices. IEEE Transactions on Power Systems, 2000, 15(4): 1360-1366
    [15] Dash, P. K. Pradhan, A. K. Panda, G. et al. Digital protection of power transmission lines in the presence of series connected FACTS devices. IEEE Power Engineering Society Winter Meeting, Singapore, 23-27th January, 2000, 3: 1967 -1972
    [16] 赵学强. NGH 次同步谐振阻尼方案的研究及仿真分析. 华东电力, 1998, 12: 7-11
    [17] Li Wang, Ioi Keong Ung, Ching-Huei Lee. Damping subsynchronous resonance using modal-control NGH SSR damping scheme. I. Single-machine study. TENCON '93. Proceedings. Computer, Communication, Control and Power Engineering. 1993 IEEE Region 10 Conference on, Beijin, 19-21st Oct. 1993, 5(10): 111-114
    [18] Li Wang, Ching-Huei Lee. Damping sub-synchronous resonance using modal-control NGH SSR damping scheme. II. Two-machine common-mode study. TENCON '93. Proceedings. Computer, Communication, Control and Power Engineering. 1993 IEEE Region 10 Conference on, Beijin, China, 19-21st Oct. 1993, 5(10): 115-118
    [19] 翁利民, 张广祥, 舒立平等. 静止型无功补偿装置的应用. 供用电, 2000, 17(5): 29-31
    [20] 唐寅生. SVC 在我国电网中的应用及前景. 电气时空, 2003, 5: 16-17
    [21] 唐寅生. 500kV 云田变电站SVC 三次谐波放大及抑制措施分析. 电力电容器, 1995, 4: 41-44
    [22] Itoh, K. , Tsunoda, Y. , Akabane, K. Development of large-capacity VBO-free light-triggered thyristors and their application to SVC valves. Power Electronics Specialists Conference, 1991. PESC '91 Record, 22nd Annual IEEE, Cambridge-Massachusetts, USA, 24-27th June, 1991: 453-459
    [23] Ichikawa, F. , Suzuki, K. , Nakajima, T. Development of self-commutated SVC for power system. Power Conversion Conference, 1993. Yokohama, Japan, 9-21st April, 1993: 609-614
    [24] Hasegawa, T. , Aoshima, Y. , Sato, T. , Kondo, O. Development of 60 MVA SVC (static VAr compensator) using large capacity 8 kV and 3 kA thyristors. Power Conversion Conference, Nagaoka, Japan, 3-6th Aug, 1997, 2: 725-730
    [25] 刘文华, 姜齐荣, 梁旭. ±20Mvar STATCOM 总体设计. 电力系统自动化, 2000, 12: 14-18
    [26] Rao, P. , Crow, M. L. , Yang, Z. STATCOM control for power system voltage control applications. IEEE Transactions on Power Delivery, October 2000, 15(4): 1311-1317
    [27] Larsson, T. , Poumarede, C. STATCOM, an efficient means for flicker mitigation. IEEE Power Engineering Society 1999 Winter Meeting, New York, 31st Jan-4th Feb 1999, 2: 1208-1213
    [28] Yang, Z. , Shen, C. , Zhang, L. Integration of a StatCom and battery energy storage. IEEE Transactions on Power Systems, May 2001, 16(2): 254-260
    [29] Arsoy, A. B. , Liu, Y. , Ribeiro, P. F. et al. StatCom-SMES. IEEE Industry Applications Magazine, March-April 2003, 9(2): 21-28
    [30] Mori S, Matsuno K, Hasgawa T, et al. Development of a Large Static VAR Generator Using Self-Commutated Inverters for Improving Power System Stability. IEEE Transactions on PWRS, 1993, 8(1): 371-377
    [31] Schauder, C. , Stacey, E. , Lund, M. et al. AEP UPFC project: installation, commissioning and operation of the ±160 MVA STATCOM (phase I). IEEE Transactions on Power Delivery, October 1998, 13(4): 1530-1535
    [32] 刘文华, 梁旭, 姜齐荣等. 采用GTO 逆变器的±20Mvar STATCOM. 电力系统自动化, 2000, 12: 14-18
    [33] 王红月, 梁志珊. 电力系统的可控制动电阻的非线性预测控制. 华南理工大学学报(自然科学版), 2002, 30(8): 32-35
    [34] 付蓉, 韩敬东, 鞠平. 可控制动电阻的模糊神经网络控制. 电网技术, 2001, 25(2): 13-16
    [35] Miao, Z. , Choudhry, M. A. , Klein, R. L. Dynamic simulation and stability control of three-phase power distribution system with distributed generators. IEEE Power Engineering Society Winter Meeting, 2002, New York, NY, 27th-31st Jan 2002, 2: 1029-1035
    [36] B. A. Renz, A. Keri, S. Schauder. et al. AEP Unified Power Flow Controller Performance. IEEE Transaction on Power Delivery, 1999, 14(4): 1374-1381
    [37] J. B. Choo, B. H. Chang. H. S. Lee et al. Development of FACTS operation technology to the KEPCO Power Network –Installation & Operation. IEEE/PES Transmission and Distribution Conference and Exhibition 2002: Asia Pacific, Yokohama, Japan, 6th-10th Oct. 2002: 2008-2013
