含表面活性剂复配体系自组装机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
诺贝尔获奖者Pierre-Gilles de Gennens曾经指出:“离开表面活性剂,我们对90%的工业问题都将无能为力(without surfactants, we would be compleltely unable to confront90%industrial issues)".实践表明,单一表面活性剂的效果常常不及混合物。将表面活性剂与聚合物或者不同类型的表活性剂按适当条件复配,可以产生协同效应,从而提高活性和稳定性,获得单一表面活性剂所没有的独特性质,如丰富的相行为、多变的聚集体形貌、更低的表面张力、增强粘性等等。基于以上特殊性能,含有表面活性剂的复配体系在人们的日常生活和工业中发挥着重要的作用,从而引起人们的广泛关注。
     随着研究的不断深入,采用分子动力学模拟方法在分子水平上阐述含有表面活性剂复配体系的自组装规律及它们之间的相互作用显得尤为重要。而且,与传统的实验研究方法相比,分子动力学模拟可以大大降低实验的盲目性和重复实验的耗材与耗时性,同时还可以直观地观察到复配体系中聚集体的三维空间结构,从分子水平上探讨聚集体结构演变过程,加深对复配体系之间相互作用理解,对于实验设计和开发新型的复配体系具有重要的指导意义。
     本论文主要围绕最新实验报道的表面活性剂与聚合物及阴阳离子混合表面活性剂两类复配体系展开一系列的研究。一方面运用分子动力学模拟的方法研究表面活性剂与聚合物自组装机理,探讨表面活性剂与聚合物在体相与界面中不同的吸附行为,提出合理的吸附机理,为实验设计和改良表面活性剂与聚合物这类复配体系提供理论依据。另一方面借助分子动力学模拟研究阴阳离子表面活性剂复配体系的自组装机理,对自组装过程进行了深入探讨,从微观层次揭示了复配比对聚集体结构与性质的影响,为实验根据阴阳离子表面活性剂的复配比设计分子有序组合体起到了积极的理论指导。
     本论文主要研究内容和创新成果归纳如下:
     (1)用分子动力学模拟方法研究了十二烷基硫酸钠(SDS)与聚丙烯酰胺(PAM)之间的相互作用,揭示了表面活性剂与聚合物的缔合方式,即表面活性剂通过疏水作用且以胶束的形式吸附在聚合物链上,而聚合物坐落在表面活性剂胶束的亲水区域与疏水区域的界面处。通过观察与分析动力学轨迹与聚合物链构象变化,可以将表面活性剂与聚合物的自组装过程分为三步:(ⅰ)PAM链迅速卷曲,PAM的回转半径降低至最低值,此时少量SDS分子吸附在PAM链上;(ii)越来越多的SDS的分子吸附在PAM链上使得PAM链逐渐伸展,PAM的回转半径开始逐渐增大直至最大值;(iii) PAM链完全伸展开且其回转半径在最大值附近波动,体系中形成实验中所说的“珍珠项链”稳定结构。
     根据SDS的吸附对PAM链结构影响进一步研究了SDS对限制性聚合物(聚合物刷)的影响。通过计算聚合物刷高度的变化,重点讨论了SDS浓度与接枝密度对聚合物刷(PEO brush)结构与性质的影响,接枝密度比较低时,PEO brush的高度主要由吸附的SDS胶束影响;在接枝密度比较高时,由于PEO链之间的空间排斥作用对SDS胶束吸附的抑制,此时PEO brush的高度主要由接枝密度控制,这与实验的结论非常一致。所以,这些研究提供了实验上难以获得的微观信息,进而可以更好地了解及设计表面活性剂与聚合物这类复配体系。
     (2)应用分子动力学方法研究带有相反电荷的离子表面活性剂(C12TAB)与聚电解质(NaPAA)在气/液界面的吸附结构与性质,该模拟工作基于Zhang等人对C12TAB与NaPAA在气/液界面吸附现象的相关实验报道。模拟结果证实了在低表面活性剂浓度时,表/聚复合物在气/液界面以单层吸附,在高表面活性剂浓度时,采取多层吸附的三维空间结构。另外,模拟结果表明NaPAA本身没有表面活性,只有与表面活性剂复配形成复合物之后才具有表面活性;C12TAB通过静电作用吸附在NaPAA链上,而C12TAB疏水作用带动着C12TAB与NaPAA的复合物吸附在气/液界面上。在表面活性剂浓度比较高时,C12TAB尾链之间的疏水作用诱导着复合物采取尾对尾(tail-to-tail)层层排列方式吸附到气/液界面上;另外NaPAA和C12TAB通过静电作用形成复合物的过程是离子交换过程。我们的模拟结果加深了人们对表面活性剂与聚合物这类复配体系的表面活性的理解。
     (3)采用Martini粗粒模拟方法研究SDS和DTAB混合体系的自组装过程。模拟结果表明表面活性剂自组装过程可以分为三个步骤:(ⅰ)表面活性剂活性剂单体分子迅速聚集形成亚稳态的低聚体,在这过程中,聚集体的聚集数直线增加;(ⅱ)在随后的几百纳秒内,低聚体之间发生碰撞融合形成更大的聚集体,在这过程中聚集体的聚集数呈现阶梯式的增长;(ⅲ)聚集体的聚集数和形貌都不再发生变化,意味着体系达到平衡。通过对复配体系中聚集体大小与形貌的分析证明了在SDS:DTAB=2:1时,聚集体的聚集数达到最大值,而且聚集体在复配体系中以结构规整的扁平状胶束存在,这与实验结论非常一致。所以,我们模拟工作不但从微观角度印证了实验结果,而且得到了复配体系的微观结构与性质等实验手段不能获得的信息,更加完善了该领域的工作,这对根据阴阳离子表面活性剂复配设计不同形貌与大小的分子有序体具有重要的指导意义。
Nobel laureate Pierre-Gilles de Gennens once pointed out:"without surfactants, we whenever completely unable to confront90%industrial issues". Therefore, intensive efforts have been sent to investigate the property of surfactant. And it shows that the effect of single surfactant is often not as good as the mixtures. Under appropriate conditions, there have strong interactions between surfactant and polymer or different kinds of surfactants to form complexes. The new complexes in mixtures usually exhibit many fascinating and intriguing features which are different from any one component, such as rich phase, versatile aggregation morphology, lower surface tension, stronger viscosity and so on. Based on these special performances, the mixtures contained surfactant play an important role both in people's daily life and industry.
     With the development of research, it is important to study the self-assembly rule of different mixtures containing surfatant as well as the interactions between them at molecular level by molecular dynamics simulation. Compared with the traditional experimental methods, molecular dynamics simulations could greatly reduce the blindness and revision test time-consuming of experiments. In additional, molecular simulation can not only provide a clear three-dimensional structure picture of the aggregates formed in studied systems, but also allow us to study the self-assembly process at molecular insight, and deepen in understanding the interaction mechanism between the mixtures, therefore it could be helpful and meaningful to design and explore new complex.
     In this dissertation, a series of molecular dynamics simulations have been carried out for several mixtures, including surfactant and polymer, catanionic surfactants, which were newly reported in experiments recently. On the one hand, molecular dynamics simulation were performed to investigated the self-assembly of surfactant and polymer complexes. We have studied the different adsorption behavior of surfactant on polymer at solution and interface. In addition, we also put forward the appropriate adsorption mechanism, which supplied some valuable theoretical information for designing and improving complexes of surfactant and polymer. On the other hand, we have studied the interaction between oppositely charged surfactants by coarse-grained simulation with the framework of Martini force field. We mainly forced on the self-assembly process of catanionic surfactants and the effect of mixing ratio on the structure and properties of aggregates.
     The important and valuable results in this dissertation can be summarized as follows:
     (1) We have performed coarse-grained molecular dynamics simulation to investigate the interaction between polyacrylamide (PAM) and sodium dodecylsulfate (SDS) in aqueous solution. The simulation results revealed that SDS micelle would be adsorbed on the polymer chain by the hydrophobic interaction between the surfactant hydrophobic tails and polymer backbone, and PAM was located at the interface of the hydrophobic and hydrophilic regions of the SDS micelle. The formation process of SDS-PAM complexes was divided into three stages by monitor the trajectory and the conformation of PAM,(i) PAM quickly curled with the adsorption of some SDS molecules until the radius of gyration (Rg) of polymer reaches a minimum;(ii) due to more and more SDS adsorbed, PAM stretched slowly with the increase of Rg of PAM;(iii) the commonly accepted "necklace" structure was formed when Rg just fluctuated around a value.
     According to the effect of surfactant on the polymer conformation, the interaction between SDS and polymer in very constrained environment (PEO, one end of a dense array of PEO chains attached to a solid surface) was studied by molecular dynamics simulations. The effects of adding SDS amount and grafting density on the adsorption behavior of SDS on the PEO brush were discussed. The simulation showed that the height of PEO brush was mainly affected by the adsorbed SDS at low grafting density; however, at high grafting density it was primarily controlled by the grafting density on solid surface. With the increase of grafting density, the adsorbed EO monomers were decrease due to the excluded volume interaction among polymer chains and the electrostatic repulsion among the negatively charged surfactant micelles. Our work about the adsorption of surfactant on polymer chains showed a clear microscopic picture of complex of surfactant and polymer, which are difficult to obtain from experiments, and also make a better understand and design the surfactant and polymer complex.
