燃气发动机热电联产机组控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小型燃气发动机热电联产将能源就地转换,有效地提供电能和热能,总能源利用率达85%以上,将会是21世纪能源技术的主流之一。在我国能源日益紧张的情况下,研究燃气发动机热电联产机组及其控制系统对于提高能源利用率具有重要意义。
     燃气发动机热电联产机组控制系统包括了气体流动、燃烧与膨胀,往复式机械运动,电磁转换等众多复杂的瞬变动态过程,具有时变、非线性和多不确定性干扰等特性。在分析机组运行特性的基础上,运用非线性控制理论和智能控制理论,详细研究了机组供电质量相关的频率控制、励磁控制、励磁与频率调节相互影响的机理及其解耦控制以及机组余热回收及其控制等问题,并通过试验和仿真对提出的控制策略和方法进行了验证。
     1、建立燃气发动机热电联产试验机组,研究了机组结构、燃气发动机改装技术以及控制系统的硬件组成。根据燃气发动机和同步发电机的运行特性建立了机组的机理数学模型,然后利用神经网络对有限试验结果进行拟合得到机组输入输出参数间的关系曲线,用拟合关系曲线对机理数学模型参数进行修正。由此得到了符合机组实际运行特性的机组数学模型。
     2、研究直接以频率值为反馈,负荷电流为前馈,采取前馈与反馈协调控制策略,通过步进电机调节节气门开度进行频率控制的方法。前馈补偿采用模糊神经网络算法(FNN),以负载电流i及电流变化量ic作为输入,以步进电机转动的角度θ为输出,以反馈控制器的输出误差平方和最小为控制训练目标。反馈控制采用PID神经网络算法(PID-NN),设计了PID-NN各层神经元个数、连接方式、连接权值,同时研究了以系统频率给定值r和机组实际频率输出值y为输入,输出误差平方和为最小的学习算法。FNN前馈快速反应机组负荷的变化并做出相应的调节,PID-NN通过自学习,自适应前馈对系统的调节作用并对系统误差进一步调节,减少系统偏差和增加系统的稳定性和鲁棒性。试验结果表明FNN前馈补偿与PID-NN反馈协调进行频率控制其效果明显优于PID和模糊控制,能适应机组非线性特性和参数的变化,减少负荷突变时的频率稳定时间和稳态误差。
Gas engine cogeneration unit transforms and provides electric and heat energy on the spot. Its total efficiency of energy utilization is reach to 85%. On the situation of energy short, it is important to research gas engine cogeneration unit and its control system.
    The control system of gas engine cogeneration unit is a complex one with time-variable and nonlinear properties, in which contains a lots of transient and dynamic processes such as gas flow, combustion, reciprocating mechanical movement and electromagnetism transform. Based on analyzing the problems of the exiting control method and the running characters of the generattion unit, by combing nonlinear control and intelligent control theory, this dissertation aims at research and investigation thoroughly on power frequency control strategy, exciting control strategy, the interrelationship of power frequency and exciting control and its decoupling control strategy, the structure and control method of waste hot utilization system of the unit. Further more, these strategies and methods are tested through establishing experiment unit or simulation model.
    1. A model is studied for complicated multi-parameters engine generating unit. Firstly, the mechanism model is deduced base on the operating characteristics of natural gas engine and synchronous generator. Then, according to the limited test results, the relationship curves of input and output parameters are gained by artificial neural network calculating. Last, the parameters of mechanism model are adjusted according the relationship curves.
