高坝消力塘透水底板脉动壁压特性及其相似律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国水电站多建于高山峡谷地区,在泄洪消能方面具有高水头、大流量、窄河谷的特性。由水头高和泄洪功率大产生的泄洪消能问题十分突出。为消杀巨大的泄洪能量,防止高速水流对下游河床的冲刷,工程中通常在坝趾以下一定距离的河床内用混凝土衬砌,并在适当位置修建二道坝,形成具有一定水深的消力塘,以达到消能防冲的目的。而消力塘底板作为下游河床的防护结构,其自身在高速水流冲击下的稳定性是其关键所在。因此,高坝消力塘防护结构的稳定性问题至今仍是工程水力学的前沿课题之一。为提高防护结构稳定性,研究人员开始考虑更有效的抵抗荷载的方法。即从“主动防护”的观念出发,通过改变防护衬砌的结构形式,主动降低作用在防护结构上的荷载,以达到提高防护结构安全稳定性的目的。由于模型相似律是水工模型与原型的换算准则,为解读新型消力塘透水防护结构的工作原理以及荷载特性,首先应开展透水防护结构脉动壁压相似律问题的研究。其次,由于透水防护结构改变了自身原来的结构形式,有可能完全改变脉动荷载的传递方式。因此,应该开展透水防护结构缝隙层中脉动壁压的传播规律的研究,对合理确定新型防护结构的受力与稳定设计具有重要意义。本文以理论分析和模型试验为基础,设计了系列比尺水工模型试验,对比分析了透水防护结构与不透水防护结构脉动壁压幅值、相关及频谱特性及其模型相似律,在此基础上,研究了透水防护结构缝隙层中脉动壁压的传播规律。主要成果包括:
     (1)分析了底流消能与冲击射流情况下透水防护结构与不透水防护结构脉动壁压强度、偏差系数、峰度系数以及概率密度函数的沿程分布特征,并研究了系列比尺模型试验中脉动壁压幅值特性的相似律问题。
     (2)分析了底流消能与冲击射流情况下透水防护结构与不透水防护结构脉动壁压自相关函数、瞬时空间相关函数和功率谱密度函数,并研究了系列比尺模型试验中脉动壁压相关特性和频谱特性的相似律问题。
     (3)对透水防护结构脉动壁压在缝隙内传播规律进行了研究,包括脉动壁压幅值特性、相关特性及频谱特性沿缝隙的传播规律。
     综合以上研究发现,底流消能与冲击射流情况下透水防护结构与不透水防护结构脉动壁压符合重力相似律。并且认为底板开孔相当于增加了缝隙宽度。
Most hydropower stations were built in high-mountain gorge areas in China. The energy dissipation for releasing the flood is characterized as high head and large discharge in narrow valley, thus the problem of flood discharging and energy dissipation with high head and discharge power is critical and prominent. To consume enormous amounts of energy and prevent high-velocity flow to erode underwater bed, riverbed which was some distance from dam toe was lined with concrete and subsidiary dam in position to form of a certain depth of the stilling pond. The safety of protecting structure in plunge pool is the key to success of energy dissipation. The stability of lining structure in the plunge pool is one problem that needs to be solved in practice and also one of the subjects that many researchers have studied for years. Therefore, the study on safety of protecting structure in high dam plunge pool is still one of the front subjects in engineering hydraulics field. To improve the stability of protective structure, the researchers began to consider more effective ways to resist loads. More effective ways for resisting deformation under load have been explored to improve the stability of protective structure. From the concept of initiative protection, pervious slab can initiatively decrease the load acting on the pervious slab in plunge pool and improve the stability of protection structure. At present, pressure fluctuation similarity law in plunge pool should be studied in the first place to interpret the working principle and load characteristics of the new defensive structure, by which we could convert model test results in to fluctuating load of prototype.Secondly, due to the changing of own original structural style of active protection, it might completely change the pulse of the load transferring method. Therefore, analyzing the characteristics of the propagation of the reassure wave within the contraction joints plays an important guiding role in the rational determination of stress and stability design of the new kind of protection structure. The dissertation designed a series scale of hydraulic model test based on theoretical analysis and model test. Comparative analysis was carried out to study the characteristics of fluctuating pressure, the related spectrum and model similarity criterion between pervious slab and impervious slab in plunge pool. Furthermore, characteristics of the propagation of the pressure waves of pervious protecting structure were studied. The main achievements of the dissertation include:
     (1) It was analyzed in the paper of the characteristics of the amplitude value of the pressure recorded in the experiments. It consisted of the computation of average, standard deviation, skewness, kurtosis, probability density function and characteristic function of the pressure data, etc. From the results, a similarity law of the amplitude value of fluctuating pressure was discussed in the hydraulic model test.