     (2) Molecular dynamic simulations were performed to study the adsorption of oppositely charged sodium poly(acrylic acid)(NaPAA) and dodecyltrimethylammonium bromide (DTAB) at the air/water interface. Our results have proven that the transition from monolayer adsorption of the complex of NaPAA and DTAB to a multilayer structure was observed with the increasing of DTAB concentration. And in the multilayer adsorption, two layers of DTAB which adopted tail-to-tail arrangement were used to link the two polyelectrolyte chains. It indicated that electrostatic interaction was the driving force which bound DTAB to NaPAA, while the hydrophobic interaction between surfactant tails was the main force in inducing a layer structure of the complex at high DTAB concentration. The dynamic properties of counterions implied that the formation of polyelectrolyte-surfactant complex was an ion-exchange process, which was in good accordance with experimental results. Our simulation work provided a microscopic perspective on the adsorption of oppositely charged surfactant and polyelectrolyte at interface that would be helpful and meaningful in studying the surface properties of surfactant and polymer complexes.
     (3) The self-assembly process and structure properties of aggregates formed by oppositely charged surfactant, SDS and DTAB, have been studied by coarse-grained simulation within the framework of the Martini force field. The simulation results indicated that the self-assembly processes can be divided into three stages:monomers firstly fast gather to form disorded oligomers with the continuous growth of the cluster size; and then collisions and merge between small aggregates to form the larger clusters, which caused the clusters growing like a ladder; the last stage, the size and structure of aggregates reached stable. Analysis of the size distribution and morphology of the clusters showed that the aggregates reached to the biggest when the mixing ratio of SDS and DTAB was2:1, and discal micelles with the hydrophilic headgroups of catanionic surfactants interdigitation and parallel in the surface was only formed in mixtures, which were are in excellent agreement with experiment. Therefore, our work not only obtained a clear microscopic picture to extract information about dynamic and structural properties, which are difficult to obtain from experiments, but also make a good guide for designing different self-assemble aggregates of oppositely charged surfactant.
引文
[1]赵国玺,朱步瑶.表面活性剂作用原理.中国轻工业出版社,2003.
    [2]陈宗淇,王光信,徐桂英.胶体与界面化学.高等教育出版社,2001.
    [3]Li Y., Wang D.J., Hao Z.P., Hao J.C., Han C. C. Heat-induced phase transitions from an aqueous solution to precipitates in a poly(sodium 4-styrenesulfonate /tetradecyltrimethylammonium bromide system. Chem-Eur J 2007,13, 4782-4785.
    [4]Caracciolo G, Pozzi D., Mancini G, Caminiti R. Role of the spacer stereochemistry on the structure of solid-supported gemini surfactants aggregates. Langmuir 2007,23,10040-10043.
    [5]Boerakker M.J., Botterhuis N. E., Bomans P.H.H., Frederik P.M., Meijer E.M., Nolte R. J. M., Sommerdijk N.A.J.M. Aggregation behavior of giant amphiphiles prepared by cofactor reconstitution. Che-Eur J 2006,12,6071-6080.
    [6]Erhardt R., Boker A., Zettl H., Kaya H., Pyckhout-Hintzen W., Krausch G, Abetz, V., Muller, A. H. E. Janus micelles. Macromolecules 2001,34,1069-1075.
    [7]Kaler E.W., Miller D.D., Zasadzinski J.A., Chiruvolu S. Phase Behavior of Aqueous mixtures of dodecyltrimethylammnium (DTAB) and sodium dodecyl Sulfate (SDS). J.Phys. Chem.1993,97,13792-13802
    [8]An Z., Tao C., Lu G, Mohwald H., Zheng S., Cui Y., Li J. Fabrication and characterization of human serum albumin and L-dimyristoylphosphatidic acid microcapsules based on template technique. Chem. Mater 2005,17,2514-2519.
    [9]Jain M.k., Wanger R.C. Introduction to biological membrances, New Youk:Wiley Interscience,1980.
    [10]Duan L., He Q., Wang K.W., Yan X.H., Cui Y, M_hwald H., Li J.B. Adenosine triphosphate biosynthesis catalyzed by FoFl ATP synthase assembled in polymer microcapsules. Angew. Chem. Int. Ed.2007,46,6996-7000.
    [11]Fendler J.H. Membrane Mimetic Chem. New Youk, Wiley Interscience,1980
    [12]Pankov R., Markovska T., Antonov P., Ivanova L., Momchilova,A. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes. Gen Physiol and Biophys 2006,25,313-324.
    [13]Ohlendorf D., Internal W. Drag reduction in aqueous solutions of hexadecyltrimethylammonium salicylate. In solution behavior of surfactants, Mittal K.L., Fendler J., Eds. Pleum Press:New York,1980,1589.
    [14]Shinoda K. The significance and characteristics of organized solutions. J. Phys. Chem.1985,89,2429-2431.
    [15]Song R.Q., Xu A.W., Deng B., Fang Y.P. Novel multilamellar mesostructured molybdenum oxide nanofibers and nanobelts:synthesis and characterization. J. Phys. Chem. B 2005,109,22758-22766.
    [16]Bellare J.R., Kaneko T., Evans D.F. Seeing micelles. Langmuir 1988,4, 1066-1067.
    [17]严瑞瑄.水溶性高分子.化学工业出版社.北京,1999.
    [18]Yamamoto H., Tomatsu I., Hashidzume A., Morishima, Y. Associative properties in water of copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate and methacrylamides substituted with alkyl groups of varying lengths. Macromolecules 2000,33,7852-7861.
    [19]Evani S., Rose G.D. Water-soluble hydrophobe association systems. Polymer Mater Sci Eng.1987,57,477-458.
    [20]Hayakawa K., Kwak J.C.T. Surfactant-polyelectrolyte interactions.1. Binding of dodecyltrimethylammonium ions by sodium dextransulfate and sodium poly (styrenesulfonate) in aqueous solution in the presence of sodium chloride. The J. Phys. Chem.1982,86,3866-3870.
    [21]Shin B.C., Jhon M.S., Lee H.B. pH/temperature dependent phase transition of an interpentration polymer network:Anomalous swelling behavior above lower critical solution temperature. Eur. Polym. J.1998,34,1675-1681.
    [22]黄汉光,杨坤鹏,罗平亚。泥浆工艺原理.石油工业出版社,北京,1982.
    [23]Zana R., Marques C., Johner A. Dynamics of micelles of the triblock copolymers poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) in aqueous solution. Adv Colloid Interface Sci 2006,123-126,345-351.
    [24]岳钦艳,赵华章,高宝玉.有机高分子絮凝剂P(DMDAAC2VTMS)和P(DMDAAC2AM2VTMS)的合成与絮凝性能研究.工业水处理2001,21,16-19.
    [25]Ronda J.C., Serra A., Cadiz V. Ring-opening polymerization of glycidylic compounds:influence of the glycidylic oxygen in the coordinative mechanism Macromol Chem Phys 1999,200,231-238
    [26]徐桂英,苏红梅,李干佐,刘木辛,李方,毛宏志.聚丙烯酰胺与混合表面活性剂的相互作用.物理化学学报1994,10,909-914.
    [27]Zhang J., Thomas R.K., Penfold J. Interaction of oppositely charged polyelectrolyte-ionic surfactant mixtures:adsorption of sodium poly(acrylic acid)-dodecyl trimethyl ammonium bromide mixtures at the air-water interface. Soft Matter 2005,1,310-318.
    [28]Schillen K., Jansson J., Lof D., Costa T. Mixed micelles of a PEO-PPO-PEO triblock copolymer (P123) and a nonionic surfactant (C12EO6) in water. A dynamic and static light scattering study. The Journal of Physical Chemistry B 2008,112,5551-5562.
    [29]Li Y., Xu R., Couderc S., Bloor D.M.; Wyn-Jones E., Holzearth J.F. Binding if sodium dodecyl sulfate to the ABA block copolymer pluronic F127(EO97PO69EO9):F127 aggregation induced by SDS. Langmuir 2001,17, 183-188.
    [30]王瑞娟,王毅琳.阴离子磺酸盐型Gemini表面活性剂与PEO-PPO-PEO嵌段共聚物相互作用的研究.化学学报2014,72,41-50.
    [31]Jansson J., Schillen K., Olofsson G., Cardoso da Silva R., Loh W. (). The interaction between PEO-PPO-PEO triblock copolymers and ionic surfactants in aqueous solution studied using light scattering and calorimetry. The Journal of Physical Chemistry B2004,108,82-92.
    [32]Wang C., Tan K.C. Interaction between polyelectrolyte and oppositely charged surfactant:effect of charge density. The Journal of Physical Chemistry B 2004,108,8976-8982
    [33]Li D., Wagner N.J. Universal binding behavior for ionic alkyl surfactants with oppositely charged polyelectrolytes. J. Am. Chem. Soc.2013,135,17547-17555.
    [34]Wei Y C., Hudson S M. The interaction between polyelectrolytes and surfactants of opposite charge. J Macromol Sci Polymer Rev 1995,35,15-45.
    [35]Shirahama K., Tsujii K., Takagi T. Free-boundary of sodium dodecyl sulfate-protein polypeptide complexes with special reference to SDS-polyarcylamide gel electrophoresis. JBiochem 1974,75,309-319
    [36]Cabane B. Strucure of some polymer-detergent aggregations in water. J. Phys. Chem.1977,81,1639-1645.
    [37]Chu D., Effect of cationic surfactans on the conformation transition of poly(methacrylic acid). J Am Chem Soc 1986,108,6270-6276.
    [38]Relogio P. Martinho J.M.G, Farinha J.P.S. Effect of surfactant on the intra-and intermolecular association of Hydrophobically modified poly(N, N-dimethylacrylamide). Macromolecules 2005,38,10799-10811.
    [39]Wang Y.L., Lu D.H., Long C.F., Han B., Yan H., Kwak J.C. Interactions between sodium dodecyl sulfate and hydrophobically modified poly(acrylamide)s studied by electron spin resonance and transmission electron microscropy. Langmuir 1998,8,2050-2054.