    2. The control method of power frequency is studied, of which the measured value of power frequency is as feedback, the current of load is as feedforward and throttle angle is adjusted by step motor. PID controller and fuzzy controller are designed and tested through experimental unit. The results indicate that PID controller and fuzzy controller can't get appropriate control precision for power frequency control. Then frequency control strategy combining feedforward and
引文
[1] 吕建.天然气发电现状及液化天然气在广东的应用.热力发电,2003,(5):1~3
    [2] Wu Jiangru, Yu Jianshi, Hu Yijian. research on the development of gas-field power generation in china for year 2001~2010. Electricity CSEE, 2002, 13 (2): 25~32
    [3] 袁春生.天然气应用于热电联产是最佳选择.中国能源,2003,25(12):13~18
    [4] P.H.J.Bartholomens.微型热电联产开始进入实用.国际燃气研讨会论文,1998:20
    [5] 郭廷杰.加速发展热电联产.北京节能,2000(3):15~17
    [6] 许康宁,朱兆玟.燃气热电联产—文献综述.上海煤气,2000,(2):1~17
    [7] 金晶.天然气发动机驱动的小型全能系统——21世纪能源产业的革命.柴油机,2002,(6):40~45
    [8] 朱成章.美国冷热电联产纲领及启示.中国电力,2000(33):91~93
    [9] Drewry H.Kohler住宅区热电联产系统的开发.Cogen.J.,1991,(6):16~31
    [10] Frederiksen K.在独立房子里的小规模热电联产.V.Gasteknik,1997,(4):8~9
    [11] 魏春源,张卫正,葛蕴珊,高等内燃机学,北京:北京理工大学出版社,2001,293~294
    [12] Woodward. Electric governor control unit. Woodward governor. 1998
    [13] 腾万庆.柴油机调速新技术.哈尔滨:哈尔滨工程大学出版社,2000.3
    [14] 胡明江,杨铁皂.柴油机电子调速器的研究现状及发展趋势.河南科技大学学报,2003,(12):44~47
    [15] 许友林,熊玲.电子调速器性能测试技术及发展趋势.仪器仪表学报,2001,(12):156~158
    [16] Woodward. New digital-electric governor system from Woodward. Diesel & Gas Turbine Worldwide, 1993, 25(8): 34~35
    [17] Ming Gaoyao. Direct Digital Control of Diesel Engine. SAE, 940372
    [18] 杨胜国,朱梅林.改善柴油机电子调速器控制性能的仿真研究.华中科技大学学报,2001,29(10):83~85
    [19] W.Pryan. Performance Optimization of a Digital Speed Governing System Applied to Station Diesel Governors. SAE, 952145
    [20] Jin Jiang. Design and Implementation of an Optimal Gain Scheduling Controller for a Diesel Engine. Second IEEE Conference on Control Applications, Vol.2:667~672
    [21] Jaliwala S.A., Day E., Stahl W.H.. Diesel Engine Governing with Load feedback. ASME, 1992
    [22] Bode D. Governor Control System Offers Locomotive Fuel Savings. DGTW, 1983, 15(9): 10~12
    [23] 李彦强,朱从乔,黄次浩.柴油机电子调速器PID参数模糊自校正研究.内燃机学报, 2001,19(3):267~269
    [24] 段晖辉,卓斌,高世伦.模糊—PID控制在柴油机数字式电子调速器中的应用.内燃机工程,1998,19(4):65~71
    [25] 陆平,张志华.柴油机电子调速系统的变增益非线性问题研究.内燃机工程,1992,13(1):65~71
    [26] 腾万庆.数字式电子调速系统智能控制技术研究.哈尔滨工程大学学报,1997,18(8):39~42
    [27] Bode D. Electronic Governor Offers Several Advantages. DGTW, 1984, 16(4): 28~30
    [28] 刘兴华.仇滔.柴油机转速调节系统分析探讨.内燃机,2001,(4):6~8
    [29] Gissinger G.L., Frank P.M.. Model-based electronic diesel engine and turbocharger control. SAE Technical Paper Series, 1990, 900595
    [30] Odaka Matsuo, Tsukamoto Yujiro. Development of automatic engine control system with predictive control and its application for heavy-duty diesel engines. SAE Special Publications, 1990, 900234
    [31] 王丹,于群,朱绍庐.船舶电站柴油机微机调速系统的设计.大连海事大学学报,1997,23(2):70~72
    [32] 赵光宙,翁学义.基于广义预测控制的柴油机电子调速系统的研究.内燃机工程,1998,19(2):1~8
    [33] Billings S A, Chen S. The identification of linear and nonlinear models of a turbo charged automotive diesel engine. Mechanical Systems and Signal Processing, 1989, (3): 123~142
    [34] 黄曼磊,李殿璞,唐嘉.船舶电站柴油机调速系统H_∞控制器的设计.中国造船.2001,42(4):46~51
    [35] 段军.基于单神经元智能PID控制的柴油机数字式电子调速系统.大连铁道学院学报,1999,20(3):42~47
    [36] De Nicolao G, Rossi C. Identification and idle speed control of internal combustion engines. Control Engineering Practice, 1999(7): 1061~1069
    [37] Garvey D.C.. Precision Speed Control System with Throttle Disturbance Forces. ASME, 1981
    [38] Odaka Matsuo, Tsukamoto Yujiro. Development of automatic engine control system with predictive control and its application for heavy-duty diesel engines. SAE Special Publications, 1990, 900234
    [39] Kawabata, Yoshitaka. A new variable-speed, constant-frequency, stand-alone power generating system. Electrical Engineering in Japan, 2004, 146(2): 75~85
    [40] Guillemette J.R.. Proposed optimal controller for the Canadian Patrol Frigate diesel propulsion system. Ship Control Systems Symposium Proceedings, 1997, (1): 219~236
