鼻息肉组织Th细胞亚群、嗜酸性粒细胞浸润及相关转录因子表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:鼻息肉组织Th细胞亚群的流式细胞术测定
     背景鼻息肉是临床常见病,手术后极易复发,尚无根治性手段。尚无确定的临床病理分型和围手术期综合治疗原则。鼻息肉的发生机制也不确定,关于鼻息肉的发生机制,主要存在两种学说之争,即金黄色葡萄球菌超抗原学说和真菌变态反应学说。细菌、病毒、真菌及变应原等可能作为最初的触发因素引起鼻腔外侧壁的炎症而发展形成鼻息肉。鼻息肉组织含大量炎症细胞如嗜酸性粒细胞和淋巴细胞,这些细胞可能在鼻息肉发病中起重要作用。
     T淋巴细胞按表面分子不同分为CD4+T淋巴细胞(又称辅助T淋巴细胞,T help cell,Th细胞)和CD8+T淋巴细胞(又称细胞毒性T细胞,CTL,或杀伤性T细胞,TC)。Th细胞按产生细胞因子和功能的不同又分为Th1细胞和Th2细胞。功能不同的辅助T淋巴细胞(Th1细胞、Th2细胞)存在的证据对基础和临床免疫学产生了重大影响。Th1和Th2细胞在免疫应答的平衡中起关键性作用。Th1细胞主要产生干扰素-γ(IFN-γ),促进细胞免疫,增强吞噬细胞的抗感染机制;Th2细胞主要产生白介素-4(IL-4),促进体液免疫,在变态反应中起作用。这些基础免疫学发现结合鼻息肉的发生机制,可以推测在鼻息肉组织中,Th1细胞可能与金葡菌感染引起的免疫应答有关,Th2细胞可能与真菌及变应原引起的变态反应有关。
     关于鼻息肉组织T细胞亚群及细胞因子的研究已有报道,但对Th细胞亚群的深入研究尚少,尚无关于合并与不合并AR的鼻息肉在Th细胞亚群方面的研究报道。本实验以流式细胞术测定合并与不合并AR的鼻息肉组织的Th1和Th2细胞百分率,以明确不同类型鼻息肉组织在Th细胞亚群和免疫应答类型方面的差异,评价金葡菌感染和真菌变态反应因素在不同类型鼻息肉病因学中的作用,评价金黄色葡萄球菌超抗原学说和真菌变态反应学说对不同类型鼻息肉发生形成的意义,指导鼻息肉分型和综合治疗。
     方法32例鼻息肉病例分为两组,其中包括不合并变应性鼻炎(AR)的鼻息肉组16例,合并变应性鼻炎的鼻息肉组16例,依据变应性鼻炎病史和临床表现,以及变应原点刺试验区分不合并AR的鼻息肉与合并AR的鼻息肉。新鲜手术标本制备单细胞悬液,流式细胞仪测定Th1和Th2细胞百分率,在CD4+细胞中,细胞内产生IFN-γ的为Th1细胞,产生IL-4的为Th2细胞,同时产生IFN-γ和IL-4的为Th0细胞。测得的Th细胞百分率用(?)±s表示,用SPSS for Windows Ver.11.5软件进行统计分析,对两鼻息肉组的Th1、Th2细胞百分率进行正态性检验和独立样本t检验。
     结果鼻息肉组织含有大量Th细胞并且以Th1细胞为主;不合并AR的鼻息肉组Th1和Th2细胞平均百分率分别为46.28%±14.95%和0.63%±0.31%;合并AR的鼻息肉组Th1和Th2细胞平均百分率分别为38.25%±9.16%和7.34%±2.54%;统计学分析显示不合并AR的鼻息肉组与合并AR的鼻息肉组相比Th1细胞平均百分率无显著差异,t=1.83,P>0.05;合并AR的鼻息肉组Th2细胞平均百分率显著高于不合并AR的鼻息肉组,t=10.48,P<0.01。
     结论鼻息肉组织以Th1细胞亚群为主;合并AR的鼻息肉Th2细胞数显著高于不合并AR的鼻息肉,合并与不合并AR的鼻息肉在Th细胞亚群和免疫应答类型方面存在差异;金葡菌感染可能在不合并AR的鼻息肉的发生形成中起关键作用,金葡菌感染和真菌变态反应因素可能在合并AR的鼻息肉的发生形成中均有一定作用。
     第二部分:鼻息肉组织嗜酸性粒细胞浸润与Th2细胞的关系
     背景鼻息肉组织含大量炎症细胞如嗜酸性粒细胞和淋巴细胞,这些细胞可能在鼻息肉的发生和形成中起重要作用。在过去的二十年中,对嗜酸性粒细胞在某些病理生理过程中的作用有了逐步认识。嗜酸性粒细胞的前体细胞从骨髓释放进入血液循环,在化学趋化性因子的作用下进入作用部位,嗜酸性粒细胞的发育和成熟可发生在外周炎症部位。活化嗜酸性粒细胞在哮喘、寄生虫病、肉芽肿病变、纤维化、许多恶性肿瘤及鼻腔鼻窦疾病中起作用。在变应性鼻炎(AR),嗜酸性粒细胞从外周血浸润到鼻腔粘膜组织后主要参与迟发相反应,Th-2细胞分泌的细胞因子可促使嗜酸性粒细胞的集聚和活化。在Th-2类细胞因子中,IL-4起中心性作用,它可促使IgE的合成,通过上调粘附分子的表达引起嗜酸性粒细胞集聚,增加粘液的生成。嗜酸性粒细胞的颗粒中含有许多细胞毒性蛋白包括嗜酸性细胞阳离子蛋白(ECP),主要碱性蛋白(MBP),嗜酸性粒细胞过氧化物酶(EPO)和嗜酸性细胞来源神经毒素。嗜酸性粒细胞的细胞毒性作用可能在针对变应原和对抗真菌的免疫反应中起关键性作用。
     关于鼻息肉组织嗜酸性粒细胞浸润的研究已有报道,但对合并与不合并AR的鼻息肉组织嗜酸性粒细胞浸润程度差异的研究尚少,尚无鼻息肉组织嗜酸性粒细胞浸润与Th2细胞关系的研究报道。本实验对合并与不合并AR的鼻息肉组织石蜡标本HE切片进行嗜酸性粒细胞计数,并分析嗜酸性粒细胞数与与Th2细胞百分率的相关性,以明确合并与不合并AR的鼻息肉组织在嗜酸性粒细胞浸润数量上的差别,明确嗜酸性粒细胞浸润与Th2细胞的关系,探讨鼻息肉组织嗜酸性粒细胞浸润的发生机制。
     方法对两组鼻息肉病例常规病理标本HE切片进行嗜酸性粒细胞浸润程度的定量,计数每高倍视野平均嗜酸性粒细胞数。嗜酸性粒细胞数用均数±标准差表示。使用SPSS for Windows Ver. 11.5软件对两鼻息肉组的嗜酸性粒细胞数进行正态性检验和独立样本t检验,并对全部病例的Th2细胞百分率与嗜酸性粒细胞数进行相关性分析。
     结果不合并AR的鼻息肉组嗜酸性粒细胞数为14.38±5.6,合并AR的鼻息肉组嗜酸性粒细胞数为54.5±15.76;合并AR的鼻息肉组织嗜酸性粒细胞数明显高于不合并AR的鼻息肉组织,差异有统计学意义,P<0.02;Th2细胞平均百分率与嗜酸性粒细胞数存在正相关,r=0.80,P<0.01。