    [40]Kulicke W.M., Arendt O., Berger M. Rheological characterization of the dilatant flow behavior of highly substituted hydrdroprobpylmethy-cellublose solutions in the prresence of sodium lauryl sulfate. Colloid Polym Sci 1998,276,617-626.
    [41]Hammarstrom A, Sundelof L.O. NMR study of polymer surfactant interaction in the system HPMC/SDS/water. Colloid Polym Sci 1993,271,1129-1133.
    [42]Arai H., Murara M., Shinoda K. The interaction between polymer and surfactant: the composition of the complex between polyviylpyrrdidone and sodium alkyl sulfate as revealed by surface tension, dialysis, and solubilization. J Colloid Interf Sci 1971,37,223-227.
    [43]Holmberg C., Nilsson S., Singh S.K., Sundeloef L.O. Hydrodynamic and thermodynamic aspects of the SDS-EHEC-water system. J. Phys. Chem.1992, 96,871-876
    [44]Karlstroem G., Carlsson A., Lindman B. Phase diagrams of nonionic polymer-water systems:experimental and theoretical studies of the effects of surfactants and other cosolutes. JPhys Chem 1990,94,5005-5015.
    [45]Mcmomick C.L., Chang Y. Water-soluble compolymers:Amphiphilic cyclocopolymers of diallylalkocybenzyl-methylammonium chloride and diallyldi-methylammonium chlodide. Polymer 1994,35,3503-3512
    [46]曹绪龙,蒋生祥.阴离子表面活性剂与聚丙烯酰胺间的相互作用.应用化学2002,19,866-869.
    [47]Vos W.M., Biesheuvel P.M., de Keizer A., Kleijn J.M., Stuart M.A.C. Adsorption of anionic surfactants in a nonionic polymer brush:experiments, comparison with mean-field theory, and implications for brush-particle interaction. Langmuir 2009,25,9252-9261.
    [48]Ghodbane J., Denoyel R.Competitive adsorption between non-ionic polymers and surfactants on silica. Colloid Surface A 1997,127,97-104
    [49]Cosgrove T., Mears S.J., Obey T., Thompson L., WesleyPolymer R.D. Particle, surfactant interactions. Colloid Surface A 1999,149,329-338.
    [50]李振泉宋新旺曹绪龙王红艳张继超王帅.油田用表面活性剂与疏水缔合聚合物相互作用研究.石油化工高等学校学报,2013,26,52-56.
    [51]Bell C.G., Breward C.J.W., Howell P.D., Penfold J., Thomas R.K. Macroscopic modeling of the surface tension of polymer-surfactant systems. Langmuir 2007, 23,6042-6052.
    [52]Deo P., Somasundaran P. Interactions of hydrophobically modified polyelectrolytes with nonionic surfactants. Langmuir 2005,21,3950-3956.
    [53]Goddard E.D. Polymer/surfactant interaction:Interfacial aspects. J. Colloid Interface Sci 2002,256,228-235.
    [54]Jones M.N. The interaction of sodium dodecyl sulfate with polyethylene oxide. J Colloid Interf Sci 1967,23,36-42.
    [55]Nagarajan R. Thermodynamics of non-ionic polymer-micelle association. Colloid Surf 1985,13,1-17.
    [56]Iliopoulos I., Furo I. NMR study of the association of anionic surfactants with an anionic polyelectrolyte hydrophobically modified with perfluorinated side chains. Langmuir 2001,17,8049-8054.
    [57]Piculell L., Guillemet F., Thuresson K., Shubin V., Ericsson O. Binding of surfactants to hydrophobically modified polymers. Adv. Colloid Interface Sci. 1996,63,1-21.
    [58]Penott-chang E.K., Gouveia L., Fernandez I.J., Miiller A.J., Diaz-Barrios A., Eduardo S.A. Rheology of aqueous solutions of hydrophobically modified polyacrylamides and surfactants. Colloids Surface A 2007,295,99-106.
    [59]戴鱼华,吴飞鹏,李妙贞.新型疏水缔合聚合物P(AMPOEA)与表面活性剂的相互作用.化学学报2005,63,1329-1334.
    [60]孙敏,李振泉,宋新旺.苯磺酸钠表面活性剂在聚丙烯酰胺键合硅胶固定相上作用的热力学.石油学报(石油加工)2011,27,117-122.
    [61]Mya K.Y., Jamieson A.M., Sirivat A., Effect of temperature and molecular weight on binding between poly(ethylene oxide) and cationic surfactant in aqueous solution. Langmuir 2000,16,6131-6135.
    [62]Murata M, Arai H. The interaction between polymer and surfactant:The effect of temperature and added salt on the interaction between polyvinylpyrrolidone and sodium dodecyl sulfate. J Colloid Interf Sci 1973,44,475-480.
    [63]Bu H., Kj(?)niksen A.L., Knudsen K.D., Nystrom B. Effects of surfactant and temperature on rheological and structural properties of semidilute aqueous solutions of unmodified and hydrophobically modified alginate. Langmuir 2005,27,10923-10930.
    [64]Chatterjee A., Moulik S.P., Majhi P.R., Sanyal S.K. Studies on surfactant-biopolymer interaction. I. Microcalorimetric investigation on the interaction of cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS) with gelatin (Gn), lysozyme (Lz) and deoxyribonucleic acid (DNA). Biophysical chemistry 2002,98,313-327.
    [65]Bu H., Kj(?)niksen A.L., Knudsen K.D., Nystrom B. Effects of surfactant and temperature on rheological and structural properties of semidilute aqueous solutions of unmodified and hydrophobically modified alginate. Langmuir 2005,21,10923-10930.
    [66]Holmberg C., Sundelof L.O. Temperature dependence of hydrodynamic properties and surfactant-polymer interaction in solution. The EHEC/SDS/water system. Langmuir 1996,12,883-889.
    [67]Xia Y, Burke N.A.D., Stover H.D.H. End group effect on the thermal response of narrow-disperse poly (N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 2006,39,2275-2283.
    [68]王晓燕,卢祥国,姜维东.正负离子和表面活性剂对水解聚丙烯酰胺分子线团尺寸的影响及其作用机理.高分子学报 2009,12,1256-1265.
    [69]Aswal, V.K., Goyal P.S. Counterions in the growth of ionic micelles in aqueous electrolyte solutions:A small-angle neutron scattering strudy. Phys. Rev 2000,61, 2947.
    [70]Thalberg K., Lindman B., Karlstroem G. Phase behavior of a system of cationic surfactant and anionic polyelectrolyte:the effect of salt. J Phys Chem 1991,95, 6004-6011.
    [71]Liu S., Armes S P. Polymeric surfactants for the new millennium:A pH-responsive, zwitterionic, schizophrenic diblock copolymer. Angew Chem Int Edit,2002,41,1413-1416.
    [72]Atanase L.I., Riess, G Micellization of pH-stimulable poly (2-vinylpyridine)-b-poly (ethylene oxide) copolymers and their complexation with anionic surfactants. J Colloid Interf Sci 2013,395,190-197.
    [73]Varga I., Meszaros R., Makuska R., Claesson P.M., Gilanyi T. Effect of graft density on the nonionic bottle brush polymer/surfactant interaction. Langmuir 2009,25,11383-11389.
    [74]夏咏梅,方云,刘雪峰.阴离子表面活性剂与非离子水溶性大分子二元体系的临界胶束聚集数.高等学校化学学报2002,23,1911-1914.
    [75]方云,蔡琨,宗李燕.水溶性非离子大分子与烷基硫酸钠同系物团簇华的比饱和簇集量.高等学校化学学报 2004,25,888-891.
    [76]Saito S. Solubilization properties of polymer-surfactant complexes. J Colloid Interf Sci 1967,24,227-234.
    [77]Miller R., Fainerman V.B., Makievski A.V., Kragel J., Grigoriev D.O., Kazakov V.N., Sinyachenko O.V. Dynamics of protein and mixed protein/surfactant adsorption layers at the water/fluid interface. Adv Colloid Interfa 2000,86, 39-82.
    [78]Wei H., Shen Q., Zhao Y., Wang D., Xu, D. Crystallization habit of calcium carbonate in presence of sodium dodecyl sulfate and/or polypyrrolidone. J Cryst Growth 2004,260,545-550.
    [79]Shen Q., Wei H., Wang L., Zhou Y, Zhao Y, Zhang Z., Wang D., Xu D. Crystallization and aggregation behaviors of calcium carbonate in the presence of poly (vinylpyrrolidone) and sodium dodecyl sulfate. J Phys Chem B 2005, 109,18342-18347.
    [80]Shen Q., Wen H., Zhao Y, Wang D., Zhang L., Xu D. Morphological control of calcium carbonate crystals by polyvinylpyrrolidone and sodium dodecyl benzene sulfonate. Colloid Surface A 2004,251,87-91.
    [81]Zhang I.X., Sun Y.X., Jiu H.F., Han X.W., Fan T., Liu G.D. Bubble template synthesis of hollow CeO(2) microspheres through a solvothermal approach. Micro & Nao Letters 2011,6,22-25
    [82]Kralova I., Sjoblom J. Surfactants used in food industry:a review. J Disper Sci Technol 2009,30,1363-1383.
    [83]Abe M. Mixed Surfactant Systems. CRC Press,2010, Vol.124.
    [84]Holland P.M., Rubingh D.N. Mixed Surfactant Systems. In ACS Symposium Series, ACS Publications,1992, Vol.501, p.1.
    [85]Kaler E. W., Murthy A.K., Rodriguez, B.E., Zasadzinski, J.A. Spontaneous Vesicle Formation in Aqueous Mixtures of Single-tailed Surfactants. Science 1989,245,1371-1374.