    [41] Uddin, M. Nasir. Real-Time Performance Evaluation of a Genetic Algorithm Based Fuzzy Logic Controller for IPM Motor Drives. Conference Record-IAS Annual Meeting, 2003, 2: 731~737
    [42] 罗昌由.单片机控制的发动机数字式电子调速器的理论设计.衡阳师专学报,1998,19(6):37~39
    [43] 李伟华,卓斌.柴油机调速系统动态调节过程的计算机仿真及参数优化.内燃机学报,1999,17(4):357~363
    [44] 孙军,陆平.低功耗电子调速器.内燃机学报,1997,15(4):490~494
    [45] 陆平,王芝秋.电站柴油机数字式调速系统设计与实验研究.内燃机学报,1992,10(8):227~232
    [46] 段军,李玉光.柴油机数字式电子调速器硬件在环仿真系统.大连铁道学院学报,2001,22(2):38~42
    [47] 卢强,孙元章.电力系统非线性控制.北京:科学出版社,1993
    [48] 李家坤.同步发电机励磁控制方式发展综述.电力学报,2005,20(1):26~29
    [49] P.S. Ray, P.B. Duttagupta, MIEE.Ceng, et al.. Coordinated Multimachine PSS Design Using both Speed and Electric Power. IEEE Proc.Gener. Transm. Distrib. 1995, 142 (5): 503~510
    [50] Magdy E, About-Ela, A .A.Sallam, et al.. Damping Controller Design for Power System Oscillations Using Global Signals. IEEE Transaction on Energy Conversion, 1996, 11(2): 767~773
    [51] M.Aldeen, J.F.Marsh. Decentralized Proportional-plus-integral Design Method for Interconnected Power Systems. IEEE Proceedings-C, 1991, 138 (4): 263~274
    [52] T.L.Huang, S.C.Chen, T.YHwang, et al.. Power System Output Feedback Stabilizer Design via Optimal Sub-engine structure Assignment. IEEE Transaction on Power Systems, 1991, 6(3): 1035~1041
    [53] P.K .Dask, A.C.Liew, B.R.Mishm. An Adaptive PID Stabilizer for Power Systems Using Fuzzy Logic, Electric Systems Research, 1998, 44:213~222
    [54] Harid A., Malik O.P.. Self-learning Adaptive-network-based Fuzzy Logic Power System Stabilizer. Proceedings, ISAP'96 International Conference on Intelligent Systems Applications to Power Systems, 1996:299~303
    [55] Hariri A., Malik O.P., A Fuzzy Logic based Power System Stabilizer with Learning Ability, IEEE Transaction on Energy Conversion, 11(4): 1996:721~727
    [56] E1-Metwally K.A., Hancock G.C., Malik O.P.. Implementation of a Fuzzy Logic PSS using a Micro-controller and Experimental Test Results, IEEE Transaction on Energy Conversion, 1996, 11(1): 91~96
    [57] Hassan M.A.M., Malik O.P., Hope G.S.. A Fuzzy Logic Based Stabilizer for a Synchronous Machine. IEEE Transaction on Energy Conversion, 1991, 6(3): 407~413
    [58] Salem M.M., Zaki A.M., Mahgoub O.A., et al.. Studies on a Multi-machine Power System with a Neural Network based Excitation Controller. IEEE Power Engineering Society Summer Meeting, 2000: 105~110
    [59] ShamsollahiP., MalikO.P., An Adaptive Power System Stabilizer using on-line Trained Neural Networks, IEEE Transaction on Energy Conversion, 1997, 12 (4): 382~387
    [60] Shamsollahi P., Malik O.P., Real-time Implementation and Experimental Studies of a Neural Adaptive Power System Stabilizer. IEEE Transaction on Energy Conversion, 1999, 14 (3): 737~742
    [61] Zhang Y, Chen G.P., Malik O.P., et al. An Artificial Neural Network based Adaptive Power Sys tern Stabilizer. IEEE Transaction on Energy Conversion, 1993, 8(1): 71~77
    [62] Salem M.M., Zaki A.M., Mahgoub O.A., et al. Online Trained Neuro-controller with a Modified Error Function, 2000 Canadian Conference on Electrical and Computer Engineering, 2000:83~87
    [63] Hariri A., Malik O.P.. Adaptive-network-based Fuzzy Logic Power System Stabilizer, WESCANEX 95. Communications Power and Computing Conference Proceedings, IEEE, 1995: 111~116
    [64] 于占勋,段献忠,陈德树等.多机电力系统智能变结构PSS的研究.电机工程学报.1998,18(3):186~189
    [65] Yao-Nan Yu. Electric Power System Dynamics. Application of an Optimal Control Theory to Power System. IEEE Trans, 1995, 94(4): 1359~1371
    [66] 卢强,王仲鸿,韩英铎.输电系统最优控制.北京:科学出版社,1982
    [67] 韩英铎,王仲鸿,陈淮金.电力系统最优分散协调控制.北京:清华大学出版社,1997
    [68] 谢小荣,钱弊,崔文进等.一种考虑输入限幅的线性二次型励磁控制设计方法.电网技术,2000,24(10):1~5
    [69] 黄顺礼.同步电机励磁控制系统的“ITAE”最佳调节.电力系统自动化,1993,17(2):19~25
    [70] Chengxiong Mao, Malik O.E, Hope G.S., et al.. An Adaptive Generator Excitation Controller Based on Line Optimal Control, IEEE Transaction on Energy Conversion, 1990, 5(4): 673~678
    [71] Ghosh A., Ledwich. Power System Stabilizer Based on Adaptive Control Techniques, IEEE Trans. on PAS, 1984, 103(8): 1983~1989
    [72] Lu Q, Sun Y Z. Nonlinear Stabilizing Control of Multimachine Systems. IEEE Trans. on Power Systems, 1989, 4(1): 236~241.