    [38] Chang, B. H. , Choo, J. B. , Joong-Moon Kim, et al. Development of FACTS operation technology to the KEPCO power network-development of education program for 80 MVA UPFC operator, IEEE/PES Transmission and Distribution Conference and Exhibition 2002: Asia Pacific, Yokohama, Japan, 6th-10th Oct. 2002: 2014-2018
    [39] Diez-Valencia, V. , Annakkage, U. D. , Gole, A. M, et al. Interline power flow controller (IPFC) steady state operation. Canadian Conference on Electrical and Computer Engineering, 2002. IEEE CCECE 2002, Toronto, Canada, 12nd-15th May 2002, 1: 280-284
    [40] Teerathana, S. , Yokoyama, A. An optimal power flow control method of power system using interline power flow controller (IPFC). TENCON 2004. 2004 IEEE Region 10 Conference, Chiang Mai, Thailand, Nov. 21st-24th, 2004, C: 343-346
    [41] Zanetta, L. C. , Jr. , Vasquez-Arnez, R. L. Steady-state multiline power flow control through the generalized IPFC (interline power flow controller). 2004 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, Sao Paulo, Brazil, 8th-11th Nov. 2004: 28-33
    [42] Fardanesh, B. , Schuff, A. Dynamic studies of the NYS transmission system with the marcy CSC in the UPFC and IPFC configurations. 2003 IEEE PES Transmission and Distribution Conference and Exposition, Dallas, Texas, U. S. A, 7-12 Sept. 2003, 3: 1175-1179
    [43] Fardanesh, B. , Shperling, B. , Uzunovic, E. et al. Multi-converter FACTS devices: the generalized unified power flow controller (GUPFC). IEEE Power Engineering Society Summer Meeting, 2000, Seattle, U. S. A, 16th-20th July 2000, 2: 1020-1025
    [44] Xiao-Ping Zhang, Handschin, E. , Yao, M. Modeling of the generalized unified power flow controller (GUPFC) in a nonlinear interior point OPF. IEEE Transactions on Power Systems, Aug, 2001, 16(3): 367-373
    [45] Lin Sun, Shengwei Mei, Qiang Lu, et al. Application of GUPFC in China's Sichuan power grid -modeling, control strategy and case study. IEEE Power Engineering Society General Meeting, 2003, Toronto, Canada, 13rd-17th July, 2003, 1: 175-181
    [46] Fardanesh, B. Optimal utilization, sizing, and steady state performance comparison of multi-converter VSC-based FACTS controllers. IEEE Transactions on Power Delivery, July, 2004, 19(3): 1321-1327
    [47] Abdel-Aty Edris, Shalom Zelingher, Laszlo Gyugyi, et al. Squeezing More Power from the Grid. IEEE Power Engineering Review, June 2002: 4-6
    [48] Fardanesh, B. , Schuff, A. Dynamic studies of the NYS transmission system with the Marcy CSC in the UPFC and IPFC configurations. 2003 IEEE/PES Transmission and Distribution Conference and Exposition, Dallas, U. S. A, 7th-12nd, Sept. 2003, 3: 1126-1130
    [49] Uzunovic, E. , Fardanesh, B. , Hopkins, L, et al. NYPA convertible static compensator (CSC) application phase I: STATCOM. 2001 IEEE/PES Transmission and Distribution Conference and Exposition, Atlanta, U. S. A, 28th Oct-2nd Nov. 2001, 2: 1139-1143
    [50] L. Gyugyi. A Unified Power Flow Control Concept of Flexible AC Transmission Systems, International Conference on AC and DC Power Transmission 1991, London, England, 17th-20th Sep 1991: 19-26
    [51] L. Gyugyi, C. D. Schauder, S. L. Willams, et al. The Unified Power Flow Controller: A New Approach to Power Transmission Control, IEEE Transactions on Power Delivery, April 1995, 10(2): 1085-1097
    [52] Nabavi-Niaki A, Iravani. M. R. Steady state and dynamic models of unified power flow controller (UPFC) for power system studies. IEEE Transactions on Power Systems, November 1996, 11(4): 1937-1943
    [53] Saeed Arabi, Prabhashankar Kundur, Rambabu Adapa. Innovative techniques in modeling UPFC for power system analysis. IEEE Transactions on Power Delivery, February 2000, 15(1): 336-341
    [54] Zhengyu Huang, Yixin Ni, C. M. Shen et al. Application of Unified Power Flow Controller in Interconnected Power Systems-Modeling, Interface, Control Strategy and Case Study. IEEE Transactions on Power Systems, May 2000, 15(2): 817-824