    [86]Bergstrom M., Pedersen, J.S. A Small-angle neutron scattering study of Tablet-shaped and ribbonlike micelles formed from mixtures of an anionic and a cationic surfactant. J. Phys. Chem. B 1999,103,8502-8513.
    [87]Yatcilla M.T., Herrington K.L., Brasher L.L., Kaler E.W., Chiruvolu S., Zasadzinski J.A. Phase behavior of aqueous mixtures of cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS). J Phys Chem 1996,100,5874-5879.
    [88]Hentze H.P., Raghavan S.R., McKelvey C.A., Kaler E.W. Silica hollow spheres by templating of catanionic vesicles. Langmuir 2003,19,1069-1074.
    [89]Kaler E.W., Herrington K.L., Murthy A.K. Zasadzinski J.A. Phase behavior and structures of mixtures of anionic and cationic surfactants. J. Phys Chem 1992,96, 6698-6707.
    [90]Dubois M., Deme B., Gulik-Krzywicki T., Dedieu J.C., Vautrin C., Desert S., Perez E., Zemb T. Self-assembly of regular hollow icosahedra in salt-free catanionic solutions. Nature 2001,411,672-675.
    [91]Zemb T., Dubois M., Deme B., Gulik-Krzywicki T. Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions. Science 1999,283, 816-819.
    [92]Stellner K., Amantej C., Scamehorn J.F. Preciption phenomena in mixtures of anionic and cationic surfactant in aqueous solution. J Colloid Interface Sci 1988, 123,186-200.
    [93]赵国玺,程玉珍,欧进国.等离子表面活性剂与负离子表面活性剂在水溶液中的相互作用.化学学报1980,38,409-420.
    [94]Anna C., Jenny Y. Effects of surfactant concentration on polymer-surfacatant interaction in dilute solution:a computer model. Langmuir 1989,5,1230-1234.
    [95]Wallin T., Linse P. Mote carlo simulation of polyelectrolytes at charged micelles. 2 Effects of linear charge density. J. Phys. Chem.1996,100,17873-17880.
    [96]Wallin T., Linse P. Motne calo simulation of polyelectrolytes at charged micelles. 3. Effects of surfactant tail length. J. Phys. Chem.1997,101,5506-5513.
    [97]苑世领,徐桂英,蔡政亭.表面活性剂与聚合物相互作用的动力学模拟.化学学报2002,60,585-589.
    [98]Balazs A.C., Hu J.Y. Effects of surfactant concentration on polymer-surfactant interactions in dilute solutions:a computer model. Langmuir 1989,5,1230, 1234.
    [99]Balazs A.C., Hu J.Y. A computer model for the effect of surfactants on the aggregation of associating polymers. Langmuir 1989,5,1253-1255.
    [100]Li Y.M., Xu, G. Y, Chen, A.M., Yuan, S.L., Cao, X.R. Aggregation between Xantan and Nonyphenyloxypropyl b-Hydroxyltrimethylammonium bromide in aqueous solution:MesoDyn simulation and binding isotherm measurement. J. Phys. Chem. B 2005,109,22290-22295.
    [101]Shang B.Z., Wang Z.W., Larson R.G. Molecular dynamics simulation of interactions between a sodium dodecyl sulfate micelle and a poly (ethylene oxide) polymer. J. Phys. Chem. B.2008,112,2888-2900.
    [102]Shang B. Z., Wang Z., Larson R. G Effect of headgroup size, charge, and solvent structure on polymer-micelle interactions, studied by molecular dynamics simulations. J. Phys. Chem. B.2009,113,15170-15180.
    [103]Liu Z., Feng J. Peng C., Liu H., Hu Y. Effect of hydrophilicity or hydrophobicity of polyelectrolyte on the interaction between polyelectrolyte and surfactants:molecular dynamics simulations. J. Phys. Chem. B 2012,116, 5516-5526.
    [104]Robert D. Groot. Mescoscopic simulation of polymer surfactant aggregation. Langmuir 2000,16,7493-7502.
    [105]Darvas M., Gilanyi T., Jedlovszky P. Competitive adsorption of surfactants and polymers at the free water surface, a computer simulation study of the sodium dodecyl sulfate-poly(ethylene oxide) system. J. Phys. Chem. B 2011,115, 933-944.
    [106]Cao Q., Zuo C., Li L. Electrostatic binding of oppositely charged surfactants to spherical polyelectrolyte brushes. Phys. Chem. Chem. Phys 2011,13,9706-9715.
    [107]Pang J., Wang Y., Xu G., Han T., Molecular dynamics simulations of SDS, DTAB, and C12E8 monolayers adsorbed at the air/water surface in the presence of DSEP. J. Phys. Chem.B 2011,115,2518-2526.
    [108]Poghosyan A.H., Arsenyan L.H., Gharabekyan H.H., Koetz J., Shahinyan, A.A. Molecular dynamics study of poly(diallydimethylammonium chloride) (PDADMAC)/sodium dodecyl sulfate (SDS)/Decanol/Water Systems. J. Phys. Chem. B 2009,113,1303-1310.
    [109]Yakovlev D.S., Boek. E.S. Molecular dynamics simulations of mixed cationic /anionic wormlike micelles. Langmuir 2007,23,6588-6597.
    [110]Chen J., Long P., Li H., Hao J. Investigations into the bending constant and edge energy of bilayers of salt-free catanionic vesicles. Langmuir 2012,28, 5927-5933.
    [111]Chen J., Hao J. Molecular dynamics simulation of cetyltrimethylammonium bromide and sodium octyl sulfate mixtures:aggregate shape, and local surfactant distribution. Phys Chem Chem Phys 2013,15,5563-5571.
    [112]Bourov G..K., Bhattacharya A. Brownian dynamics of mixed surfactant micelles. J. Chem Phys 2005,123,204712-6.
    [113]Sangwai A.V., Sureshkumar R. Coarse-grained molecular dynamics simulations of the sphere to rod transition in surfactant micelles. Langmuir 2011,27, 6628-6638.
    [114]Sangwai A., Sureshkumar R. Binary interactions and salt-induced coalescence of spherical micelles of cationic surfactants from molecular dynamics simulations. Langmuir 2011,28,1127-1135.
    [115]Kuo A.T., Chang, C.H., Shinoda W. Molecular dynamics study of catanionic bilayers composed of ion pair amphiphile with double-tailed cationic surfactant. Langmuir 2012,28,8156-8164.
    [116]Storm S., Jakobtorweihen, S., Smirnova I., Panagiotopoulos, A.Z. Molecular Dynamics Simulation of SDS and CTAB Micellization and Prediction of Partition Equilibria with COSMOmic. Langmuir 2013,29,11582-11592.
    [1]Frenkel & Smit著.汪文川 译.化学工业出版社,2002.
    [2]Schuler. L.D., Daura X., Gunsteren W.F. An improved GROMOS96 Force Field for Aliphatic Hydrocarbons in the Condensed Phase.J Comput Chem 2001,22, 1205-1218.
    [3]van Gunsteren W.F., Billeter S. R., Eising A.A., Hunenberger P.H., Kruger P., Mark A.E., Scott, W.R.P., Tironi I.G. Biomo-lecular simulation:The GROMOS96 manual and user guide, Vdf hochschulverlag AG an der ETH Zurich:Zurich,1996.
    [4]van Gunsteren W.F., Berendsen H.J.C. Groningen molecular simulation (GROMOS) library manual, Biomos:Groningen,1987.
    [5]Daura X., Mark A.E., van Gunsteren W.F. Parametrization of aliphatic CHn united atoms of GROMOS96 force field. JComput Chem 1998,19,535-57.
    [6]Levitt M. Molecular dynamics of native protein:I. Computer simulation of trajectories. J Mol Biol 1983,168,595-617.
    [7]Schuler L.D., van Gunsteren, W.F. On the Choice of Dihedral Angle Potential Energy Functions for n-Alkanes. Mol Sim 2000,25,301-319.
    [8]Schuler L.D., Daura X., van Gunsteren W.F. An improved GROMOS96 force field for alphatic hydrocarbons in the condensed phase. J Comput Chem 2001,22, 1205-1218.
    [9]Oostenbrink C., Villa A., Mark A.E., Gunsteren W.F. Biomolecular force field based on the free enthalpy of hydration and solvation:The GROMOS force-field parameter Sets 53 A5 and 53 A6. J Comput Chem 2004,25,1656-1676.
    [10]Chen J., Long P., Li H., Hao J. Investigations into the bending constant and edgy energy of bilayers of salt-free catanionic vesicles. Langmuir 2012,28, 5927-5933.
    [11]Shang, B.Z., Wang, Z.W., Larson, R.G. Molecular dynamics simulation of interactions between a sodium dodecyl sulfate micelle and a poly (ethylene oxide) polymer. J. Phys. Chem. B.2008,112,2888-2900.
    [12]Yan H., Guo X.L., Yuan S.L., Liu C.B. Molecular dynamics study of the effect of calcium ions on the monolayer of SDC and SDSn surfactants at the vapor/liquid interface. Langmuir 2011,27,5762-5771.
    [13]Zhao T., Xu G, Yuan S.L., Chen Y., Yan H. Molecular dynamics study of alkyl benzene sulfonate at air/water interface:effect of inorganic salts. J. Phys. Chem. B 2010,114,5025-5033.
    [14]Marrink S.J., de Vries A.H., Mark A.E. Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B 2004,108,750-760.
    [15]Marrink S.J., Risselada H.J., Yefimov S., Tieleman D.P., de Vries A.H. The MARTINI force field:coarse grained model for biomolecular simulations. J. Phys. Chem.B 2007,111,7812-7824.