     (2) The paper analyzed the characteristics of the correlation and spectrum of the pressure recorded in the experiments, which consisted of the computation of autocorrelation, spatial correlation and power spectral density function of the pressure data, etc. From the results, a similarity law of the correlation and spectrum of the pressure was discussed in the hydraulic model test.
     (3) The paper analyzed the propagation of the pressure wave within the contraction joints recorded in the experiments, which consisted of the characteristics of amplitude value of the pressure, correlated and related spectrum within the contraction joints.
     Above all, it could be drawn that in the hydraulic jumps and plunge pools, the similarity law of the pressure fluctuations of both the pervious slab and impervious in plunge pool obeyed the Froude law. Meanwhile the function of pervious holes was equivalent to increasing the gap width.
引文
[1]崔广涛,彭新民,杨敏,反拱型水垫塘-窄河谷大流量高坝泄洪消能工的合理选择,水利水电技术,2001,32(12):1~3
    [2]B. B.布哈诺夫等,萨扬-舒伸斯克水电站宣泄小流量时主要建筑物的振动(张志勇),水利水电快报,1994 (12):8~11
    [3]哈焕文,透水护坦动水荷载及其脉动的研究,水利学报,1964,4(2):14~26
    [4]孙勉,水垫塘透水底板水动力特性研究:[硕士学位论文],天津,天津大学,2007
    [5]张少济,杨敏,消力塘透水底板脉动压力特性试验研究,水力发电学报,2010,29(6):85~94
    [6]Bruce M. Abraham, Direct Measurements of Turbulent Boundary Layer Wall Pressure Wavenumber-frequency Spectra on Smooth and Riblet-coated Plates: [Doctor of Philosophy Dissertation], Connecticut, University of Connecticut, 2000
    [7]吴持恭,水力学,北京:高等教育出版社,1982,401~402
    [8]肖兴斌,水流脉动压力研究进展的若干问题综述,水电工程研究,1992(12):62~70,76
    [9]水流动水压强对溢流坝挑流鼻坎下游河床影响的模型试验和原型观测,高速水流译文集(长科院),北京,水利电力出版社
    [10]陈永灿、许协庆,射流对下游河床冲击作用的数值模拟,水动力学研究与进展:A辑,1992,7(3):319~326
    [11]张声鸣,陈建,水垫塘底板稳定研究,长江科学院院报,1997,14(3):5~9
    [12] D. A.欧文,H. T.法尔维,W.威瑟斯,消力池底板上的压力脉动(高菁),水利水电快报,1998,19(5):9~13
    [13]张建民,挑流消能水垫塘底板冲刷稳定机理研究:[博士学位论文],成都,四川大学,2000
    [14]Rajaratnam N, Turbulent Jets, Amsterdam:Elsevier Sc Publ Co, 1976
    [15]Hinze J. O, Turbulence, New York:McGraw-Hill Book Co, 1975
    [16]Batchelor G. K, The Theory of Homogeneous Turbulence, Cambridge :Cambridge University Press, 1952
    [17]刘沛清,高季章,李永梅,高坝下游水垫塘内淹没冲击射流实验,中国科学(E辑),1998,28(4):370~377
    [18]崔广涛,陈荣光,林继镛,关于挑跌流对河床的动水压力及基岩的防护问题,天津大学学报,1982(2):23~26
    [19]林继镛,彭新民,挑跌流作用下底板稳定性试验研究,水利水电系统应用概率统计学术讨论会文集,1985.11
    [20]毛野,有关岩基冲刷机理的探讨,水利学报,1982,2(2):46~53
    [21]崔莉,张廷芳,射流冲击下护坦板块失稳机理的随机分析,水动力学研究与进展A辑,1992,7(2):212~218
    [22]刘沛清,侯建国,坝下游水垫塘混凝土底板块的稳定性分析,水利学报,1998,7:1~7
    [23]杨敏,彭新民,崔广涛,水垫塘底板的试验仿真模拟研究,水力发电技术,2002,33(3):40~42
    [24]刘喜珠,水垫塘衬砌结构的破坏模式研究:[硕士学位论文],天津,天津大学,2007
    [25]崔广涛,练继建,彭新民等,水流动力荷载与流固相互作用,北京:中国水利水电出版社,1999
    [26]杨敏,高坝消力塘水动力特性与防护结构的安全研究:[博士学位论文],天津,天津大学,2003
    [27]练继建,杨敏,安刚等,反拱型水垫塘底板结构的稳定性研究,水利水电技术,2001,12(12):23-26
    [28]彭新民,王继敏,崔广涛,拱坝水垫塘拱形底板受力与稳定性实验研究,水力发电学报,1999,2:52-59
    [29]刘沛清,高拱坝下游水垫塘底板块稳定性设计,水利学报,1998,7(1):1-7
    [30]孙建,陈长植,反拱水垫塘与平底水垫塘底板稳定性诸方面之比较,长江科学院院报,2003,20(4):3-6
    [31]杨敏,孙勉,水垫塘透水底板上举力实验研究,水力发电学报,2007,26(6):88~90
    [32]李建中,宁利中,高速水力学,西安:西北工业大学出版社,1994:73~81
    [33]Arndt. R. E. A., Long. D. F., Glauser. M. N., The Proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet, Journal of Fluid Mechanics, 1997, 340: 1~33