     结论合并AR的鼻息肉组织嗜酸性粒细胞数显著高于不合并AR的鼻息肉组织;鼻息肉组织的Th2细胞与嗜酸性粒细胞数相关,Th2细胞可能通过释放Th2细胞因子促使鼻息肉组织嗜酸性粒细胞浸润。
     第三部分:鼻息肉组织Th细胞分化相关转录因子表达
     背景鼻息肉的发生机制尚不确定,关于鼻息肉的发生机制,主要存在两种学说之争,即金黄色葡萄球菌超抗原学说和真菌变态反应学说。细菌、病毒、真菌及变应原等可能作为最初的触发因素引起鼻腔外侧壁的炎症而发展形成鼻息肉。
     幼稚CD4细胞分化为成熟的Th细胞亚群是机体防御机制和免疫介导疾病发病机制的关键过程,Th细胞分化决定免疫应答的性质。Th1细胞主要分泌IL-2、IFN-γ、TNF,功能是促进细胞免疫,增强吞噬细胞介导的抗感染机制;Th2细胞主要分泌IL-4、IL-5、IL-10、IL-13,功能是促进B细胞增殖、分化和产生抗体,增强B细胞介导的体液免疫应答,在变态反应和机体抗寄生虫免疫中发挥作用。局部环境中的细胞因子以及细胞内关键转录因子在Th分化中起主要作用。T细胞表达T-box(T-box expressed in T cells,T-bet)和GATA结合蛋白3(GATA-binding protein 3,GATA3)是Th细胞分化相关的关键转录因子,T-bet促使Th0细胞向Th1细胞方向分化;GATA3促使Th0细胞向Th2细胞方向分化,并且GATA3与T-bet存在相互拮抗的作用。这些基础免疫学发现结合鼻息肉的发生机制,可以推测在鼻息肉组织中,Th1细胞及其分化相关的转录因子T-bet可能与金葡菌感染引起的免疫应答有关,Th2细胞及其分化相关的转录因子GATA3可能与真菌及变应原引起的变态反应有关。
     目前尚无关于合并与不合并AR的鼻息肉组织在Th细胞分化相关转录因子表达方面的研究报道。本实验对合并与不合并AR的鼻息肉及对照下鼻甲液氮冷冻标本采用实时荧光定量PCR法测定Th1细胞分化相关转录因子T-bet和Th2细胞分化相关转录因子GATA-3 mRNA表达,以进一步明确合并与不合并AR的鼻息肉组织在Th细胞分化和免疫应答类型方面的差异,评价金葡菌感染和真菌变态反应因素在不同类型鼻息肉病因学中的作用,评价金黄色葡萄球菌超抗原学说和真菌变态反应学说对鼻息肉不同类型发生形成的意义,指导鼻息肉分型和综合治疗。
     方法标本为液氮冷冻标本,包括对照下鼻甲组织10例,不合并AR的鼻息肉16例及合并AR的鼻息肉16例。根据试剂使用说明用TRIzol Reagent从液氮冷冻下鼻甲和鼻息肉组织提取总RNA:DNA酶Ⅰ去除基因组DNA;使用逆转录酶及2μg提取的总RNA合成cDNA;实时荧光定量PCR在30μl容积中进行:其中包含27.5μl TaqMan Universal PCR Master Mix,0.6μl正向引物,0.6μl反向引物,0.3μl探针和1μl模板(100ng)。反应条件为:95℃3 min预变性,然后(95℃变性20s,60℃的退火/延伸20s)×60循环。磷酸甘油醛脱氢酶(GAPDH)基因表达做内参。实时荧光定量PCR在实时荧光定量PCR仪BIO RAD Icycler 5中进行,用荧光定量PCR分析软件Icycler version3.1.7050进行分析。
     结果鼻息肉组织和对照下鼻甲组织的GATA-3 mRNA及T-bet mRNA表达的相对量用2~(—ΔCT)值表示。单因素方差分析结果显示三组标本GATA-3及T-bet mRNA表达差异有统计学意义,F=83.26,P<0.01;F=17.6,P<0.01。两两比较结果显示不合并AR的鼻息肉及合并AR的鼻息肉组织GATA-3、T-bet mRNA表达分别显著高于下鼻甲组织,P<0.05或P<0.01;两鼻息肉组之间T-bet mRNA表达无显著性差异,P>0.05;合并AR的鼻息肉GATA3 mRNA表达显著高于另两组,P值均小于0.01。
     结论鼻息肉组织GATA-3 mRNA及T-bet mRNA表达高于下鼻甲组织,鼻息肉的发生和形成是长期鼻腔慢性持续性炎症的结果;合并与不合并AR的鼻息肉组织在Th2细胞分化相关转录因子GATA-3 mRNA表达方面存在差异,合并与不合并AR的鼻息肉在Th细胞分化和免疫应答类型方面存在差异;金葡菌感染可能在不合并AR的鼻息肉的发生形成中起关键作用,金葡菌感染和真菌变态反应因素可能在合并AR的鼻息肉的发生形成中均有一定作用。
Th Cell Population, Eosinophilia and Related Transcription Factors in Nasal Polyps
     PARTⅠ
     Th1 and Th2 Cell Population in Nasal Polyps, A flow cytometry Assay
     Background The nasal polyposis (NP) remains a common clinical entity. Classification of nasal polyp is a controversial topic. Its etiology and pathogenesis is still not entirely known. There exist two theories concerning the pathogenesis of nasal polyps, the staphylococcus aureus superantigen theory and the fungul allergy theory. The NPs is the ultimate manifestation of chronic inflammation. Bacterial infection, viral infection, fungal infection, allergy, and environmental pollution have all been suggested as possible initial triggers that may upregulate inflammation of the lateral wall of the nose to develop NPs. In most cases, the lamina propria of NPs demonstrates large numbers of eosinophils and lymphocytes. These infiltrated cells may play a part in pathogenesis of the polyp.