    [16]Marrink S.J., Mark A.E. Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipids vesicles. JACS 2003,125, 15266-15242.
    [17]Wu R., Deng M., Kong B., Yang X. Coarse-grained molecular dynamics simulation of ammonium surfactant self-assemblies:micelles and vesicles. J. Phys. Chem. B 2009,113,15010-15016.
    [18]Dahlberg. Polymorphic phase behavior of cadiolipin derivatives studied by coarse-grained molecular dynamics. J. Phys. Chem.B 2007,111,7194-7200.
    [19]Monticelli Luca., Kandasamy S.K., Periole X., Larson R.G, Tieleman D.P., Marrink Si.J. The Martini coarse-grained force field:extension to proteins. J Chem. Theory and Comput 2008,4,819-834.
    [20]Jalili S., Akhavan M. A coarse-grained molecular dynamics simulation of a sodium dodecyl sulfate micelle in aqueous solution. Colloids Surf. A 2009,352, 99-102.
    [21]Sangwai A. V, Sureshkumar, R. Coarse-Grained molecular dynamics simulations of the sphere to rod Transition in surfactant micelles. Langmuir 2011,27, 6628-6638.
    [22]Lee H., de Vries A. H., Marrink J.S., Pastor W.R. A Coarse-grained model for polyethylene oxide and polyethylene glycol:conformation and hydrodynamics. J. Phys. Chem. B 2009,113,13186-13194.
    [23]Lee H., Larson R.G. Coarse-grained molecular dynamics studies of the concentration and size dependence of fifth-and seventh-generation PAMAM dendrimers on pore formation in DMPC bilayer. J. Phys. Chem. B 2008,112, 7778-7784.
    [24]Lee H. Interparticle dispersion, member curvature, and penetration induced by single-walled carbon nanotubes wrapped with lipids and PEGlated lipids. J. Phys. Chem. B 2013,117,1337-1344.
    [25]Lee H., Kim H. Sefl-assembly of lipid and single-walled carbon nanotubes: Effects of lipid strucuture and PEGylation. J. Phys. Chem. C 2012,116, 9327-9333.
    [26]Lv K., Kang, H. Zhang H., Yuan S. Molecular simulaiton studies for interaction of photoactive dyes into layered double hydroxide. Colloid Surfaces A 2012,402, 108-116.
    [27]Bhargava B.L., Michael L. Initial stages of aggregation in aqueous solutions of ionic liquids:molecular dynamics studies. J. Phys. Chem. B 2009,113, 9499-9505.
    [28]Wang H., Zhang H., Liu C., Yuan S. Coarse-grained molecular dynamics simulaiton of self-assembly of polyacrylamide and sodium dodecylsulfate in aqueous solution. J Colloid InterfSci 2012,386,205-211.
    [29]Storm S., Jakobtorweihen S., Smirnova I., Panagiotopoulos A.Z. Molecular dynamics simulation of SDS and CTAB micellization and prediction of partition equilibria with COSMOmic. Langmuir 2013,29,11582-11592.
    [30]Li E., Du Z., Yuan S. Properties of a water layer on hydrophhilic and hydrophobic self-assembled monolayer surfaces:a molecular dynamics study. Sci. China Chem.2012,56,773-781.
    [31]Liu Q., Yuan S., Yan H., Zhao X. Mechanism of oil detachment from a silica surface in aqueous surfactant solutions:molecular dynamics simulations. J. Phys. Chem. B 2012,116,2867-2875.
    [32]Xu Z., Song K., Yuan S.L., Liu C.B. Microscopic wetting of self-assembled monolayers with different surfaces:A combined molecular dynamics and quantum mechanics study. Langmuir 2011,27,8611-8620.
    [33]Verlet, L. Computer "Experiments" on classical fluids. I. thermodynamical properties of lennard-Jones molecules. Physical Review 1967,159,98-103.
    [34]Quentrec B., Brot C. New method for searching for neighbors in molecular dynamics computation. J ComPut. Phys.1973,13,430-432.
    [1]Groot R.D., Mescoscopic simulation of polymer surfactant aggregation. Langmuir 2000,16,7493-7502.
    [2]Winnik F. M., Regismond S.T.A. Fluorescence methods in the study of the interactions of surfactants with polymers. Colloids Surf. A:Physicochem. Eng. Asp 1996,118,1-39.
    [3]Chari K. The structure of the PVP-SDS complex in water. J. Colloid Interface Sci. 1992,151,294-296.
    [4]Holmberg K., Jonsson B., Kronberg B. Surfactants and polymers in aqueous solution, Wiley, Chichester, UK,2nd edn,2003.
    [5]Perico A., Ciferri A. The Supramolecular association of polyelectrolytes to complementary charged surfactants and protein assemblies, Chem Eur J 2009,15, 6312-6320.
    [6]Zhang H.Z., Xu G.Y., Wu D., Wang S.W. Aggregation of cetyltrimethylammonium bromide with hydrolyzed polyacrylamide at the paraffin oil/water interface: Interfacial rheological behavior study, Colloids and Surfaces A:Physicochem. Eng. Asp 2008,317,289.
    [7]Mingtan H., Buxing H.J. Study of Interaction between Sodium Dodecyl Sulfate and Polyacrylamide by Rheological and Conductivity Measurements. J. Chem. Eng. Data 2006,51,1498-1451.
    [8]Wanli K., Yi L., Baoyan Q., Guangzhi L., Zhenyu Y., Jichun, H. Interactions between alkali/surfactant/polymer and their effects on emulsion stability. Colloid Surface A 2000,175,243-247.
    [9]Nambam J. S., Philip J. Competitive adsorption of polymer and surfactant at a liquid droplet interface and its effect on flocculation of emulsion. J. Colloid Interface Sci.2012,366,88-95.
    [10]Pojjak K., Meszaros R. Association between branched poly(ethyleneimine) and sodium dodecyl sulfate in the presence of neutral polymers. J. Colloid Interface Sci.2011,355,410-416.
    [11]Chen L., McBranch D., Wang R., Whitten D. Surfactant-induced modification of quenching of conjugated polymer fluorescence by electron acceptors: applications for chemical sensing. Chem Physics Lettr,2000,330,27-33.
    [12]Zdziennicka A., Janczuk B. Behavior of cationic surfactants and short-chain alcohols in mixed surface layers at water-air and polymer-water interfaces with regard to polymer wettability:Ⅱ. Wettability of polymers, J. Colloid Interface Sci.2010,350,68-576.
    [13]Cao X.L., Jiang S.X. On the Interaction Between polyacrylamide and anionic surfactants. Chinese Journal of Applied Chemistry 2002,9,866-869.
    [14]Kopperud H.M., Hansen F.K., Nystrom,B. Effect of surfactant and temperature on the rheological properties of aqueous solutions of unmodified and hydrophobically modified polyacrylamide. Macromol Chem Phy 1998,199, 2385-2394.
    [15]Ma X., Wang J., G D., Wang Y, Wang Z. Effect of hydrophobically modified polymer on salt-induced structural transition in microemulsions. Langmuir 2004, 20,5679-5682.
    [16]Yan H., Guo, X.L., Yuan S.L., Liu C.B. Molecular dynamics study of the effect of calcium ions on the monolayer of SDC and SDSn surfactants at the vapor/liquid interface. Langmuir 2011,27,5762-5771.
    [17]Xu Z., Song K., Yuan S.L., Liu C.B. Microscopic wetting of self-assembled monolayers with different surfaces:A combined molecular dynamics and quantum mechanics study. Langmuir 2011,27,8611-8620.
    [18]Yuan S.M., Yan H., Lv K., Liu C.B., Yuan S.L. Surface behavior of a model surfactant:A theoretical simulation study, J. Colloid Interface Sci.2010,348, 159-166.
    [19]Cao Q.Q., Zuo, C.C., Li L.J., He H.W. Self-assembled nanostructures of bottle-brush polyelectrolytes with oppositely charged surfactants:A computational simulation study. Soft Matter 2011,7,6522-6528.
    [20]Shang B.Z., Wang Z.W., Larson R.G. Molecular dynamics simulation of interactions between a sodium dodecyl sulfate micelle and a poly (ethylene oxide) polymer. J. Phys. Chem. B.2008,112,2888-2900.
    [21]Darvas M., Gilanyi T., Jedlovszky P. Competitive adsorption of surfactants and polymers at the free water surface. A computer simulation study of the sodium dodecyl sulfate-poly (ethylene oxide) system. J. Phys. Chem. B.2011,115, 933-944.
    [22]Yuan S. L., Cai Z. T., Xu G.., Jiang Y.S. Mesoscopic simulation study on the interaction between polymer and C12NBr or C9phNBr in aqueous solution. Colloid Polym Sci.2003,257,1069-1075.
    [23]Marrink S.J., Vries A.H., Mark A.E. Coarse Grained Model for Semiquantitative Lipid Simulations. J. Phys. Chem. B.2004,108,750-760.
    [24]Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P., Vries, A. H. The MARTINI force field:Coarse grained model for biomolecular simulations. J. Phys. Chem. B.2007,111,7812-7824.
    [25]Lee H., Veries H.D., Marrink S.J., Pastor R.W. A coarse-grained model for polyethylene oxide and polyethylene glycol:Conformation and hydrodynamics. J. Phys. Chem. B.2009,113,13186-13194.
    [26]Rossi G, Giannakopoulos I., Monticelli L., Rostedt N.K.J., Puisto S.R., Lowe C., Taylor A.C., Vattulainen I., Ala-Nissila T. A MARTINI coarse-grained model of thermoset polyester coating. Macromolecules 2011,44,6198-6208.