    [55] I. Papic, A. M. Gole. Frequency Response Characteristics of the Unified Power Flow Controller. IEEE Transactions on Power Delivery, October 2003, 18(4): 1394-1402
    [56] Garcia-Gonzalez, P. , Garcia-Cerrada, A. Control system for a UPFC in a transmission line. Industrial Electronics Society, 1998. IECON '98, Proceedings of the 24th Annual Conference of the IEEE, Aachen, Germany, 31st Aug. -4th Sept. 1998, 1: 462-466
    [57] K. S. Smith, L. Ran, J. Penman. Dynamic modeling of a unified power flow controller. IEE Proceedings of Generation, Transmission and Distribution, January 1997, 144(1): 7-12
    [58] Muwaffaq. I. Alomoush. Derivation of UPFC DC Load Flow Model With Examples of its Use in Restructured Power System. IEEE Transactions on Power Systems, August 2003, 18(3): 1173-1180
    [59] 章良栋, 岑文辉, 刘为. UPFC 的模型及控制器研究. 电力系统自动化, 1998. 1, 22(1): 36-39
    [60] 刘前进, 孙元章, 黎雄等. 基于功率注入法的UPFC 潮流控制研究. 清华大学学报(自然科学版), 2001, 41(3): 55-58
    [61] 李兰英, 李宵燕, 张得福等. 具有能量缓冲的统一潮流控制器及其控制的研究. 中国电机工程学报, 2001. 7, 21(7): 9-13
    [62] 鞠儒生, 陈宝贤, 邱晓刚. UPFC 控制方法研究. 中国电机工程学报, 2003. 6, 23(6): 60-65
    [63] C. D. Shauder, D. M. Hamai, A. Edris, et al. Operation of the Unified Power Flow Controller (UPFC) under Practical Constrains. IEEE Transactions on Power Delivery, April 1998, 13(2): 630-639
    [64] J. Bian, D. G. Ramey, R. J. Nelson, et al. Study of Equipment Sizes and Constrains for a Unified Power Flow Controller. IEEE Transactions on Power Delivery, July 1997, 12(3): 1385-1391
    [65] B. S. Rigby, R. G. Hariey. The Development of an Advanced Series Compensator based on a Single Voltage Source. IEEE AFRICON 4th 1996, South Africa, 24th-27th Sept. 1996, 1: 215-220
    [66] N. Dizdarevic, S. Tesnjak, G. Andersson. Converter Rating Power of Unified Power Flow Controller. 2002 IEEE Power Engineering Society Summer Meeting, Chicago, USA, 21st-25th July 2002, 1: 603-609
    [67] Q. Yu, S. D. Round, L. E. Norum, et al. Dynamic Control of a Unified Power Flow Controller. 27th Annual IEEE Power Electronics Specialists Conference, 1996. PESC '96 Record. , New York, U. S. A, 23rd-27th June 1996, 1: 508-514
    [68] Q. Yu, Lars Norum, Tore Undeland, et al. Investigation of Dynamic Controllers for a Unified Power Flow Controller. Proceedings of the 1996 IEEE IECON 22nd International Conference on Industrial Electronics, Control, and Instrumentation, 1996, Taipei, Taiwan, 5th-10th Aug. 1996, 3: 1764-1769
    [69] C. M. Yam, M. H. Haque. Dynamic Decoupled Compensator for UPFC Control. International Conference on Power System Technology, 2002. Proceedings. PowerCon 2002, Kunming, China, 13rd-17th Oct. 2002, 3: 1482-1487
    [70] Hideaki Fujita, Hirofumi Akagi, Yasuhiro Watanabe. Dynamic Performance of a Unified Power Flow Controller for Stabilizing AC Transmission Systems. IEEE 33rd Annual Power Electronics Specialists Conference, 2002. PESC’02, New York, U. S. A, 23rd-27th June 2002, 1: 81-87
    [71] Hideaki Fujita, Yasuhiro Watanabe, Hirofumi Akagi. Control and Analysis of a Unified Power Flow Controller. IEEE Transactions on Power Electronics, November 1999, 14(6): 1021-1027
    [72] L. Y. Dong, L. Zhang, M. L. Crow. A New Control Strategy for the Unified Power Flow Controller. IEEE Power Engineering Society Winter Meeting, 2002, U. S. A, 27th-31st Jan. 2002, 1: 562-566
    [73] Mahinda Vilathgamuwa, Choi San Shing, Tseng King Jet, et al. A Synchronous Reference Frame Based Control of an Unified Power Flow Controller. 1997 International Conference on Power Electronics and Drive Systems, Singapore, 26th-29th May 1997, 2: 844-849
    [74] S. Kannan, Shesha Jayaram, M. M. Salama. Real and Reactive Power Coordination for a Unified Power Flow Controller. IEEE Transactions on Power Systems, August 2004, 19(3): 1454-1461
    [75] P. Garcia-Gonzalez, A. Garcia-Cerrada. Detailed analysis and experimental results of the control system of a UPFC. IEE Proceedings on Generation, Transmission and Distribution, March 2003, 150(2): 147-154