     Demonstration of the existence and functions of T help cells (Th1 and Th2 cells) has been an enormous impact on basic and applied immunology. Th1 and Th2 cells have a crucial role in balancing the immune response. Th1 cells produce interferon-gamma (IFN-γ), promoting cell-mediated immunity and control of intracellular pathogens. It related with the immune response induced by infectious agents. In contrast, Th2 cells produce interleukin-4 (IL-4), which promotes allergic responses. It related with the immune response induced by allergy.
     Previously, the study about T cell in chronic rhinosinusitis (CRS) and nasal polyps (NP) was limited to the T cell subpopulation and cytokines, but lacking deep study on Th cell. There was no reports concerning the Th cell in NPs with and without allergy. To analyze the immunological pattern of NP in patients with and without allergy, and evaluate the role of infectious agents and allergy in the etiology and pathogeneses of NPs, the percentages of CD4+ cells expressing intracellular IFN-γand IL-4 (Th1 and Th2 cells) were measured by flow cytometry.
     Methods 16 cases of NPs without allergy and 16 cases of NPs with allergy were involved in this study. Based on medical history of allergy and skin prick test, the NPs with allergy or the NPs without allergy were differentiated. The fresh NP samples were prepared into single cell suspension for flow cytometric analysis. Th1 cells were defined as CD4+ lymphocytes with intracellular IFN-γbut without intracellular IL-4. Th2 cells were defined as CD4+ lymphocytes with intracellular IL-4 but without intracellular IFN-γ.
     Results Nasal polyp possesses both Th1 and Th2 cells, but Th1 cells presented the majority in all the NPs. There was no significant difference in the mean percentages of IFN-γ-producing Th1 cells between the NPs without allergy group (Mean=46.28, SD=4.95) and the NPs with allergy group (Mean=38.25, SD=9.16; P>0.05); The mean percentages of IL-4-producing Th2 cells in the NPs with allergy group(Mean=7.34, SD=2.54) were significantly higher than that in the NPs without allergy group(Mean=0.63, SD=0.31, P<0.01 ).
     Conclusions Th1 cells were predominant in NPs; The NPs with allergy possesses more Th2 cells than the NPs without allergy did; The NPs without allergy and the NPs with allergy have some difference in immunological pattern.