    [27]Rossi G., Monticelli L., Puisto S.R., Vattulainen I., Ala-Nissila, T. Coarse-graining polymers with the MARTINI force-fieLd:Polystyrene as a benchmark case. Soft Matter 2011,7,698-708.
    [28]Jalili S., Akhavan M. A coarse-grained molecular dynamics simulation of a sodium dodecyl sulfate micelle in aqueous solution. Colloids Surf. A,2009,352, 99-102.
    [29]Wu R.L., Deng M. L., Kong B., Yang X.Z. Coarse-grained molecular dynamics simulation of ammonium surfactant self-assemblies:Micelles and vesicles. J. Phys. Chem. B.2009,113,15010-15016.
    [30]Bruce C.D., Berkowitz M.L., Perera L., Forbes M.D.E. Molecular dynamics sim ulation of sodium dodecyl sulfate micelle in water:Micellar structural characteristics and counterion distribution. J. Phys. Chem. B 2002,106, 3788-3793.
    [31]Gao J., Ge W., Hu G., Li J. From homogeneous dispersion to micelles-A molecular dynamics simulation on the compromise of hydrophilic and hydrophobic effects of sodium dodecyl sulfate in aqueous solution. Langmuir 2005,21,5223-5229.
    [32]Berendsen H.J.C., van der Spoel D., van Drunen R. GROMACS:A message-passing parallel molecular dynamics implementation. Comp. Phys. Comm.1995,91,43-56.
    [33]Allen M.P., Tildesley D J. Computer Simulation of Liquids, Oxford University Press. Oxford,1989.
    [34]Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., Di Nola A., Haak J. R. Molecular dynamics with coupling to an external bath J. Chem. Phys.1984,81, 3684-3690.
    [35]Schuler L.D., Daura X., Gunsteren W.F.V. An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Coumput Chem 2001,22, 1205-1218.
    [36]Oldiges C., Tonsing T. Molecular dynamic simulation of structural, mobility effect between dilute aqueous CH3CN solution and cross linked PAA Part 1. Structure. PCCP 2002,4,1628-1636.
    [37]Tuckerman M., Berne B.J., Martyna GJ. Reversible multiple time scale molecular dynamics. J. Chem. Phys.1992,97,1990-2001.
    [38]Hess B., Berendsen H.J.C., Fraaije J.G.E.M. LINCS:A linear constraint solver for molecular simulations. J. Comput. Chem.1997,18,1463-1462.
    [39]Essman U., Perera L., Berkowitz M. L., Darden T., Lee H., Pedersen L.G A smooth particle mesh ewald method. J. Chem. Phys.1995,103,8577-8593.
    [40]Berendsen H.J.C.,Grigera J.R., Straatsma T. P. The missing term in effective pair potentials.J. Phys. Chem.1987,91,6269-6271.
    [41]Rakitin A. R., Pack G. R. Molecular dynamics simulations of ionic interactions with dodecyl sulfate micelles. J. Phys. Chem. B 2004,108,2712-2716.
    [42]Itri R., Amaral L. Q. Distance distribution function of sodium dodecyl sulfate micelles by X-ray scattering. J. Phys. Chem.1991,95,423-427.
    [1]Currie E.P.K., Norde W., Stuart M.A.C. Tethered polymer chains:surface chemistry and their impact on colloidal and surface properties. Adv. Colloid Interface Sci.2003,100-102,205-265.
    [2]Mei Y, Sharma G., Lu Y., Ballauff M., Drechsler M., Irrgang T., Kempe R. High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir 2005,21,12229-12234
    [3]Zhang Z., Ma H., Hausner D.B., Chilkoti A.,Beebe T.P. Pretreatment of amphiphilic comb polymer surfaces dramatically affects protein adsorption. Biomacromolecules 2005,6,3388-3396.
    [4]Zhou Y, Liedberg B., Gorochovceva N., Makuska R., Dedinaite A., Claesson P.M. Chitosan-N-poly(ethylene oxide) brush polymers for reduced nonspecific protein adsorption. J. Colloid Interface Sci.2007,305,62-71.
    [5]Elbert D.L., Hubbell J.A. Self-assembly and steric stabilization at heterogeneous, biological surfaces using adsorbing block copolymers. Chem. Biol.1998,5, 177-183.
    [6]Pettersson T., Naderi A., Makuska R., Claesson PM. Lubrication properties of bottle-brush polyelectrolytes:an AFM study on the effect of side chain and charge density. Langmuir 2008,24,3336-3347.
    [7]Yoshikawa J., Lewis J.A. Comb polymer architecture, ionic strength, and particle size effects on the BaTiO3 suspension stability. J. Am. Ceram. Soc.2009,92, S42-S49.
    [8]Linse P., Claesson P.M. Modeling of bottle-brush polymer adsorption onto mica and silica surfaces. Macromolecules 2009,42,6310-6318.
    [9]Naderi A., Iruthayaraj J., Pettersson T., Makuska R., Claesson P.M. Effect of polymer architecture on the adsorption properties of a nonionic polymer. Langmuir 2008,24,6676-6682.
    [10]Naderi A., Makuska R., Claesson P.M. Interactions between bottle-brush polyelectrolyte layers:effects of ionic strength and oppositely charged surfactant. J. Colloid Interface Sci.2008,323,191-202.
    [11]Vos W.M., Biesheuvel P.M., de Keizer A., Kleijn J.M., Stuart M.A.C. Adsorption of anionic surfactants in a nonionic polymer brush:experiments, comparison with mean-field theory, and implications for brush-particle interaction. Langmuir 2009,25,9252-9261.
    [12]Konradi R., Ruhe J. Binding of oppositely charged surfactants to poly(methacrylic acid) brushes. Macromolecules 2005,38,6140-6151.
    [13]Samokhina L., Schrinner M., Ballauff M. Binding of oppositely charged surfactants to spherical polyelectrolyte brushes:a study by cryogenic transmission electron microscopy. Langmuir 2007,23,3615-3619.
    [14]Cong Y., Gunari N., Zhang B., Janshoff A., Schmidt M. Hierarchical structure formation of cylindrical brush polymer-surfactant complexes. Langmuir 2009, 25,6392-6397.
    [15]Peron N, Campbell R.A., Nylander T. Competitive adsorption of neutral comb polymers and sodium dodecyl sulfate at the air/water interface. J. Phys. Chem. B 2008,112,7410-7419.
    [16]Ishikubo A., Mays J., Tirrell M. Behavior of cationic surfactants in poly(styrene sulfonate) brushes. Ind. Eng. Chem. Res.2008,47,6426-6433.
    [17]Zhou P., Brown W. Static and dynamic properties of poly(ethylene oxide) in methanol. Macromolecules 1990,2311131-1139.
    [18]Varga I., Meszaros R., Makuska R., Claesson P.M., Gilanyi T. Effect of graft density on the nonionic bottle brush polymer/surfactant interaction. Langmuir 2009,25,11383-11389.
    [19]Claesson P.M., Makuska R., Varga I., Meszaros R., Titmuss S., Linse P., Pedrsen JS, Stubenrauch C. Bottle-brush polymers:adsorption at surfaces and interaction with surfactants. Adv Colloid Interface 2010,155,50-57.
    [20]Moglianetti M., Campbell R.A., Nylander T., Varga I., Mohanty B., Claesson P.M., Makuska R., Titmuss S.. Interaction of sodium dodecyl sulfate and high charge density comb polymers at the silica/water interface. Soft Matter 2009,5, 3646-3656.
    [21]Liu Q., Yuan S., Yan H., Zhao X.. Mechanism of oil detachment from a silica surface in aqueous surfactant solutions:molecular dynamics simulations. J. Phys. Chem. B 2012,116,2867-2875.
    [22]Yuan S., Ma L., Zhang X., Zheng L. Molecular dynamics studies on monolayer of cetyltrimethylammonium bromide surfactant formed at the air/water interface. Colloids Surf. A 2006,289,1-9.
    [23]Benkova Z., Szefczyk B., Cordeiro M.N.D.S. Molecular dynamics study of hydrated poly(ethylene oxide) chains grafted on siloxane surface. Macromolecules 2011,44,3639-3648.
    [24]Rossi G, Elliott I.G., Ala-Nissila T., Faller R. Molecular dynamics study of a MARTINI coarse-grained polystyrene brush in good solvent:structure and dynamics. Macromolecules 2011,44,563-571.
    [25]Shang B.Z., Wang Z., Larson R.G Molecular dynamics simulation of interactions between a sodium dodecyl sulfate micelle and a poly(ethylene oxide) polymer. J. Phys. Chem. B 2008,112,2888-2900.
    [26]Darvas M., Gilanyi T., Jedlovszky P. Competitive adsorption of surfactants and polymers at the free water surface. a computer simulation study of the sodium dodecyl sulfate-poly(ethylene oxide) system. J. Phys. Chem. B 2011,115, 933-944.
    [27]Wang H., Zhang H., Liu C., Yuan S.. Coarse-grained molecular dynamics simulation of self-assembly of polyacrylamide and sodium dodecylsulfate in aqueous solution. J. Colloid Interface Sci.2012,386,205-211
    [28]Cao Q., Zuo C., Li L. Electrostatic binding of oppositely charged surfactants to spherical polyelectrolyte brushes. Phys. Chem. Chem. Phys 2011,13,9706-9715.
    [29]Hantal G, Partay L.B., Varga I., Jedlovszky P,. Gilanyi T. Counterion and surface density dependence of the adsorption layer of ionic surfactants at the vapor-aqueous solution interface:a Computer simulation study. J. Phys. Chem. B 2007,111,1769-1774.
    [30]Schuler L.D., Daura X., van Gaunsteren W.F. An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput. Chem 2001, 22,1205-1218.