    [34]王玲玲,黄细彬,金忠青,用奇怪吸引子理论研究紊流脉动压力特性,河海大学学报,2001,29(3):8~11
    [35]彭新民,郭航忠,张蕊,水流脉动压力的小波分析研究,水利学报,2003(8):26~31
    [36]梁在潮,工程湍流,武汉:华中理工大学出版社,1999
    [37]梁在潮,脉动壁压,全国第一届水动力学学会论文集,1993
    [38]Willmarth. W. W., and Wooldridge. C. E., Measurements of the Fluctuating Pressure at the Wall Beneath a Thick Turbulent Boundary Layer, Journal of Fluid Mechanics, 1962, 14(2): 187~210
    [39]Johansson. A. V., Her. J., and Haritonidis. J. H., On the Generation of High-Amplitude Wall-Pressure Peaks in Turbulent Boundary Layers and Spots, Journal of Fluid Mechanics, 1987, 175: 119~142
    [40]Karangelen. C. C., Wilczynski. V., and Casarella. M. J., Large Amplitude Wall Pressure Events Beneath a Turbulent Boundary Layer, Journal of Fluids Engineering, 1993, 115(4): 653~659
    [41]Abraham and Keith, Wavenumber Spectra of High Magnitude Wall Pressure Events in a Numerically Simulated Turbulent Boundary Layer, Journal of Fluids Engineering, 1997, 119: 281~288
    [42]Corcos. G. M., Resolution of Pressure in Turbulence, Journal of the Acoustical Society of America 1963, 35(2): 192~199
    [43]Keith. W. L., Hurdis. D. A., and Abraham. B. M., A Comparison of Turbulent Boundary Layer Wall Pressure Spectra, Journal of Fluids Engineering, 1992, 114(3): 338~347
    [44]Farabee. T. M., and Casarella. M. J., Spectral Features of Wall Pressure Fluctuations beneath Turbulent Boundary Layers, Physics of Fluids A, 1991, 3(10): 2410~2420
    [45]Corcos. G. M., Resolution of Pressure in Turbulence, Journal of the Acoustical Society of America, 1963, 35(2): 192~199
    [46]Panton. P. L., and Robert. G., The Wavenumber-Phase Velocity Representation for the Turbulent Wall-Pressure Spectrum, Journal of Fluids Engineering, 1994, 116: 477~483
    [47]Keith. W. L., and Abraham. B. M., Effects of Convection and Decay of Turbulence on the Wall Pressure Wavenumber-Frequency Spectrum, Journal of Fluids Engineering 1997, 119: 50~55
    [48]Wills. J. A. B., Measurements of the Wave-number/Phase Velocity Spectrum of Wall Pressure beneath a Turbulent Boundary Layer, Journal of Fluid Mechanics, 1970, 45(1): 65~90
    [49]Blake. W. K., and Chase. D. M., Wavenumber-Frequency Spectra of Turbulent Boundary Layer Pressure Measured by Microphone Arrays, Journal of theAcoustical Society of America, 1971, 49(3): 862~876
    [50]Farabee. T. M., and Geib. F. E., Measurements of Boundary Layer Pressure Fluctuations at Low Wavenumbers on Smooth and Rough Walls, Proceedings of the ASME Symposium on Flow Noise Modeling, Measurement, and Control, Noise Control and Acoustics, 1991, 11: 55~68
    [51]Karangelen. C. C., Casarella. M. J., and Farabee. T. M., Wavenumber-Frequency Spectra of Turbulent Wall Pressure Fluctuations, Proceedings of the ASME Symposium on Flow Noise Modeling, Measurement, and Control, Noise Control and Acoustics, 1991,11: 37~44
    [52]Manoha. E., Wall Pressure Wavenumber-Frequency Spectrum Beneath a Turbulent Boundary Layer Measured with Transducers Calibrated with an Acoustical Method, Proceedings of the ASME Symposium on Flow Noise Modeling, Measurement, and Control, Noise Control and Acoustics, 1991, 11: 21~35