     PARTⅡ
     Eosinophilia and Its correlation with Th2 Cells in Nasal Polyps
     Background During the last two decades, there has been an increased awareness regarding the role of the eosinophil in several physiologic and pathologic processes. Eosinophil progenitors are released from the blood marrow into the circulation and are chemically attracted to the site of action by chemotactic factors. Development and maturation of eosinophils can also occur in situ in peripheral sites of inflammation containing pre-existing increased tissue eosinophils. The eosinophil is involved in physiologic and pathologic processes, such as asthma, parasitic diseases, granulomatous disorders, fibrosis, malignant tumors and several sino-nasal diseases. In AR, eosinophils are mainly involved in the late-phase reaction after infiltration from the peripheral blood into the tissue. Cytokines secreted by Th-2 cells account for recruiting and activating the eosinophils in the nose. Among them, IL-4 is considered to be pivotal, since it promotes IgE synthesis, up-regulates adhesion molecules selective for eosinophil recruitment, and causes increased mucus production.
     The role of the eosinophil in the pathogenesis of CRS and NP has been particularly emphasized in the past few years. The lamina propria of NP demonstrates large numbers of eosinophils. Eosinophilic granulocytes are known to carry a variety of cytotoxic proteins in their granula, which can be released by degranulation. These proteins include the eosinophilic cationic protein(ECP), major basic protein(MBP), eosinophilic peroxidase(EPO) and eosinophil-derived neurotoxin(EDN). The cytotoxicity of the eosinophils may be a crucial element of an immunological reaction against allergen and fungi, which are present in the nasal mucus. Histopathologic studies of the CRS and NP demonstrate eosinophilic infiltration was a characteristic of NP, but there was less study concerning the eosinophilic infiltration difference in NPs with and without allergy, and there was no reports concerning the relation of the eosinophilic infiltration with the Th2 cells population. In these experiment, to define the eosinophilia in NPs with and without allergy and explore the eosinophilic infiltration mechanism in NPs, eosinophil counting were carried out on the H&E staining sections of all the NP samples. The correlation between the mean percentages of the Th2 cells and the eosinophilia were analyzed.
     Methods Eosinophil counting were carried out on the H&E staining sections of all the NP samples. The mean percentages of IL-4-producing Th2 cells were measured by flow cytometric analysis. Using SPSS for Windows Ver.11.5 Statistics Package, the average eosinophils number of the two patient group were compared by Independent Samples T-test. The correlation between the mean percentages of the Th2 cells and average eosinophils number of all cases were analysed by Bivariate Correlaions.
     Results Eosinophilia was significantly upregulated in the NPs with allergy group (Mean=54.5, SD=15.76) compared with it did in the NPs without allergy group(Mean=14.38, SD=5.6, P<0.01 ). Additionally, significant positive relationships were found between the mean percentages of IL-4-producing Th2 cells and the average eosinophil numbers in all the polyps (r=0.80, P<0.01).
     Conclusions Eosinophilia was significantly upregulated in the NPs with allergy. The cytotoxicity of the eosinophils may be a crucial element of an immunological reaction against allergen and fungi, which are present in the nasal mucus. Eosinophilia may induced by Th2 cells in the NPs.
     PARTⅢ
     Th Cell Differentiation Related Transcription Factors in Nasal Polyps
     Background The differentiation of naive CD4+ T cells into Thl or Th2 effector cells is a critical process during immune responses. Th1 cells produce interferon-gamma (IFN-γ), promoting cell-mediated immunity and control of intracellular pathogens. It related with the immune response induced by infectious agents. In contrast, Th2 cells produce interleukin-4 (IL-4), which promotes allergic responses. It related with the immune response induced by allergy. T-bet and GATA3 are two important transcription factor in regulating Th cell differentiation. T-bet promotes Th1 cell differentiation, and GATA3 promotes Th2 cell differentiation. T-bet and GATA3 have antagonistic effect on each other. There was no reports concerning the Th cell differentiation related transcription factor in NPs with and without allergy. To analyze the immunological pattern of NPs in patients with and without allergy, and evaluate the role of infectious agents and allergy in the etiology and pathogeneses of NPs, the mRNA expression of T-bet and GATA-3 were analyzed by real-time quantitative PCR in NPs with allergy and the NPs without allergy.
     Methods The samples were devided into three groups, which include 16 cases of NPs with allergy, 16 cases of NPs without allergy and 10 cases of inferior turbinate mucosa samples. Liquid nitrogen stored samples were analyzed by real-time quantitative PCR for mRNA expression of T-bet and GATA-3. Total RNA was extracted from tissue using TRIzol Reagent, Using reverse transcriptase, cDNA was synthesized. Real-time PCR analyses were performed in BIO RAD Icycler 5 and analyzed by Icycler version3.1.7050 software.
     Results The three groups have significant difference in GATA3 and T-bet mRNA expression (F=83.26, P<0.01; F=17.6, P<0.01). Multiple Comparison in ANOVA analysis demonstrated that the expression of T-bet and GATA3 mRNA was significantly higher in the two NPs groups than that in the inferior turbinate mucosa (P<0.01, or P<0.05). The NPs with allergy had significantly higher expression of GATA3 mRNA than that in the NPs without allergy (P<0.01). The NPs with allergy and the NPs without allergy have no significant difference in T-bet mRNA expression (p>0.05).
     Conclusions NPs expressed higher level of T-bet and GATA3 mRNA than that in the inferior turbinate mucosa. NPs with allergy expressed higher level of GATA3 mRNA than the NPs without allergy did. NPs without allergy and NPs with allergy have some difference in immune response and pathogenesis.
引文
[1] Bernstein JM, Kansal R. Superantigen hypothesis for the early development of chronic hyperplastic sinusitis with massive nasalpolyposis[J]. Curr Opin Otolaryngol Head Neck Surg,2005, 13(1):39-44.