    [73] Lu Q, Sun Y Z. Nonlinear Optimal Excitation Control for Multimachine Systems, In: IFAC Symposium on Power Systems, Model Ling and Control Applications, Oxford(UK), 1989, 4(1): 27~32
    [74] Gao L, Chert L. A Nonlinear Control Design for Power Systems. Automatica, 1992, 28(3): 975~979
    [75] Mielezarski W, Zajaczkowski A M. Nonlinear Field Voltage Control of a Synchronous Generator Using Feedback Linearization. Automatica, 1994, 30 (10): 1625~1630
    [76] Sararesi SM. Exact Feed Back Linearization of Fifth Order Model Synehronies Generators. IEEE Proceedings Control Theory andApplieations, 1999, 146 (1): 53~57
    [77] Okou FA, Akhrifo. Nonlinear Control of Nonminimum Phase Systems: Application to the Voltage and Speed Regulation of Power System. Proceeding of the 1999 IEEE International Conference on Control Application Hawaii (USA), 1999:22~27
    [78] 陈铁,舒乃秋.基于直接反馈线性化的非线性励磁控制策略的研究.电力科学与工程,2005(1):30~31,42
    [79] 孙元章,黎雄,戴和平等.同时改善稳定性和电压精度的非线性励磁控制器.中国电机工程学报,1996,16(5):332~336
    [80] 王志芳,孙元章,张广恕等.非线性励磁控制器改善华中电网稳定性的分析.电网技术,1998,22(2):11~13
    [81] 李华,张宝霖,周荣光.直接大范围线性化方法设计发电机的励磁控制器-基本理论.中国电机工程学报,1992,12(2):29~35
    [82] 李华,张宝霖,周荣光.直接大范围线性化方法设计发电机的励磁控制器.励磁控制器的设计.中国电机工程学报,1992,12(2):36~41
    [83] 汪兴盛,周双喜,祁嵘.一种改进的非线性励磁控制器.全国高等学校电力系统及其自动化专业第十届学术年会论文集,1994
    [84] Wang Y Y, Hill D J. Robust Decentralized Control for Multimachine Power Systems. IEEE Transactions on Circuits and Systems, 2000, 47(1): 46~53
    [85] G.Guo, Y.Wang, K.Y.Lim, et al. Robust Nonlinear Controller for Power System Transient Stability Enhancement with Voltage Regulation. IEEE Proc.Gener. Transm.Distrib. 1996, 143(5): 407~412
    [86] 周双喜,汪兴胜.基于直接反馈线性化的非线性励磁控制器.中国电机工程学报,1995,15(4):281~286
    [87] KingC.A., Chapman J.W., Ilic M.D.. Feedback Linearization Excitation Control on a Full-scale Power System Model. IEEE Transactions on Power Systems, 1994, 9(3): 1102~1109
    [88] Youyi Wang, David J. Hill, Richard H.Middleton, et al.. Transient Stability Enhancement and Voltage Regulation of Power Systems. IEEE Transactions on Power Systems, 1993, 8(2): 620~627
    [89] Yoke Lin Tan, Youyi Wang. Transient Stability Improvement of Power Systems Using Nonlinear Excitation, Phase Shitter and Adaptive Control Law. Conference on EMPD, Singanore, 1995:468~473
    [90] 于达仁,毛志伟.基于直接反馈线性化的非线性励磁控制的容错性研究.电力系统自动化,1997,21(12):1~5
    [91] J.W.Chapman, M.D.Ilic, C.A.King, et al.. Stabilizing a Multimachine Power System via Decentralized Feedback Linearizing Excitation Control. IEEE Transaction on Power Systems, 1993, 8(3): 830~838
    [92] 刘广生,刘浮石,王文杰.同步发电机非线性励磁控制的逆系统方法.控制与决策,1993,8(6):456~460
    [93] 蒋林,曹一家,程时杰.应用非线性控制理论抑制电力系统多模振荡的研究.电力系统自动化,1995,19(2):5~11
    [94] 王仁洲.电力系统状态空间控制.北京:能源出版社,1989
    [95] 刘国贤,林宪枢,杨奇逊.基于能量函数的多机系统暂态过程励磁控制研究.中国电 机工程学报,1997,17(4):264~268
    [96] Gan D., Qu Z., Cai H.. Multi-machine Power System Excitation Control Design via Theories of Feedback Linearizafion and Nonlinear Robust Control, International Journal of Systems Science, 31(4), 2000:519~527
    [97] 常鲜戎,播云江,万军,等.基于Lyapunov稳定性理论的发电机非线性励磁控制研究.电力系统自动化.1994,18(10):25~29
    [98] Chan Wah-chum. Hsu.Y.Y.. An Optimal Variable Structure Stabilizer for Power System Stabilization. IEEE Transactions on PAS, 1983, 102(6): 1378~1746
    [99] Koumboulis F.N., Skarpetis. Robust triangular decoupling via output feedback. Journal of The Franklin Institute, 2000, 337(1): 11~20