    [76] I. Papic, P. Zunko, D. Povh, et al. Basic Control of Unified Power Flow Controller, IEEE Transactions on Power Systems, November 1997, 12(4): 1734-1739
    [77] D. G. Cho, E. Ho. Song. A Simple UPFC Control Algorithm and Simulation on Stationary Reference Frame. IEEE International Symposium on Industrial Electronics, 2001. Proceedings, ISIE 2001, Pusan, Korea, 12th-16th June 2001, 3: 1810-1815
    [78] Mitsuhiro Takeshita, Hirofumi Sugihara. Effect of Fault Current Limiting of UPFC for Power Flow Control in Loop Transmission. IEEE/PES Transmission and Distribution Conference and Exhibition 2002: Asia Pacific, Yokohama, Japan, 6th-10th Oct. 2002, 3: 2032-2036
    [79] M. Zouiti, S. Saadate, X. Lombard, et al. Electronic Based for Filter Mitigation. The 8th International Conference on Harmonics and Quality of Power ICHQP’98, Athens, Greece, October 14th-16th, 1998: 1182-1187
    [80] S. Limyingcharoen, U. D. Annakkage, N. C. Pahalawaththa. Fuzzy Logic Based Unified Power Flow Controllers for Transient Stability Improvement. IEE Proceedings on Generation, Transmission and Distribution, May 1998, 145(3): 225-232
    [81] Yasuo Morioka, Yasuhiro Mishima, Yoshiki Nakachi. Implementation of Unified Power Flow Controller and Verification for Transmission Capability Improvement. IEEE Transactions on Power Systems, May 1999, 14(2): 575-581
    [82] P. W. Lehn, M. R. Iravani. Experimental Evaluation of STATCOM Closed Loop Dynamics. IEEE Transactions on Power Delivery, October 1998, 13(4): 1378-1384
    [83] A. Sonnenmoser, P. W. Lehn. Line Current Balance with a Unified Power Flow Controller. IEEE Transactions on Power Delivery, July 1999, 14(3): 1151-1157
    [84] Kouichi Hidese, Toshiharu Monai, Ichiro Takano, et al. A Collaborative Operation Method of UPFC Type Dispersed Power Supply System using Fuel Cell and Electric Double Layer Capacitor. 2003 IEEE PES Transmission and Distribution Conference and Exposition, 7th-12th Sept. 2003, 2: 711-716
    [85] K. Belacheheb, S. Saadate. Compensation of the electrical mains by means of Unified Power Flow Controller (UPFC)-Comparison of three control methods. 9th International Conference on Harmonics and Quality of Power, 2000. Proceedings, 1st-4th Oct. 2000, 1: 168-175
    [86] M. Noroozian, L. Angquist, M. Ghandhari, et al. Improving Power System Dynamics by Series-Connected FACTS Devices. IEEE Transactions on Power Delivery, October 1997, 12(4): 1635-1641
    [87] Yixin Ni, Zhenyu Huang, Shousun Chen, et al. Incorporating UPFC Model into the Power System Toolbox of the MATLAB for Transient Stability Study. TENCON '98. 1998 IEEE Region 10 International Conference on Global Connectivity in Energy, Computer, Communication and Control, New Delhi, India, 17th-19th Dec. 1998, 2: 506-509
    [88] Abdel-Aty Edris, A. S. Ben Mehraban, Manzar Rahman, et al. Controlling the Flow of Real and Reactive Power. IEEE Computer Applications in Power, Jan. 1998, 11(1): 20-25
    [89] S. Limyingcharoen, U. D. Annakkage, N. C. Pahalawaththa. Effects of Unified Power Flow Controllers on Transient Stability. IEE Proceedings on Generation, Transmission and Distribution, March 1998, 145(2): 182-188
    [90] N. Tambey, M. L. Kothari. Damping of power system oscillations with unified power flow controller (UPFC). IEE Proceedings on Generation, Transmission and Distribution, March 2003, 150(2): 129-140
    [91] 颜伟, 朱继忠, 孙洪波等. UPFC 的潮流控制与暂态稳定性研究. 中国电机工程学报, 2000. 12, 20(12): 57-61
    [92] 颜伟, 朱继忠, 徐国禹. UPFC 线性最优控制方式的研究及其对暂态稳定性的改善. 中国电机工程学报, 2000.1, 20(1): 45-49
    [93] N. Dizdarevic, M. Majstrovic, G. Andersson. FACTS-based reactive power compensation of wind energy conversion system. 2003 IEEE Bologna PowerTech Conference, Bologna, Italy, June 23rd-26th 2003, 2: 1-8
    [94] Johan H. R. Enslin, Jian Zhao, Rene Spee. Operation of the Unified Power Flow Controller as Harmonic Isolator. IEEE Transactions on Power Electronics, November 1996, 11(6): 776-784