    [2] Pawankar R. Nasal polyposis: an update[J]. Current Opinion in Allergy and Clinical Immunology, 2003, 3:1-6.
    [3] Baker MD, Acharya K: Superantigens: structure-function relationships[J]. Int J Med Microbiol, 2004, 293:529 - 537.
    [4] Kotzin BL, Leung DYM, Kappler J, et al. Superantigens and their potential role in human disease[J]. Adv Immunol, 1993, 54:99 - 166.
    [5] Bernstein JM, Ballow M, Schlievert PM, et al. A superantigen hypothesis for the pathogenesis of chronic hyperplastic sinusitis with massive nasal polyposis[J]. Am J Rhinol,2003,17:321 - 326.
    [6] Kansal RG, Nizet V, Jeng A, et al. Selective modulation of superantigen-induced responses by Streptococcal cysteineprotease[J]. J Infect Dis, 2003, 187:398-407.
    [7] McKay DM, Singh PK. Superantigen activation of immune cells evokes epithelial (T84) transport and barrier abnormalities via IFN-g and TNF-a: inhibition of increased permeability, but not diminished secretory responses by TGFb2[J]. J Immunol, 1997, 159:2382 - 2390.
    [8] Hellings PW, Fokkens WJ. Allergic rhinitis and its impact on otorhinolaryngology[J]. Allergy, 2006, 61:656 - 664.
    [9] Liew FY. Th1 and Th2: a historical perspective [J]. Nat. Rev. Immunol, 2002, 2(1): 55-60.
    [10] Agnello D, Lankford CSR, Bream J, et al. Cytokines and Transcription Factors That Regulate T Helper Cell Differentiation: New Players and New Insights[J]. J Clin Immunol, 2003, 23(3) :147-161.
    [11] Lohoff M, Mak TW. Role of Interferon Regulatory Factors in T Helper Cell Differentiation[J]. Nat. Rev. Immunol, 2005, 5(2):125-135.
    [12] 何维主编.医学免疫学[M], 北京:人民卫生出版社, 2005年, 194-197.
    [13] Ponikau JU, Sherris DA, Kern EB, et al. The diagnosis and incidence of allergic fungal sinusitis[J]. Mayo Clin Proc, 1999, 74:877—884.
    [14] Gosepath J, Mann WJ. Current Concepts in Therapy of Chronic Rhinosinusitis and Nasal Polyposis[J]. OLR, 2005,67:125-136.
    [15] Krouse JH, Chadwick SJ, Gordon BR, Derebery MJ Editors. Seasonal and perennial rhinitis. In: Allergy and immunology[M], Philadelphia, USA: Lippincott Williams & Wilkins, 2002,209—220.
    [16] Ciprandi G, Cirillo I, Vizzaccaro A, et al. Airway function and nasal inflammation in seasonal allergic rhinitis and asthma[J]. Clin Exp Allergy, 2004,34:891-896.
    [17] Cheng X, Liao YH, 6e HX, et al. Th1/Th2 Functional Imbalance After Acute Myocardial Infarction: Coronary Arterial Inflammation or Myocardial Inflammation[J]. J Clin Immunol, 2005,25(3):246-253.
    [18] Chen BY, Lan JL, Lin FJ, et al. Predominance of Th1 cytokine in peripheral blood and pathological tissues of patients with active untreated adult onset Still's disease[J]. Ann Rheum Dis, 2004,63(10): 1300-1306.
    [19] Sasama J, Sherris DA, Shin SH, et al. New paradigm for the roles of fungi and eosinophils in chronic rhinosinusitis[J]. Curr Opin Otolaryngol Head Neck Surg, 2005,13(1):2-8.
    [20] Zhang N, Gevaert P, van Zele T, et al. An update on the impact of Staphylococcus aureus enterotoxins in chronic sinusitis with nasal polyposis[J].Rhinology, 2005,43(3):162-168.
    [21] Bernstein JM, Ballow M, Rich G. Lymphocyte subpopulations and cytokines in nasal polyps: is there a local immune system in the nasal polyp[J]? Otolaryngol H&N Surg, 2004,130(5):526-35.
    [22] 袁晓培,于德林,俞有智。鼻息肉组织中T-细胞亚群的分布及2种白细胞介素表达的初步研究[J].中华耳鼻咽喉科杂志,2000,35(5):42-45.
    [23] 何烈纯,陈嵘,史剑波,许庚等.复发性鼻息肉中T淋巴细胞亚群的表达[J].临床耳鼻咽喉科杂志,2004,18(2):97-99.
    [24] 薛卫国,徐永生,孙洁等.复发性鼻息肉病人外周血Th1,Th2细胞的流式细胞分析[J].中国耳鼻咽喉颅底外科杂志,2006,12(3):175-178.
    [25] Elhini A, Abdelwahab S and Ikeda K. Th1 and Th2 Cell Population in Chronic Ethmoidal Rhinosinusitis: A Chemokine Recetor Assay[J]. Laryngoscope, 2005,115(6):1272-7.
    [26] Ruffoli R, Ursino F, Fattori B, et al. Distribution of 3-Nitrotyrosine in the Nasal Polyps of Atopic Patients [J]. Laryngoscope, 2004,114:118-125.