    [100] Subbarao G V, Iyer A, Nonlinear Excitation and Governor Control Using Variable Structures. International JoumalofControl, 1993, 57(6): 1325~1342
    [101] V.G.D.C.Samarasinghe, N.C.Pahalawaththa. Design of Universal Variable structure Controller for Dynamic tabilisation of Power Systems. IEEE Proc.-Gener. Transm.Distrib. 1994, 141(4): 363~368
    [102] M.L.Kothari, J. Nanda, K. Bhattacharya. Design of Variable Structure Power System Stabilizers with Desired Eigenvalues in the Sliding Mode. IEEE.Proc., 1993, 140(4): 263~268
    [103] Samarasing V.G.D.C, Pahalawaththa N.C.. Design of a Robust Variable Structure Controller for Improving Power System Dynamic Stability. International Journal of Electrical Power& Energy Systems, 1996, 18(8): 519~525
    [104] Han Yunrui. Nonlinear Variable Structure Control Technique for Power Systems. Control Theory and Applications, 1997, 14(5): 638~64
    [105] 唐涛南,魏守平,程时杰等.发电机非线性励磁连续变结构控制器的研究.电工技术学报,1998,13(5):22~25
    [106] 于浩.发电机组适应型综合稳定控制的研究.哈尔滨工业大学博士论文,1998:17~61
    [107] 高峰,秦翼鸿,徐国禹.基于模糊逻辑的一种变结构励磁控制方法.中国电机工程学报,1996,16(5):338~340
    [108] 毛承雄,樊俊.双环自适应最优励磁控制器.电力系统及其自动化学报,1994,6(1):1~8
    [109] 康忠健.非线性状态PI控制及其在发电机组控制中应用的研究.哈尔滨工业大学博士学位论文,2003
    [110] Yijia Cao, Lin Jiang. A Nonlinear Variable Structure Stabilizer for Power System Stability. IEEE Trans.On Energy Conversion, 1994, 9(3): 489~495
    [111] 毛承雄,樊俊.同步发电机自适应最优励磁控制器.电力系统及其自动化学报,1990,25(10):17~25
    [112] Wang Y Y, Hill D J. Transient Stabilization of Power Systems with an Adaptive Control Law. Automatic, 1994, 30(6): 1409~1413
    [113] C.M.LIM. A Self-tuning Stabilizer for Excitation or Governor of Power systems. IEEE Transaction on Energy Conversion, 1989, 4(2): 152~159
    [114] 刘伟,余贻鑫,田树苞.同步发电机的变结构模型参考自适应励磁控制器.电网技术, 1997,21(5):8~11
    [115] 丘昌涛,李国辉,郑洪峰等.非黎曼空间测地逼近及其在电力系统非线性自适应控制中的应用.中国电机工程学报,1996,16(6):366~369
    [116] M.Farsi, K.J.Zachariah, J.WFinch. Implementation of a Self-tuning AVR. IEEE Procs. Control Theory and Applications. 1997, 144(1): 32~39
    [117] Ramakrishna G, Malik O P. Adaptive Control of Power Systems Using Radial Basis Function Network Identification and Predictive Control Calculation. IEEE Conference Proceedings on 1999 Power Engineering Society Winner Meeting, 1999:989~994
    [118] 粱志珊,张化光,王红月等.同步发电机励磁非线性预测控制.中国电机工程学报,2002,20(12):52~56
    [119] LIANG Zhi-shan, ZHANG Hua-guang, WANG Hong-yue, et al.. Holographic Robust Predictive Control of Synchronous Machine Excitation for Power Systems. IEEE Conference Proceedings on 2000 Power Engineering Society Summer Meeting, 2000: 181~185
    [120] 刘辉,李啸骢,韦化.一种基于MAC的非线性预测励磁控制器的设计.继电器,2005,33(8):1~5
    [121] 蒋铁铮,陈陈,曹国云.同步发电机励磁非线性预测控制技术.控制与决策,20(4):467~470
    [122] 高峰.一种实用的Fuzzy自适应励磁控制方法.电力系统自动化,1994,18(11)
    [123] 郭培源.同步发电机励磁系统模糊逻辑控制.电力系统及其自动化学报,1999,34(4):78~81
    [124] 李晓晴,秦翼鸿.多变量励磁模糊控制研究.电力系统自动化,1996,20(6):8~11
    [125] Brock J, LaMeres. Fuzzy Logic Based Voltage Controller for a Synchronous Generator. IEEE Computer Application in Power, 1999, 4:46~49
    [126] P.Hong, K.Tomsovic. Design and Analysis of an Adaptive Fuzzy Power System Stabilizer. IEEE Transaction on Energy Conversion, 1996, 11(2): 455~461
    [127] K.A.EI-Merwally, O.P.Malik. Application of Fuzzy Logic Stabilizers in a Multimachine Power System Environment. IEEE Proc.Gener.Transm.Distrib., 1996, 143(3): 263~268