    [95] Ray, S, Seungwon An, Gedra, T. W. Introduction of power electronics to electric machines lab. The 2002 45th Midwest Symposium on Circuits and Systems, 2002, MWSCAS-2002, Tulsa, Oklahoma, U. S. A, 4th-7th Aug. 2002, 2: II-383-II-386
    [96] L. Dong, M. L. Crow, Z. Yang, et al. A Reconfigurable FACTS System for University Laboratories. IEEE Transactions on Power Systems, Feb. 2004, 19(1): 120-128
    [97] Bakari Mwinyiwiwa, Zbigniew Wolanski, Boon-Teck Ooi. Microprocessor Implemented SPWM for Multi-converters with Phase-Shifted Triangle Carriers. IEEE Transactions on Industrial Applications, May/June 1998, 34(3): 487-494
    [98] Bakari Mwinyiwiwa, Zbigniew Wolanski, Boon-Teck Ooi. UPFC Using Multi-converter Operated by Phase-Shifted Triangle Carrier SPWM Strategy. IEEE Transactions on Industrial Applications, May/June 1998, 34(3): 495-500
    [99] B. A. Renz, A. Keri, C. Schauder, et al. AEP Unified Power Flow Controller Performance. IEEE Transactions on Power Delivery, October 1999, 14(4): 1374-1381
    [100] C. Schauder, E. Stacey, M. Lund, et al. AEP UPFC Project: Installation, Commissioning and Operation of the ±160MVA Statcom (Phase I). IEEE Transactions on Power Delivery, October 1998, 13(4): 1530-1535
    [101] A. S. Mehraban, A. Edris, C. D. Schauder, et al. Installation, Commission, and Operation of the World’s First UPFC on the AEP System. 1998 International Conference on Power System Technology, 1998, Proceedings, POWERCON '98, Beijin, China, 18th-21st Aug. 1998, 1: 323-327
    [102] Y. Ye, M. Kazerani. Operating Constraints of FACTS Devices. 2002 IEEE Power Engineering Society Summer Meeting, Chicago, IL, USA, 16th-20th July 2000, 3: 1579 –1584
    [103] Ben Mehraban, Len Kovalsky. Unified Power Flow Controller on the AEP System: Commissioning and Operation. IEEE Power Engineering Society 1999 Winter Meeting, New York, USA, 31st Jan-4th Feb 1999, 2: 1287-1292
    [104] Manzar Rahman, Mohammed Ahmed, Richard Gutman, et al. UPFC Application on the AEP System: Planning Considerations. IEEE Transactions on Power Systems, November 1997, 12(4): 1695-1701
    [105] Bakari Mwinyiwiwa, Boon-Teck Ooi, Zbigniew Wolanski. Multimodular UPFC Operated by Phase-Shifted Triangle Carrier SPWM Strategy. 1997 IEEE Industry Applications Conference, 1997, Thirty-Second IAS Annual Meeting, IAS '97, New Orleans, Louisiana, USA, 5th-9th Oct. 1997, 2: 1641-1646
    [106] Diego E. Soto-Sanchez, Tim C. Green. Voltage Balance and Control in a Multi-Level Unified Power Flow Controller. IEEE Transactions on Power Delivery, October 2001, 16(4): 732-738
    [107] Diego Soto, Tim. C. Green. A Comparison of High-Power Converter Topologies for the Implementation of FACTS Controllers. IEEE Transactions on Industrial Electronics. October 2002, 49(5): 1072-1080
    [108] Boon-Teck Ooi, Mehrdad Kazerani. Unified Power Flow Controller Based on Matrix Converter. 27th Annual IEEE Power Electronics Specialists Conference, 1996, PESC '96, Universita degli Studi di Milano, Italy, 23rd-27th June 1996, 1: 502 -507
    [109] Chen Chaoying, Chen Yong, Duan Xuefei, et al. Study of Protective Relay’s Behaviors in Unified Power Flow Controller of FACTS. Proceedings of the 4th International Conference on Advances in Power System Control, Operation and Management, APSCOM’97, Hongkong, November 1997: 632-637
    [110] P. K Dash, A. K. Pradhan, Ganapati Panda, et al. Adaptive Relay Setting for Flexible AC Transmission Systems (FACTS). IEEE Transactions on Power Delivery, January 2000, 15(1): 38-43
    [111] Kang Y. L, G. B. Shrestha, Lie T. T. Consideration of DC Capacitor and Line Inductance in the Design of UPFC to Improve Transient Stability. IEEE Power Engineering Society Winter Meeting, Columbus, Ohio, USA, 2001, 28th Jan. -1st Feb. 2001, 3: 1277-1282