    [27] Adamko DJ, Odemuyiwa SO, Vethanayagam D, et al. The rise of the phoenix: The expanding role of the eosinophil in health and disease[J]. Allergy, 2004, 60:13—22.
    [28] Munitz A, Levi-Schaffer F. Eosinophils: 'New' roles for old cells [J]. Allergy, 2004, 59:268—275.
    [29] Ciprandi G, Cirillo I, Vizzaccaro A, et al. Airway function and nasal inflammation in seasonal allergic rhinitis and asthma[J]. Clin Exp Allergy, 2004, 34:891-896.
    [30] Borres MP, Bjorksten B. Peripheral blood eosinophils and IL-4 in infancy in relation to the appearance of allergic disease during the first 6 years of life[J]. Pediatr Allergy Immunol, 2004, 15:216—220.
    [31] Park HS, Kim HY, Nahm DH, et al. The presence of atopy does not determine the type of cellular infiltrate in nasal polyps[J]. Allergy Asthma Proc, 1998,19:373 - 377.
    [1] Mygind N. Nasal polyposis[J]. J Allergy Clin Immunol, 1990,86(6 Pt 1):827-829.
    [2] Pawankar R. Nasal polyposis: an update[J]. Current Opinion in Allergy and Clinical Immunology, 2003, 3:1-6.
    [3] Bernstein JM. The molecular biology of nasal polyposis[J]. Curr Allergy Asthma Rep, 2001,1:262 - 267.
    [4] Sanchez-Segura A, Brieva JA, Rodriguez C. T lymphocytes that infiltrate nasal polyps have a specialized phenotype and produce a mixed TH1/TH2 pattern of cytokines[J]. J Allergy Clin Immunol, 1998,102(6):953-960.
    [5] Seki H, Otsuka H, Pawankar R. Studies on the function of mast cells infiltrating nasal polyps[J]. J Otolaryngol, 1992,95:1012-1021.
    [6] Varga EM, Jacobson MR, Masayuma K, et al. Inflammatory cell populations and cytokine mRNA expression in the nasal mucosa in aspirin-sensitive rhinitis: intense inflammation of the nasal mucosa characterized by Tlymphocytes, eosinophils and mast cells with predominance of macrophages and IL-5 mRNA was observed in aspirin-sensitive rhinitis[J]. Eur Respir J, 1999,14:610-615.
    [7] Bachert C, Wagenmann M, Hauser U, Rudack C. IL-5 synthesis is upregulated in human nasal polyp tissue[J]. J Allergy Clin Immunol, 1997, 99:837 - 842.
    [8] Ohno I, Lea R, Finotto S, Dolovich J. Granulocyte/macropage colony stimulating factor (GM-CSF) gene expression by eosinophils in nasal polyps[J]. Am J Resp Cell Mol Biol, 1991, 4:11 - 17.
    [9] Hamilos DL, Leung DY, Huston DP, et al. GM-CSF, IL-5 and RANTES immunoreactivity and mRNA expression in chronic hyperplastic sinusitis with nasal polyposis (NP)[J]. Clin Exp Allergy, 1998, 28:1145 - 1152.
    [10] Nonaka M, Pawankar R, Saji F, Yagi T. Eotaxin expression in nasal polyp fibroblasts[J]. Acta Otolaryngol, 1999, 119:314 - 318.
    [11] ElovicC, Wong D, Weller P. Expression of transforming growth factors a and b-1 mRNA and product by eosinophils in nasal polyps[J]. J Allergy Clin Immunol, 1994, 93:864-869.
    [12] Chang CH, Chai CY, Ho KY, et al. Expression of transforming growth factorbeta 1 and alpha-smooth muscle actin of myofibroblast in the pathogenesis of nasal polyps[J]. J Med Sci,2001,17:133 - 138.
    [13] Nonaka M, Pawankar R, Fukumoto A, Yagi T. Synergistic Induction of eotaxin in fibroblasts by IL-4 and LPS: modulation by TGF-b[J]. J Allergy Clin Immunol, 2002, 109:S38.
    [14] Coste A, Brugel L, Maitre B, et al. Inflammatory cells as well as epithelial cells in nasal polyps express vascular endothelial growth factor[J]. Eur Respir J, 2000, 5:367 - 372.
    [15] Xing Z, Jordana M, Braciak T, et al. Lipopolysaccharide induces expression of granulocyte/macrophage colony-stimulating factor, interleukin-8, and interleukin-6 in human nasal, but not lung, fibroblasts: evidence for heterogeneity within the respiratory tract [J]. Am J Respir Cell Mol Biol,1993,9:255 - 263.
    [16] Nonaka M, Pawankar R, Saji F, Yagi T. Distinct expression of RANTES and GM-CSF by lipopolysaccharide in human nasal fibroblasts but not in other airway fibroblasts[J]. Int Arch Allergy Immunol, 1999, 119:314-321.
    [17] Watanabe T, Timmerman H, Yanai K, editors. Mast cells in rhinitis[M]. Amsterdam: Elsevier Science,2001:369 - 374.
    [18] Di Lorenzo G, Drago A, Esposito Pellitteri M, et al. Measurement of inflammatory mediators of mast cells and eosinophils in native nasal lavage fluid in nasal polyposis[J]. Int Arch Allergy Immunol, 2001, 125:164- 175.