    [128] Hamid A.. Toliyat, Javad Sadeh, et al.. Design of Augmented Fuzzy Logic Power System Stabilizers to Enhance Power System Stability. IEEE Transaction on Energy Conversion, 1996, 11(1): 97~103
    [129] Takashi Hiyama, Koushi Miyazaki, Hironori Satoh. A Fuzzy Logic Excitation System for Stability Enhancement of Power System with Multimode Oscillations. IEEE Transaction on Energy Conversion, 1996, 11(2): 449~454
    [130] A.M.Luciano, D.Lauria, E.Napoli. Algorithm for Automatic Generation of Fuzzy Rulers Applied to Power System Controllers. IEEE Proc.-Gener.Transm.Distrib. 1998, 145(2): 161~167
    [131] 文劲宇,程时杰,张克元.基于遗传算法的模糊式电力系统稳定器自寻优设计法.电工技术学报,1999,14(4):21~26
    [132] Shamsollahi P., Malik O.P., Direct Neural Adaptive Control Applied to Synchronous Generator. IEEE Transaction on Energy Conversion, 1999, 14(4): 1341~1346
    [133] SalemM.M., Zaki A.M., Mahgoub O.A., et al. Experimental Verification of a Generating Unit Excitation Neuro-Controller, Power Engineering Society Winter Meeting, IEEE, 2000, 1:585~590
    [134] D.M.Gillard, K.E.Bollinger. Neural Network Identification of Power System Transfer Function. IEEE Transaction on Energy Conversion, 1996, 11(1): 104~110
    [135] Young-Moon Park, Myeon-Song Choi, K.Wang, et al.. A Neutral Network-based Power System Stabilizer Using Power Flow Characteristics. IEEE Transaction on Energy Conversion, 1996, 11(2): 435~441
    [136] A.Hariri, O.P.Malik. A Fuzzy Logic Based Power System Stabilizer with Learning Ability. IEEE Transaction on Energy Conversion, 1996, 11(4): 721~727
    [137] P.K.Dash, A.C.Liew. Anticipatory Fuzzy Control of Power Systems. IEE Proc. Gener.Transm.Distrib. 1995, 142(2): 211~218
    [138] Young-Moon Park, K.Wang, Y.Lee. A Self-organizing Power System Stabilizer Using Fuzzy Auto-regressive Moving Average (FARMA) Model, IEEE Transaction on Energy Conversion, 1996, 11(2): 442~448
    [139] Hiyama T., Rule-based Stabilizer for Multi-Machine Power System. IEEE 1989 Summer Meeting, 89 SN 691-7 PWRS
    [140] Jinyu Wen, Shijie Cheng, Malik O.P.. A Synchronous Generator Fuzzy Excitation Controller Optimally Designed with a Genetic Algorithm, IEEE Transactions on Power Systems, 1998, 13(3): 884~889
    [141] 杨昭,刘燕.天然气热泵排烟余热回收的理论及实验研究.天然气工业,2004,(8):96~98
    [142] 许鹰,秦朝葵.天然气发动机驱动制冷系统及发动机余热的利用技术.能源技术,2002, 23(4):162~167
    [143] Nowakowskl G A. Development and field-testing of a high-efficiency engine-driven gas pump for light commercial application. ASHRAE Transactions: Symposia, AN-92-10-4
    [144] Gary Nowakowskl. Field performance of a 3-ton natural gas engine-driven heating and space cooling system. ASHRAE Transactions: Symposia, SD-95-20-3
    [145] Daphne C, D'zurko, Cary J Epstein. Comparative analysis for natural gas cooling and space conditioning technologies in New York State. ASHRAE Transactions: Research 3959
    [146] Motoyuki Suzuki. Application of adsorption cooling systems to automobiles. Heat Recovery Systems & CHP, 1993, 13(4): 335~340
    [147] Salem Szklo, Alexandre. Energy consumption indicators and CHP technical potential in the Brazilian hospital sector. Energy Conversion and Management, 2004, 45:2075~2091
    [148] Eltom I.M., Sayigh A.A.M.. A simple method to enhance thermal conductivity of using some additives. Renewable Energy, 1994, 4(1): 111~115