    [112] Hideaki Fujita, Yasuhiro Watanabe, Hirofumi Akagi. Transient Analysis of a Unified Power Flow Controller and its Application to Design of the DC-Link Capacitor. IEEE Transactions on Power Electronics, September 2001, 16(5): 735-740
    [113] B. T. Ooi, M. Kazerani, R. Marceau, et al. Mid-Point Sitting of FACTS Devices in Transmission Lines. IEEE Transactions on Power Delivery, October 1997, 12(4): 1717-1722
    [114] R. Mihallic, P. Zunko, D. Povh. Improvement of Transient Stability Using Unified Power Flow Controller. IEEE Transactions on Power Delivery, January 1996, 11(1): 485-492
    [115] H. Cai, Z. Qu, D. Gan. Determination of the Power Transfer Capacity of a UPFC with Consideration of the System and Equipment Constraints and of Installation Locations. IEE Proceedings on Generation, Transmission and Distribution, January 2002, 149(1): 114-120
    [116] Bakari Mwinyiwiwa, Bin Lu, Boon-Teck Ooi. Multiterminal Unified Power Flow Controller. IEEE Transactions on Power Electronics, November 2000, 15(6): 1088-1093
    [117] 雷绍兰, 王婧予, 周林. 统一潮流控制器中逆变器特定谐波消去调制方法研究. 电力自动化设备, 2003. 8, 23(8): 13-16
    [118] Kalyan. K. Sen, Mey Ling Sen. Comparison of the “Sen”Transformer with the Unified Power Flow Controller. IEEE Transactions on Power Delivery, October 2003, 18(4): 1523-1533
    [119] C. K. Sao, P. W. Lehn, M. R. Iravani, et al. A Benchmark System for Digital Time-Domain Simulation of a Pulse-Width-Modulated D-STATCOM. IEEE Transactions on Power Delivery, October 2002, 17(4): 1113-1120
    [120] Alan R. Wood, Chris M. Osauskas. A Linear Frequency-Domain Model of a STATCOM. IEEE Transactions on Power Delivery, July 2004, 19(3): 1410-1418
    [121] Yiqiao Liang, C. O. Nwankpa. A New Type of STATCOM Based on Cascading Voltage-Source Inverters with Phase-Shifted Unipolar SPWM. IEEE Transactions on Industrial Applications, September/October 1999, 35(5): 1118-1123
    [122] IEEE Special Stability Controls Working Group. Static Var Compensator Models for Power Flow and Dynamic Performance Simulation. IEEE Transactions on Power System. February 1994, 9(1): 229-240
    [123] Pranesh Rao, M. L. Crow, Zhiping Yang. STATCOM Control for Power System Voltage Control Applications. IEEE Transactions on Power Delivery, October 2000, 15(4): 1311-1317
    [124] Hassan Ali Kojori, Shashi B. Dewan, J. Douglas Lavers. A Large-Scale PWM Solid-State Synchronous Condenser. IEEE Transactions on Industrial Applications, January/February 1992, 28(1): 41-49
    [125] H. A. Kojori, S. B. Dewan, J. D. Lavers. A Two Stage Inverter Large Scale Static Var Compensator with Minimum Filtering Requirements. IEEE Transactions on Magnetics, September 1990, 26(5): 2247-2249
    [126] R. Natesan, G. Radman. Effects of STATCOM, SSSC, UPFC on Voltage Stability. 2004. Proceedings of the Thirty-Sixth Southeastern Symposium on System Theory, Atlanta, Georgia, USA, 14th-16th March 2004: 546-550
    [127] Amir H. Norouzi, A. M. Sharaf. Two Control Schemes to Enhance the Dynamic Performance of the STATCOM and SSSC. IEEE Transactions on Power Delivery, January 2005, 20(1): 435-442
    [128] Sang-Joon Lee, Hyosung Kim, Seung-Ki Sul, et al. A Novel Control Algorithm for Static Series Compensators by Use of PQR Instantaneous Power Theory. IEEE Transactions on Power Electronics, May 2004, 19(3): 814-827
    [129] Rafael Mihalic, Uros Gabrijel. A Structure-Preserving Energy Function for a Static Series Synchronous Compensator. IEEE Transactions on Power Systems, August 2004, 19(3): 1501-1507
    [130] B. Han, S. Baek, H. Kim, et al. Dynamic Characteristic Analysis of SSSC Based on Multibridge Inverter. IEEE Transaction on Power Delivery, April 2002, 17(2): 623-629
    [131] L. Sunil Kunmar, Arindam Ghosh. Model and Control Design of a Static Synchronous Series Compensator. IEEE Transactions on Power Delivery, October 1999, 14(4): 1448-1453
    [132] Fawzi A. Rahman Al Jowder, Boon-Teck Ooi. Series Compensation of Radial Power System by a Combination of SSSC and Dielectric Capacitors. IEEE Transactions on Power Delivery, January 2005, 20(1): 458-464