    [31]Bruce C.D., Berkowitz M.L., Perera L., Forbes M.D.E. Molecular dynamics simulation of sodium dodecyl sulfate micelle in water:micellar structural characteristics and counterion distribution. J. Phys. Chem. B 2002,106, 3788-3793.
    [32]Spoel, D.V., van Buuren, A.R., Apol, E., Meulenhoff, P.J., Tieleman, D.P., Sijbers, A., Feenstra, K. Gromacs User Manual, version 4.0; Gromacs, Groningen, The Netherlands,2009; www.Gromacs.org.
    [33]Warne M.R, Allan N.L, Cosgrove T. Computer simulation of water molecules at kaolinite and silica surfaces. Phys. Chem. Chem. Phys.2000,2,3663-3668.
    [34]Berendsen H.J.C., Grigera J.R., Straatsma T.P. The missing term in effective pair potentials. J. Phys. Chem. B.1987,91,6269-6271.
    [35]Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. LINCS:a linear constraint solver for molecular simulations. J. Comput. Chem.1997,18, 1463-1472.
    [36]Essman U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G A smooth particle mesh ewald method. J. Chem. Phys.1995,103,8577-8593.
    [37]Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., Dinola A., Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys.1984,81, 3684-3690.
    [38]Humphrey W., Dalke A., Schulten K. VMD:Visual molecular dynamics. J. Mol. Graphics.1996,14,33-38.
    [39]Gao J., Ge W., Hu G., Li J. From homogeneous Dispersion to micelles a molecular dynamics simulation on the compromise of the hydrophilic and hydrophobic effects of sodium dodecyl sulfate in aqueous solution. Langmuir 2005,21,5223-5229.
    [40]Gao Z., Wasylishen R.E., Kwak J.C.I. Distribution equilibrium of poly(ethylene oxide) in sodium dodecyl sulfate micellar solutions:an NMR paramagnetic relaxation study. J. Phys. Chem.1991,95,462-467.
    [1]Antonietti M., Burger C., Thunemann A. Polyelectrolyte-surfactant complexes:A new class of highly ordered polymer materials. Trends Polymer Sci 1997,5, 262-267.
    [2]Asnacios A, Klitzing R, Langevin D. Mixed monolayers of polyelectrolytes and surfactants at the air-water interface. Colloid Surface A 2000,167,189-197.
    [3]Kolaric B., Jaeger W., Hedicke G., Klitzing R.V. Tuning of foam film thickness by different (poly) electrolyte/surfactant combinations. J. Phys. Chem. B 2003,107, 8152-8157.
    [4]Cheng Z., Ren B., Gao M., Liu X., Tong Z. Ionic self-assembled redox-active polyelectrolyte-ferrocenyl surfactant complexes:Mesomorphous structure and electrochemical behavior. Macromolecules 2007,40,7638-7643.
    [5]Pagac E.S., Prieve D.C., Tilton R D. Kinetics and mechanism of cationic surfactant adsorption and coadsorption with cationic polyelectrolytes at the silica-water interface. Langmuir 1998,14,2333-2342.
    [6]Monteux C., Williams C.E, Meunier J., Anthony O., Bergeron V. Adsorption of oppositely charged polyelectrolyte/surfactant complexes at the air/water interface: formation of interfacial gels. Langmuir 2004,20,57-63.
    [7]Klitzing R.V., Espert A., Asnacios A., Hellweg T., Colin A., Langevin D.0. Forces in foam films containing polyelectrolyte and surfactant. Colloid Surface A 1999, 149,131-140.
    [8]Liu X., Zhou L., Geng W., Sun J. Layer-by-layer-assembled multilayer films of polyelectrolyte-stabilized surfactant micelles for the incorporation of noncharged organic dyes. Langmuir 2008,24,12986-12989.
    [9]Klebanau A., Kliabanova N., Ortega F., Monroy F., Rubio R.G., Starov V. Equilibrium behavior and dilational rheology of polyelectrolyte/insoluble surfactant adsorption films:didodecyldimethylammonium bromide and sodium poly (styrenesulfonate). J. Phys. Chem. B 2005,109,18316-18323.
    [10]Taylor D.J.F., Thomas R.K., Penfold J. The adsorption of oppositely charged polyelectrolyte/surfactant mixtures:neutron reflection from dodecyl trimethylammonium bromide and sodium poly (styrene sulfonate) at the air/water interface. Langmuir 2002,18,4748-4757.
    [11]Liu J.F., Min G, Ducker W.A. AFM study of adsorption of cationic surfactants and cationic polyelectrolytes at the silica-water interface. Langmuir 2001,17, 4895-4903.
    [12]Langevin D. Polyelectrolyte and surfactant mixed solutions:behavior at surfaces and in thin films. Adv Colloid Interface 2001,89,467-484.
    [13]Zhang J., Thomas R.K., Penfold J. Interaction of oppositely charged polyelectrolyte-ionic surfactant mixtures:adsorption of sodium poly(acrylic acid)-dodecyl trimethyl ammonium bromide mixtures at the air-water interface. Soft Matter 2005,1,310-318.
    [14]Ilekti P., Martin T., Cabane B., Piculell L. Effects of polyelectrolytes on the structures and interactions of surfactant aggregates. J. Phys. Chem. B 1999,103, 9831-9840.
    [15]Yoshida K., Dubin P.L. Complex formation between polyacrylic acid and cationic/nonionic mixed micelles:effect of pH on electrostatic interaction and hydrogen bonding. Colloids Surf. A.1999,147,161-167.
    [16]Lim P.F.C., Chee L.Y., Chen S.B., Chen B. Study of interaction between cetyltrimethylammonium bromide and poly(acrylic acid) by rheological measurements. J. Phys. Chem. B 2003,107,6491-6496.
    [17]Taylor D.J.F., Thomas R.K., Hines J.D., Humphreys K., Penfold J. The adsorption of oppositely charged polyelectrolyte/surfactant mixtures at the air/water interface:neutron reflection from dodecyl trimethylammonium bromide/sodium poly(styrene sulfonate) and sodium dodecyl sulfate/poly(vinyl pyridinium chloride). Langmuir 2002,18,9783-9791.
    [18]Taylor D.J.F., Thomas R.K., Li P.X., Penfold J. Adsorption of oppositely Charged Polyelectrolyte/Surfactant Mixtures. neutron reflection from alkyl trimethylammonium bromides and sodium poly(styrenesulfonate) at the air/water interface:the effect of surfactant chain length. Langmuir 2003,19,2,112-3719.
    [19]Penfold J., Tucker I., Thomas R.K., Li P.X., Zhang J. Adsorption of polyelectrolyte/surfactant mixtures at the air-solution interface: poly(ethyleneimine)/sodium dodecyl sulfate. Langmuir 2005,21,10061-10073.
    [20]Howes A.J., Radke C.J. Monte carlo simulations of lennard-jones nonionic surfactant adsorption at the liquid/vapor interface. Langmuir 2007,23, 1835-1844.
    [21]Zhang X.Q., Yuan S.L., Wu J. Mesoscopic simulation on phase behavior of ternary copolymeric solution in the absence and presence of shear. Macromolecules 2006,39,6631-6642.
    [22]Wang H., Zhang H., Liu C.B. Coarse-grained molecular dynamics simulation of self-assembly of polyacrylamide and sodium dodecylsulfate in aqueous solution. J Colloid Interface Sci.2012,386,205-211.
    [23]Cao Q.Q., Zuo C.C., Li L.J., Gao M.F. Interactions of polyelectrolyte brushes with oppositely charged surfactants. Colloid Polym Sci 2011,289,1089-1102.
    [24]Darvas M., Gilanyi T., Jedlovszky P. Competitive adsorption of surfactants and polymers at the free water surface:a computer simulation study of the sodium dodecyl sulfate-poly(ethylene oxide) system. J. Phys. Chem. B.2011,115, 933-944.
    [25]Poghosyan A.H., Arsenyan L.H., Gharabekyan, H.H. Koetz J., Shaninyan A. Molecular dynamics study of Poly(diallyldimethylammonium chloride) (PDADMAC)/sodium dodecyl sulfate (SDS)/decanol/water systems. J. Phys. Chem.B.2009,113,1303-1310.
    [26]Liu Z.H., Shang Y.Z., Feng J., Peng C.J., Liu H.L., Hu Y. Effect of hydrophilicity or hydrophobicity of polyelectrolyte on the interaction between polyelectrolyte and surfactants:molecular dynamics simulations. J. Phys. Chem. B.2012,16, 5516-5526.
    [27]Hantal G, Partay L.B., Varga I., Jedlovszky P., Gilanyi T. Counterion and surface density dependence of the adsorption layer of ionic surfactants at the vapor-aqueous solution interface:a Computer simulation study. J. Phys. Chem. B 2007,111,1769-1774.
    [28]Spoel D.V., van Buuren A.R., Apol E., Meulenhoff P. J., Tieleman D.P., Sijbers A., Feenstra K. Gromacs User Manual, version 4.0; Gromacs:Groningen, The Netherlands,2009; www.Gromacs.org.
    [29]Schuettelkopf A.W., van Aalten D.M.F. PRODRG:a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D 2004,60, 1355-1363.
    [30]Jorge M. Molecular dynamics simulation of self-assembly of n-decyltrimethylammonium bromide micelles. Langmuir 2008,24,5714-5725.
    [31]Sulatha M.S., Natarajan U. Origin of the difference in structural behavior of poly(acrylic acid) and poly(methacrylic acid) in aqueous solution discerned by explicit-solvent explicit-ion MD simulations. Ind. Eng. Chem. Res.2011,50, 11785-11796.
    [32]Hess B., Bekker H., Berendsen H.J.C., M. Fraaije J.GE. LINCS:a linear constraint solver for molecular simulations, J. Comput. Chem.1997,18, 1463-1472.