    [149] 杨俊杰,秦朝葵.发动机冷却余热的计算.煤气与动力,2001,21(5):396~400
    [150] 许鹰,秦朝葵.天然气发动机驱动制冷机组中发动机的能量平衡.能源技术,2004,25(2):47~52
    [151] 刘忠宝,王浚.发动机排气取热换热器动态特性分析,辽宁工程技术大学学报,2003,22(5):659~661
    [152] Wayne E, Conrad. Adsorption/humidification cooler for humid gaseous fluids. US patents: 1993, 222 375
    [153] Guilleminet J, Meunier F. Heat and mass transfer in a non-isothermal fixed bed solid sorbet reactor: a uniform pressure-non-uniform temperature case. Int J heat mass transfer, 1987, 30(8): 1595~1606
    [154] 杨献勇.热工过程自动控制.北京:清华大学出版社,2000
    [155] 李书泽,周校平,张武高.火花点火天然气发动机工作过程的数值模拟.柴油机设计与制造,2004(2):23~26
    [156] 郭江华,梁述海,李雁飞.船用柴油机PID神经网络控制系统的设计.海军工程大学学报,2003,(2):97~100
    [157] Kevin M Passino,Stephen Yurkovich.Fuzzy Control.北京:清华大学出版社,2001
    [158] 刘曙光,魏俊民,竺志超.模糊控制原理与应用.北京:中国纺织出版社,2001
    [159] 徐丽娜.神经网络控制.北京:电子工业出版社,2003
    [160] 楚彦君,巨林仓,刘军辉.PID神经网络控制器的设计及仿真研究.工业仪表与自动化装置,2001,8(2):3~6,41
    [161] 林金星,潘丰,苏云.一种PID型神经网络控制器.江南大学学报(自然科学版),2002,1(2):113~116
    [162] Wang L.X.. Mendel J.M.. Fuzzy Basis Functions, Universal Approximation, and Orthogonal Least-Souares Learnine. IEEE Transactions on Neural Networks, 1992, 61.3(5): 807~814
    [163] Wang Li, J.M.Mendel. Generating fuzzy rules by learning from examples. IEEE Trans. Neural Networks, 1991, 40(12): 1320~1336
    [164] Kosko B. Neural Networks and Fuzzy Systems. Prentice Hall Englewood Cliffs, 1992
    [165] Jang J. R.. Selflearning fuzzy logic controllers based on temporal back-propagation. IEEE Trans. Neural Networks. 1992, 3(5): 714~723
    [166] Jang.J.R.. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23:665~684
    [167] A.Numberger, D.Nauck, R.Kruse. Neuro-fuzzy control based on the NEFCON model: recent developments. Soft Computing, 1999, 2:168~182
    [168] L.Tran.Haoi, S.Osowski. Neuro-fuzzy TSK network for approximation of static and dynamic functions. Control and Cybemetics, 2002, 31(2): 309~326
    [179] D.Nauck, R.Kruse. Neuro-fuzzy systems for function approximation. Fuzzy Sets and Systems, 1999, 10:261~271
    [170] E.Sanchez. Genetic algorithms, neural networks and fuzzy logic systems. In Proc. Second International Conference on Fuzzy Logic and Neural Networks, lizuka, 1992: 17~19
    [171] R.J.Machado. A.F.Rocha. Evolutive fuzzy neural networks. In Proc.First IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'92), San Diego, 1992:493-500
    [172] J.J. Buckley, K.D.Reily, K.V.Penmetcha. Backpropagation and genetic algorithms for training fuzzy neural nets. In Herrera F. and Verdegay J.(eds) Genetic Algorithms and Soft Computing, Physica Verlag, 1996:505~532
    [173] U.Hanebeck, G.K.Schmidt. Genetic optimization of fuzzy networks. Fuzzy Sets and Systems, 1996: 79:59~68
    [174] Chao-Chee Kn, KwangY Lee. Diagonal Recurrent Neural Networks for Dynamic Systems Control. IEEE Tran. Onneural networks, 1995, 6(1): 144~156
    [175] Akhyar S, Omatu S.. Self-tuning PID control by neural-net-works. IJCNN'93-nagoya, 1993, 3:2749~2752
    [176] Chen C L, Chang F Y. Design and analysis of neural/fuzzy variable structural PID control systems, IEE Pro-Control Theory Application, 1996, 143(2): 2002~2081
    [178] 楚彦君,巨林仓,刘军辉.PID神经网络控制器的设计及仿真研究.工业仪表与自动化装置,2001,8(2):3~6,41
    [179] 李啸骢,颜卓胜,韦化.U型非线性抗扰励磁控制律设计.中国电机工程学报,1999,19(9),72~75
    [180] 李啸骢,程时杰,韦化.非线性励磁控制中输出函数对系统性能的影响.电力系统自动化,2003,27(5),6~10,181
    [182] 胡跃明,非线性控制系统理论与应用,北京:国防工业出版社,2002,127~130