    [19] Liu CM, Hong CY, Shun CT, et al. Matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 gene expressions and their differential regulation by proinflammatory cytokines and prostaglandin in nasal polyp fibre-blasts [J]. Ann Otol Rhinol Laryngol, 2001, 110:1129 - 1136.
    [20] Adamko DJ, Odemuyiwa SO, Vethanayagam D, et al. The rise of the phoenix: The expanding role of the eosinophil in health and disease[J]. Allergy, 2004,60:13—22.
    [21] Munitz A, Levi-Schaffer F. Eosinophils: 'New' roles for old cells[J]. Allergy, 2004, 59:268—275.
    [22] Krouse JH, Chadwick SJ, Gordon BR, Derebery MJ Editors. Seasonal and perennial rhinitis[M]. Philadelphia, USA: Lippincott Williams & Wilkins, 2002:209—220.
    [23] Ciprandi G, Cirillo I, Vizzaccaro A, et al. Airway function and nasal inflammation in seasonal allergic rhinitis and asthma[J]. Clin Exp Allergy, 2004, 34:891-896.
    [24] Borres MP, Bjorksten B. Peripheral blood eosinophils and IL-4 in infancy in relation to the appearance of allergic disease during the first 6 years of life[J]. Pediatr Allergy Immunol, 2004, 15:216—220.
    [25] Temkin V, AingornH, Puxeddu I, et al. Eosinophil major basic protein: First identified natural heparanase-inhibiting protein[J]. J Allergy Clin Immunol, 2004, 113:703—709.
    [26] Saito H, Morikawa H, Howie K, et al. Effects of cysteinyl leukotriene receptor antagonist on eosinophil recruitment in experimental allergic rhinitis[J]. Immunology, 2004,113:246—252.
    [27] Bernstein JM and Kansal R. Superantigen hypothesis for the early development of chronic hyperplastic sinusitis with massive nasal polyposis[J]. Curr Opin Otolaryngol Head Neck Surg,2005, 13:39-44.
    [28] Kennedy DW. Pathogenesis of chronic rhinosinusitis[J]. Ann Otol Rhinol Laryngol, 2004, 113:6-9.
    [29] Chan KH, Abzug MJ, Coffinet L, et al. Chronic rhinosinusitis in young children differs from adults: A histopathologic study[J]. J Pediatr, 2004, 144:206-212.
    [30] Ponikau JU, Sherris DA, Kern EB, et al. The diagnosis and incidence of allergic fungal sinusitis[J]. Mayo Clin Proc, 1999, 74:877—884.
    [31] Hamilos DL, Lund VJ. Etiology of chronic rhinosinusitis: The role of fungus[J]. Ann Otol Rhinol Laryngol, 2004, 113:27—31.
    [32] Collins M, Nair S, Smith W, et al. Role of local immunoglobin E production in the pathophysiology of noninvasive fungal sinusitis[J]. Laryngoscope, 2004, 114:1242—1246.
    [33] Pantanowitz L, Balogh K. Charcot-Leyden crystals: Pathology and diagnostic utility[J]. Ear Nose Throat J, 2004, 83:489—490.
    [34] Watanabe K, Misu T, Ohde S, et al. Characteristics of eosinophils migrating around fungal hyphae in nasal discharge[J]. Ann Otol Rhinol Laryngol, 2004, 113:200—204.
    [35] Baker MD, Acharya K: Superantigens: structure-function relationships[J].Int J Med Microbiol, 2004, 293:529 - 537.
    [36] Kotzin BL, Leung DYM, Kappler J, et al. Superantigens and their potential role in human disease[J]. Adv Immunol, 1993, 54:99 - 166.
    [37] Bachert C, Gevaert P, Holtappels G, et al. Total and specific IgE in nasal polyps is related to local eosinophilic inflammation[J]. J Allergy Clin Immunol, 2001, 107:607 - 614.
    [38] Zhang L, Zhou M, Zhan W: Concentration of interleukin-5 and granulocytemacrophage colony stimulation factor in nasal polyps tissue and its significance[J]. Chin J Otorhinolaryngol, 2001, 36:444 - 446.
    [39] Bernstein JM, Ballow M, Schlievert PM, et al. A superantigen hypothesis for the pathogenesis of chronic hyperplastic sinusitis with massive nasal polyposis[J]. Am J Rhinol, 2003, 17:321 - 326.
    [40] Kansal RG, Nizet V, Jeng A, et al. Selective modulation of superantigen-induced responses by Streptococcal cysteineprotease[J]. J Infect Dis, 2003,187:398 - 407.
    [41] McKay DM, Singh PK: Superantigen activation of immune cells evokes epithelial (T84) transport and barrier abnormalities via IFN-g and TNF-a: inhibition of increased permeability, but not diminished secretory responses by TGFβ2[J]. J Immunol, 1997, 159:2382 - 2390.
    [42] Hellings PW, Fokkens WJ. Allergic rhinitis and its impact on otorhinolaryngology[J]. Allergy, 2006, 61:656 - 664
    [43] Park HS, Kim HY, Nahm DH, et al. The presence of atopy does not determine the type of cellular infiltrate in nasal polyps[J]. Allergy Asthma Proc, 1998, 19:373 - 377.
    [44] Calenoff E, McMahan JT, Herzon GD, et al. Bacterial allergy in nasal polyposis. Arch Otolaryngol Head Neck Surg 1993; 119:830-836.