    [33]Essman U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G., A smooth particle mesh ewald method. J. Chem. Phys.1995,103,8577-8593.
    [34]Berendsen H J.C., Grigera J.R., Straatsma T.P. The missing term in effective pair potentials. J. Phys. Chem. B.1987,91,6269-6271.
    [35]Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., DiNola A., Haak J. R., Molecular dynamics with coupling to an external bath. J. Chem. Phys.1984,81, 3684-3690.
    [36]Humphrey W., Dalke A., Schulten K. VMD:visual molecular dynamics. J. Mol. Graphics.1996,14,33-38.
    [37]M. Tarek, D.J. Tobias, M.L. Klein, Molecular dynamics simulation of tetradecyltrimethylammonium bromide monolayers at the air/water interface, J. Phys. Chem 1995,99,1393-1402.
    [38]Yuan S., Ma L., Zhang X., Zheng L., Molecular dynamics studies on monolayer of cetyltrimethylammonium bromide surfactant formed at the air/water interface. Colloid Surface A 2006,289,1-9.
    [39]Yuan S.M., Yan H., Lv K., Liu C.B., Yuan S.L. Surface behavior of a model surfactant:A theoretical simulation study. J. Colloid Interface Sci.2010,348, 159-166.
    [1]Tondre C, Caillet C. Properties of the amphiphilic films in mixed cationic/anionic vesicles:a comprehensive view from a literature analysis. Adv Colloid Interface Sci 2001,93,115-134.
    [2]Raghavan S.R., Fritz G., Kaler E.W. Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic surfactants. Langmuir 2002,18, 3797-3803.
    [3]Imamura H., Tsuchiya K., Kondo Y., Yoshino, N. Ohkubo, T., Sakai, H., Abe, M. Phase behavior of mixed solutions of a cationic surfactant with a ferrocenyl croup and an anionic surfactant:surface chemical and electrochemical approaches. J. Oleo. Sci 2005,54,125-134.
    [4]Kume G, Gallotti M., Nunes G. Review on anionic/cationic surfactant mixtures. J. Surfactants Deterg.2008,11,1-11.
    [5]Prottey C., Ferguson T. Factors which determine the skin irritation potential of soaps and detergents. JSoc Cosmet Chem 1975,26,29-46.
    [6]Kaler E. W., Murthy A. K., Rodriguez B.E., Zasadzinski, J.A. Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science 1989,22, 1371-1374.
    [7]Bhandarkar S., Bose A. Synthesis of submicrometer crystals of aluminum oxide by aqueous intravesicular precipitation. J. Colloid Interface Sci.1990,135, 531-538.
    [8]Leng J., Egelhaaf S. U., Cates M.E. Kinetics of the micelle-to-vesicle transition: aqueous lecithin-bile salt mixtures. Biophys. J.2003,85,1624-1646.
    [9]Coldren B., Van Zanten R., Mackel M.J., Zasadzinski J.A., Jung, H.T. From vesicle size distributions to bilayer elasticity via cryo-transmission and freeze-fracture electron microscopy. Langmuir 2003,19,5632-5639.
    [10]Weiss T. M., Narayanan T., Gradzielski, M. Dynamics of spontaneous vesicle formation in fluorocarbon and hydrocarbon surfactant mixtures. Langmuir 2008, 24,3759-3766.
    [11]O'Connor A. J., Hatton T. A., Bose A. Dynamics of micelle-vesicle transitions in aqueous anionic/cationic surfactant mixtures. Langmuir 1997,13,6931-6940.
    [12]Bergstrom L. M., Skoglund S., Edwards K., Eriksson J. Grillo I. Self-Assembly in mixtures of an anionic and a cationic Surfactant:a comparison between small-angle neutron scattering and cryo-transmission electron microscopy. Langmuir 2013,29,11834-11848.
    [13]XiaY. S., Goldmints,I., Johnson P. W., Hatton T.A., Bose A. Temporal evolution of microstructures in aqueous CTAB/SOS and CTAB/HDBS solutions. Langmuir 2002,18,3822-3828.
    [14]Edler K. J., Wasbrough M. J., Holdaway J. A., O'Driscoll B. M. Self-assembled films formed at the air-water interface from CTAB/SDS mixtures with water-soluble polymers. Langmuir 2008,25,4047-4055.
    [15]Kaler E.W., Miller D.D., Zasadzinski J A., Chiruvolu S. Phase Behavior of Aqueous mixtures of dodecyltrimethylammnium (DTAB) and sodium dodecyl Sulfate (SDS). J. Phys. Chem.1993,97,13792-13802.
    [16]Bergstrolm M., Pedersen J.S. A small-angle neutron scattering study of surfactant aggregates formed in aqueous mixtures of sodium dodecyl sulfate and didodecyldimethylammonium bromide. J. Phys. Chem. B 2000,104, 4155-4163-4163.
    [17]Khan A., Marques E.F. Synergism and polymorphism in mixed surfactant systems. Curr Opin Colloid In 1999,4,402-410.
    [18]Bai G.Y., Wang Y.J., Wang, J. B., Han, B.X., Yan, H.K. Microcalorimetric studies of the interaction between DDAB and SDS and the phase behavior of the mixture. Langmuir 2001,17,3522-3525.
    [19]Bergstrom M., Pedersen J.S.A Small-angle neutron scattering study of rablet-shaped and ribbonlike micelles formed from mixtures of an anionic and a cationic surfactant. J. Phys. Chem. B 1999,103,8502-8513.
    [20]Evans H.C.117. Alkyl sulphates. Part Ⅰ. Critical micelle concentrations of the sodium salts. J Chem Soc, (Resumed),1956,579-586.
    [21]Klevens H.B. Critical micelle concentrations as determined by refraction. J Phys Chem 1948,52,130-148.
    [22]Lucassen-Reynders, E.H., Lucassen J., Giles D. Surface and bulk properties of mixed anionic/cationic surfactant systems i. equilibrium surface tensions.J. Colloid Interface Sci. 1981,81,150-157.
    [23]Yan H., Yuan S. L., Xu G. Y, Liu C.B. Effect of Ca2+ and Mg2+ ions on surfactant solutions investigated by molecular dynamics simulation. Langmuir 2010,26,10448.
    [24]Yuan S. L., Ma L.X., Zhang X.., Zheng L.Q. Molecular dynamics studies on monolayer of cetyltrimethylammonium bromide surfactant formed at the air/water interface. Colloids Surf. A 2006,289,1-9.
    [25]Tummal N. R., Striolo A. Tummala N. R., Striolo A. Role of counterion condensation in the self-assembly of SDS surfactants at the water-graphite interface.J.Phys. Chem. B 2008,112,1987-2000.
    [26]Wang H., Zhang H., Liu C., Yuan S. Coarse-grained molecular dynamics simulation of self-assembly of polyacrylamide and sodium dodecylsulfate in aqueous solution. J. Colloid Interface Sci.2012,386,205-211.
    [27]Chen J, Hao J. Molecular dynamics simulation of cetyltrimethylammonium bromide and sodium octyl sulfate mixtures:aggregate shape and local surfactant distribution. Phys. Chem. Chem. Phys.2013,15,5563-5571.
    [28]Wu R., Deng M., Kong B., Yang X. Coarse-Grained Molecular Dynamics Simulation of Ammonium Surfactant Self-Assemblies:Micelles and Vesicles. J. Phys. Chem. B 2009,113,15010-15016.
    [29]Yakovlev D.S., Boek E.S. Molecular dynamics simulations of mixed cationic/anionic wormlike micelles. Langmuir,2007,23,6588-6597.
    [30]Storm S., Jakobtorweihen S., Smirnova I., Panagiotopoulos A.Z. Molecular dynamics simulation of SDS and CTAB micellization and prediction of partition equilibria with COSMOmic. Langmuir 2013,29,11582-11592.
    [31]Marrink S.J., de Vries A.H., Mark A.E., Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B 2004,108,750-760.
    [32]Marrink S.J., Risselada H.J., Yefimov S., Tieleman D.P., de Vries A.H. The MARTINI force field:coarse grained model for biomolecular simulations. J. Phys. Chem.B 2007,111,7812-7824.
    [33]Jalili S., Akhavan M.A. Coarse-grained molecular dynamics simulation of a sodium dodecyl sulfate micelle in aqueous solution. Colloids Surf. A 2009,352, 99-102.
    [34]Berendsen H.J.C., van der Spoel, D., van Drunen, R. GROMACS:A message-passing parallel molecular dynamics implementation. Comp. Phys. Commun.1995,91,43-56.
    [35]Allen M.P., Tildesley D.J. Coumputer simulation of liquids. Oxford Univerity Press, Oxford,1989.
    [36]Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., Di Nola A., Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys.1984,81, 3684-3690.
    [37]Humphrey W., Dalke A., Schulten K. VMD:Visual molecular dynamics, J. Mol. Graphics.1996,14,33-38.
    [38]Alargova R. G, Kochijashky I. I., Sierra M. L., Zana R. Micelle aggregation numbers of surfactants in aqueous solutions:a comparison between the results from steady-state and time-resolved fluorescence quenching. Langmuir 1998,14, 5412-5418.
    [39]Bales B. L., Messina L., Vidal A., Peric M., Nascimento O. R. Precision relative aggregation number determinations of SDS micelles using a spin probe. A model of micelle surface hydration. J. Phys. Chem. B 1998,102,10347-10358.
    [40]Chen J., Hao J. Molecular dynamics simulation of cetyltrimethylammonium bromide and sodium octyl sulfate mixtures:aggregate shape, and local surfactant distribution. Phys Chem Chem Phys 2013,15,5563-5571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700