    [183] Prodromos Daoutidis, Panagiotis D. Christofides. Dynamic Feedforward/Output Feedback Control of Nonlinear Processes. Chemical Engineering Science, 1995, 50(12): 1889~1907
    [184] 程远楚,叶卫华,叶鲁卿等.发电机励磁调节和电磁过程对机组转速控制的影响.大电机,2005,(5):50~54
    [185] E.M.Sebastiao. Modeling of Synchronous Machines for Dynamic Studies with Different Mutual Coupling between Direct Axis Windings. IEEE Trans. on Energy Conversion, 1987, 4(2): 591~599
    [186] 薛禹胜.EEAC与直接法的机理比较(一)受扰程度函数.电力系统自动化,2001,25(11):6~11
    [187] Dai Ke, Liu Ping, Kang Yong. Decoupling current control for voltage source converter in synchronous rotating frame. 4th IEEE International Conference on Power Electronics and Drive Systems, Proceedings of the International Conference on Power Electronics and Drive Systems, 2001, 1:39~43
    [188] Wang Qing-Guo, Yang Yongsheng. Transfer function matrix approach to decoupling problem with stability. Systems and Control Letters, 2002, 47(2): 103~110
    [189] S.J.Lang, X.YGu, T.Y Chai. A multivariable generalized self-tuning controller with decoupling design. IEEE Trans. Automat Control, 1986, 31(5): 474~477
    [190] T.Y. Chai, G. Wang. Globally convergent multivariable adaptive decoupling control and its application to a binary distillation column, Int. J.Control, 1992, 55(2): 415~429
    [191] T.Y. Chai. Direct adaptive decoupling control for general stochastic multivariable systems. Int.J.Control, 1990, 51(4): 885~909
    [192] 岳恒,柴天佑.一类多变量非线性系统的神经网络自适应解耦控制.信息与控制,1999, 28(7):607~612
    [193] K.Zhu, X.F.Qin, T.YChai. A new decoupling design of self-tuning multivariable generalized predictive control. Int. J. Adaptive control and signal processing, 1999, 13(2): 183~196
    [194] T.Y.Chai, H.Yue, Y.Bai. Intelligent control of coal-pulverizing system with ball tube mill and storage bunker, Proceedings of the 14th IFAC World Congress, Beijing, China, 1999, O.: 97~102
    [195] Dai Xian-Zhang, Zhang Xing-Hua, Liu Guo-Hai. Decoupling control of induction motor based on neural networks inverse. Proceedings of the Chinese Society of Electrical Engineering, 2004, 24(1): 112~117
    [196] C.W.Yu, Y.Z.Lu. Decoupling in fuzzy system: A cascade compensation approach. Fuzzy Sets and Systems, 1989, 29(2): 177~185
    [197] 杨辉,王金章.多变量解耦模糊控制器的研究.控制与决策,1988,3(1):17~21
    [198] 闰世杰.多变量模糊控制器的研究.应用数学,1991,14(3):100~104
    [199] Liu Hongbo, Li Shaoyuan, Chai Tianyou. Intelligent decoupling control of power plant main steam pressure and power output. International Journal of Electrical Power and Energy System, 2003, 25(10): 809~819
    [200] 李旭明.多变量模糊神经网络控制器的研究.控制与决策,2001,16(1):107~110
    [201] KU CHAO-CHEE, LEE KWANG. Diagonal recurrent neural networks for dynamic system control. IEEE Transactions on Neural Networks, 1995, 60(1): 144~156
    [202] XUN LIANG. Comments on "Diagonal recurrent neural networks for dynamic system control" reproof of theorems 2 and 4. IEEE Transactions on Neural Networks, 1997, (3): 811~812
    [203] 杨大力,刘泽民.多层前向神经网络中BP算法的误差分析及改进算法.电子学报,1995,23(1):117~120
    [204] 杨青,党选举.基于DRNN的多变量解耦控制系统.自动化技术与应用,2004,23(3):14~18
    [205] 高峰.燃气发动机驱动的小型热电联产机组开发:[硕士论文].上海:同济大学,2006
    [206] 何学良.内燃机燃烧学(第一版).北京:机械工业出版社,1990
    [207] 杨俊杰,秦朝葵,徐吉庆.发动机冷却余热的计算.煤气与热力,2001,21(5):396~399
    [208] 翁维勤,孙洪程.过程控制系统及工程.北京:化学工业出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700