    [45] Bachert C, Gevaert P, Holtappels G, et al. Total and specific IgE in nasal polyps is related to local eosinophilic inflammation[J]. J Allergy Clin Immunol, 2001, 107:607 - 614.
    [46] Gosepath J, Mann WJ. Aspirin intolerance and nasal polyps[J]. Current Opinion in Otolaryngology & Head and Neck Surgery, 2002, 10:3 - 7
    [47] Jantti-Alanko S, Holopainen E, Malmberg H: Recurrence of nasal polyps after surgical treatment[J]. Rhinology, 1989, suppl 8:59-64.
    [48] Larsen K: The clinical relation of nasal polyps to asthma[J]. Allergy Asthma, 1996,5:243-249.
    [49] Mullol J, Fernandez-Morata JC, Roca-Ferrer J, et al. Cyclooxygenase 1 and cyclooxygenase 2 expression is abnormally regulated in human nasal polyps[J]. J Allergy Clin Immunol,2002, 109:824 - 830.
    [50] Arm JP, O' Hickey SP, Spur BW, et al.: Airway responsiveness to histamine and leukotriene E4 in subjects with aspirin induced asthma[J]. Am Rev Respir Dis,1989, 40:148 - 153.
    [51] Cowburn AS, Sladek K, Soja J, et al. : Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma[J]. J ClinInvest, 1998, 101:834 - 846.
    [52] Sanak M, Simon HU, Szezeklik A: Leukotriene C4 synthase promotor polymorphism and risk of aspirin-induced asthma[J]. Lancet, 1997, 350:1599-1600.
    [1] Liew FY. Th1 and Th2: ahistorical perspective[J]. Nat. Rev. Immunol, 2002, 2 (1):55-60.
    [2] Mariani L, Lohning M, Radbruch A, et al. Transcriptional control networks of cell differentiation: insights from helper T lymphocytes [J]. Prog Biophys Mol Biol, 2004, 86(2) :45-76.
    [3] Agnello D, Lankford CS, Bream J, et al. Cytokines and Transcription Factors That Regulate T Helper Cell Differentiation: New Players and New Insight[J]. J Clin Immunol, 2003, 23(3):147-161.
    [4] Lohoff M, Mak TW. Role of Interferon Regulatory Factors in T Helper Cell Differentiation[J]. Nat. Rev. Immunol, 2005, 5(2):125-135.
    [5] Mendoza L. A network model for the control of the differentiation process in Th cells[J]. Biosystems, 2006, 84(2):101-14.
    [6] Farra JD, Asnagli H, Murphy KM. T helper subset development: Roles of instruction, selection, and transcription[J]. J Clin Invest, 2002, 109(4): 431-435.
    [7] Wu C, Wang X, Gadina M, et al. IL-12 receptor beta 2-deficient mice are defective in IL-12-mediated signialing despite the presence of high affinity IL-12 binding sites[J]. J Immunol, 2000, 165(11) : 6221-6228.
    [8] Ihle JN. The Stat family in cytokine signaling[J]. Curr Opin Cell Biol, 2001, 13(2) :211-217.
    [9] Wurster AL, Tanaka T, Grusby MJ. The biology of Stat4 and Stat6[J]. Oncogene, 2000, 19(21):2577-2584.
    [10] Finotto S, Glimcher L. T cell directives for transcriptional regulation in asthma[J]. Semin Immunol, 2004, 25(3-4):281-294.
    [11] Usui T, Preiss JC, Kanno Y, et al. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription[J]. J Exp Med, 2006, 203(3):755-766.
    [12] Nasta F, Ubaldi V, Pace L, et al. Cytotoxic T-lymphocyte antigen-4 inhibits GATA-3 but not T-bet mRNA expression during T helper cell differentiation[J]. Immunology, 2006, 117(3) :358-367.
    [13] Sommer F. Lack of gastritis and of adaptive immune response in IRF-1 deficient mice infected with Helicobacter pylori[J]. Eur J Immunol, 2001, 31(2): 396-402.
    [14] Saho M, Kohsuke S, Hua S, et al. Identification of IFN Regulatory Factor-1 Binding Site in IL-12 p40 Gene Promoter[J]. J Immunol, 2003, 170(2):997-1001.
    [15] Niedbala W. Nitric oxide preferentially induces type 1 T cell differentiation by selectively up-regulating IL-12 receptor β 2 expression via cGMP[J]. Proc Natl Acad Sci USA, 2002, 99 (25) : 16186 -16191.
    [16] Alla S, Jan L, Uwe N, et al. GATA-3 in Human T Cell Helper Type 2 Development[J]. J Exp Med, 2004, 199(3):423-428.
    [17] NorioT, Kozo 0T, HeiichiroU, et al. Development of Thl and Th2 immune responses in mice lacking IFN-regulatory factor-4[J]. Int Immunol, 2003, 15(1): 1-10.
    [18] Chuanmin H, Soyoung J, Jessica CF, et al. Modulation of T Cell Cytokine Pruduction by Interferon Regulatory Factor-4[J]. J Biol Chem, 2002, 277(51):49238-49246.
    [19] LohoffM, Mittrucker HW, Prechtl S, et al. Dysregulated T Helper cell differentiation in the absence of interferon regulatory factor 4[J]. Proc Natl Acad Sci USA, 2002, 99(18):11808-11812.
    [20] Foulds KE, Wu CY, Seder RA. Thl memory: implications for vaccine development[J]. Immunol Rev, 2006, 211:58-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700