    [133] Kalyan K. Sen. SSSC-Static Synchronous Series Compensator: Theory, Modeling, and Applications. IEEE Transactions on Power Delivery, January 1998, 13(1): 241-246
    [134] Lazio Gyugyi, Colin D. Schauder, Kalyan K. Sen. Static Synchronous Series Compensator: A Solid-State Approach to the Series Compensation of Transmission Lines. IEEE Transactions on Power Delivery, January 1997, 12(1): 406-417
    [135] G. N. Pillai, A. Ghosh, A. Joshi. Torsional Interaction between an SSSC and a PSS in a Series Compensated Power System. IEE Proceedings on Generation, Transmission and Distribution, November 2002, 149(6): 653-658
    [136] L. Gyugyi. Unified Power Flow Control Concept for Flexible AC Transmission Systems. IEE Proceedings-C, July 1992, 139(4): 323-331
    [137] Laszlo Gyugyi. Dynamic Compensation of AC Transmission Lines by Solid State Synchronous Voltage Sources. IEEE Transactions on Power Delivery, April 1994, 9(2): 904-911
    [138] 史伟伟, 蒋全, 胡敏强等. 三相电压型PWM 整流器的数学模型和主电路设计. 东南大学学报(自然科学版), 2002. 1, 32(1): 50-55
    [139] 王勉华. 三相PWM 整流器研究. 电工技术学报, 1996. 8, 11(4): 27-30
    [140] 沈安文, 万淑芸, 王离九等. PWM 整流器的输入电流谐波分析及参数确定. 电力电子技术, 1998, 3: 4-6
    [141] 董晓鹏, 王兆安. PWM 整流器直流电压对电源电流控制的影响. 电力电子技术, 1998, 3: 7-11
    [142] 熊宇, 李君, 张仲超等. 基于改进矢量控制的三相电压型整流器的系统分析和设计. 电气传动, 2002, 5: 13-17
    [143] 董晓鹏, 王兆安. 基于改进周期平均模型的PWM 整流器控制. 电力电子技术, 1999, 2: 11-14
    [144] 阮立飞, 张艳红, 叶梵生. 三相单位功率因数整流器的电流控制方法研究. 电气传动, 2001, 6: 27-29
    [145] 熊健, 康勇, 段善旭等. 三相电压型PWM 整流器控制技术研究. 电力电子技术, 1999, 2: 5-7
    [146] 毛鸿, 吴兆麟, 王毅. 三相电压型PWM 整流器无电流传感器控制策略研究. 电工技术学报, 2001. 4, 16(2): 56-60
    [147] 董晓鹏, 王兆安. 三相电压型单位功率因数PWM 整流器的研究. 电力电子技术, 1997, 4: 39-41
    [148] 杨德刚, 赵良炳, 刘润生. 三相高功率因数整流器的建模及闭环控制. 电力电子技术, 1999, 5: 49-51
    [149] 周晓霖, 黄声华. 实现PWM 整流器优化控制的磁链法. 华中理工大学学报, 2000. 6, 28(6): 21-23
    [150] 董晓鹏, 裴云庆, 王兆安. 一种电压型PWM 整流器控制方法的研究. 电工技术学报, 1998. 10, 13(5): 31-41
    [151] 向华, 徐至新, 陈坚. 一种新型的Delta 调制电流型PWM 整流器. 电力电子技术, 1997, 1: 65-66
    [152] 沈安文, 万淑芸, 王离九等. 双PWM 交流传动系统中主电路储能元件设计. 华中理工大学学报, 1999, 27(7): 23-25
    [153] Nadarajah Mithulananthan, Claudio A. Canizares, John Reeve, et al.. Comparison of PSS, SVC, and STATCOM Controllers for Damping Power System Oscillations. IEEE Transactions on Power Systems, May 2000, 18(2): 786-792
    [154] P. W. Lehn. Exact Modeling of the Voltage Source Converter. IEEE Transactions on Power Delivery, January 2002, 17(1): 217-222
    [155] 熊健. 三相电压型高频PWM 整流器研究: [博士学位论文]. 武汉: 华中科技大学图书馆, 1999
    [156] 刘平. 用于超导磁储能系统的高性能电压源变换器控制技术研究: [博士学位论文]. 武汉: 华中科技大学图书馆, 2000
    [157] D. Dickmander, B. Thorvaldsson, G. Stromberg, et al. Control System Design and Performance Verification for the Chester, Maine Statice Var Compensator. IEEE Transactions on Power Delivery, July 1992, 7(3): 1492-1503
    [158] Kalyan K. Sen, Albert J. F. Keri. Comparison of Field Results and Digital Simulation Results of Voltage-Sourced Converter-Based FACTS Controllers. IEEE Transactions on Power Delivery, January 2003, 18(1): 300-306
    [159] 陈坚. 交流电机数学模型及调速系统. 北京: 国防工业出版社, 1989
    [160] 康勇. 高频大功率SPWM 逆变电源输出电压控制技术研究: [博士学位论文]. 武汉: 华中科技大学图书馆, 1994
    [161] 彭力. 基于状态空间理论的PWM 逆变电源控制技术研究. [博士学位论文]. 武汉: 华中科技大学图书馆, 2004
    [162] Laszlo Gyugyi, Colin D. Schauder, Kalyan K. Sen. Static Synchronous Series Compensator: A Solid-State Approach to the Series Compensation of Transmission Line. IEEE Transmission on Power Delivery, January 1997, 12(1): 406-417
    [163] Kalyan K. Sen. SSSC-Static Synchronous Series Compensator: Theory, Modeling, and Applications. IEEE Transactions on Power Delivery, January 1998, 13(1): 241-246
    [164] Sang-Joon Lee, Hyosung Kim, Seung-Ki Sul, et al. A Novel Control Algorithm for Static Series Compensators fy Use of PQR Instantaneous Power Theory. IEEE Transactions on Power Electronics, May 2004, 19(3): 814-827
    [165] Rafael Mihalic, Uros Gabrijel. A Structure-Preserving Energy Function for a Static Series Synchronous Compensator. IEEE Transactions on Power Systems, August 2004, 19(3): 1501-1507
    [166] B. Han, S. Baek, H. Kim, et al. Dynamic Characteristic Analysis of SSSC Based on Multibridge Inverter. IEEE Transactions on Power Delivery, April 2002, 17(2): 623-629
    [167] L. Sunil Kumar, Arindam Ghosh. Modeling and Control Design of a Static Synchronous Series Compensator. IEEE Transactions on Power Delivery, October 1999, 14(4): 1448-1453
    [168] Fawzi A. Rahman Al Jowder, Boon-Teck Ooi. Series Compensation of Radial Power System by a Combination of SSSC and Dielectric Capacitor. IEEE Transactions on Power Delivery, January 2005, 20(1): 458-465
    [169] G. N. Pillai, A. Ghosh, A. Joshi. Torsional Interaction between an SSSC and a PSS in a Series Compensated Power System. IEE Proceedings on Generation, Transmission, Distribution, November 2002, 149(6): 653-658
    [170] H. A. Kojori, S. B. Dewan, J. D. Lavers. A Two Stage Inverter Large Scale Static Var Compensator with Minimum Filtering Requirements. IEEE Transactions on Magnetics, September 1990, 26(5): 2247-2249
    [171] Hassan Ali Kojori, Shashi B. Dewan, J. Douglas Lavers. A Large-Scale PWM Solid-State Synchronous Condenser. IEEE Transactions on Industry Applications, January/February 1992, 28(1): 41-49
    [172] 彭方正, 房绪鹏, 高奇, 顾斌, 钱照明. 一种新型的UPFC 拓扑. 电力系统及其自动化学报, 2004, 16(1): 56-61
    [173] 陈众, 颜伟, 徐国禹, 王官洁. 统一潮流控制器的智能解耦与结构设计研究. 电网技术, 2004, 28(2): 23-17
    [174] W. H. Siew, Qingmin Li, Martin G. Stewart, et al. Measurement of Electromagnetic Emissions From FACTS Equipment Operational Within Substations-Part I. IEEE Transactions on Power Delivery, April 2005, 20(2): 1775-1781
    [175] W. H. Siew, Qingmin Li, Martin G. Stewart, et al. Conducted Emissions From FACTS Equipment Operational Within Substations-Part II. IEEE Transactions on Power Delivery, April 2005, 20(2): 1782-1787
    [176] W. H. Siew, Qingmin Li, Martin G. Stewart, et al. Radiated Emissions From FACTS Equipment Operational Within Substations-Part III. IEEE Transactions on Power Delivery, April 2005, 20(2): 1788-1796
    [177] L. Zhang, C. Shen, Z. Yang, M. Crown, et al. A Comparison of the Dynamic performance of FACTS with Energy Storage to a Unified Power Flow Controller. 2001 IEEE Power Engineering Society Winter Meeting, Columbus, Ohio, USA, 28th Jan-1st Feb. 2001, 2: 611-616
    [178] Fang Wanliang. Coordinated Power Control of Unified Power Flow Controller and its Application for Enhancing Dynamic Power System Performance. [Doctor Dissertation]. Hongkong: The Hong Kong Polytechnic University, 1999
    [179] Edvina Uzunovic. EMTP, Transient Stability and Power Flow Models and Controls of VSC Based FACTS Controllers. [Doctor Dissertation]. Waterloo, Ontario, Canada: University of Waterloo, 2001
    [180] Satish Maram. Hierarchical Fuzzy Control of the UPFC and SVC Located in AEP’s Inez Area. [Master Thesis]. Falls Church, Virginia, U. S. A: Virginia Polytechnic Institute and State University, 2003
    [181] Lingli Zhang. Integration of Battery Energy Storage with Static Synchronous Serial Compensator. [Doctor Dissertation]. Missouri-Rolla, U. S. A: University of Missouri-Rolla, 2001
    [182] Kannan Sreenivasachar. Unified Power Flow Controller: Modeling, Stability Analysis, Control Strategy and Control System. [Doctor Dissertation]. Waterloo, Ontario, Canada: University of Waterloo, 2001
    [183] CH. Sudhakara Babu. Control of a Unified Power Flow Controller (UPFC)-A Simulation Study Using MATLAB/SIMULINK. [Master Thesis]. Kerala, India: The University of CALICUT, 2002
    [184] 胡寿松. 自动控制原理(第四版). 北京: 科学出版社, 2002
    [185] 石红芹, 李兰英, 李霄燕. 基于DSP 的SPWM 控制技术在UPFC 中的实现. 哈尔滨理工大学学报, 2004, 9(2): 31-34
    [186] 刘盛松, 王敏, 侯志俭. 含广义统一潮流控制器(GUPFC)的最优潮流模型和算法研究. 中国电力, 2004, 37(2): 35-39
    [187] 陈众, 颜伟, 徐国禹, 王官洁. UPFC 直流侧电容电压弱控制策略研究. 电工技术学报, 2004, 19(1): 49-54
    [188] 王晶, 陈学允. UPFC 对动态电能质量影响的分析研究. 电工技术学报, 2004, 19(1): 44-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700