    [53]Herbert. K., and Leehey. P., Wall Pressure Spectrum in a Flat Plate Turbulent Boundary Layer and Downstream of a Turbulent Boundary Layer Manipulator, Proceedings of the ASME Symposium on Flow-Induced Vibration and Noise, Flow-Structure and Flow-Sound Interactions, Noise Control and Acoustics, 1992, 13: 147~163
    [54]Smol’yakov. A. V. and Tkachenko. V. M., The Measurement of Turbulent Fluctuations, New York: Springer-Verlag, 1983: 178~190
    [55]Chase. D. M., The Character of the Turbulent Wall Pressure Spectrum at Subconvective Wavenumbers and a Suggested Comprehensive Model, Journal of Sound and Vibration, 1987, 112(1): 125~147
    [56]Manoha. E., The Wavenumber-Frequency Spectrum of the Wall Pressure Fluctuations beneath a Turbulent Boundary Layer, Proceedings of the AIAA Aeroacoustics Conference, State College, PA, American Institute of Aeronautics and Astronautics, 1996: Paper 96-1758
    [57]Sherman. C. H., Ko. S. H. and Buehler. B. G., Measurement of the Turbulent Boundary Layer Wave-vector Spectrum, Journal of the Acoustical Society of America, 1990, 88(1): 386~390
    [58]Bull. M. K., Wall-Pressure Fluctuations Associated with Subsonic Turbulent Boundary Layer Flow, Journal of Fluid Mechanics, 1967, 28(4):719~757
    [59]崔广涛,水流脉动压力随机分析,天津大学95周年校庆论文
    [60]梁兴蓉,挑流冲刷过程的压力谱场特性的随机分析,高速水流,1984(2):25~33
    [61]王木兰,水流脉动压力的数据处理,工程应用及机理研究的进展,河海大学科技情报,1990,10(3):28~43
    [62]董志勇,吴持恭,杨永全,掺气对射流冲击水垫塘底部脉动压强频谱特性的影响,成都科技大学学报,1994(1):9~13
    [63]孙小鹏,脉动压力的随机数学模拟,水利学报,1991(5):52~56
    [64]王雨苗,路观平,张法宝,水流脉动压力的谱特性及相干尺度,合肥工业大学学报(自然科学版),1998,21(5):71~76
    [65]Lumley. J. L., The Structure of Inhomogeneous Turbulence, Atmosphere Turbulence and Wave Propagation, 1967, 166~178
    [66]Lumley. J. L., Coherent Structures in Turbulence, In: Transition and Turbulence; Proceedings of the Symposium on Transition and Turbulence in Fluids, Madison, WI, New York: Academic Press, 1981, 215~242
    [67]Berkooz. G., Holmes. P., Lumley. J. L., The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows, Ann. Rev. Fluid Mech., 1993, 25: 539~575
    [68]Glauser, M. N., Leib, S. J., George, W. K., Coherent Structures in the Axisymmetric Turbulent Jet Mixing Layer, In: F. Durst et al. (Eds.), Turbulent Shear Flows, 5, Berlin: Springer, 1987: 134~145
    [69]Bonnet, J. P. Delville, J. Glauser, M. N., Collaborative Testing of Eddy Structure Identification Methods in Free Turbulent, Experiments in Fluids, 1998, 25: 197~225
    [70]Moin, P., Moser, R. D., Characteristic-eddy Decomposition of Turbulence in a Channel, J. Fluid Mech. 1989, 200: 471~509
    [71]Glezer, A. Kadioglu, A. J. Pearlstein, A. J., Development of an Extended Proper Orthogonal Decomposition and Its Application to a Time Periodically Forced Plane Mixing Layer. Phys. Fluids A, 1989, 1: 1363~1373
    [72]Delville, J. Ukeiley, L. Cordier, L. etc., Examination of Large-Scale Structures in a Turbulent Plane Mixing Layer. Part ?. Proper Orthogonal Decomposition, Journal of Fluid Mechanics, 1999, 391: 91~122
    [73]Banks, H. T. del Rosario, Ricardo C. H. Smith, Ralph C., Reduced-order Model Feedback Control Design: Numerical Implementation in a Thin Shell Model, IEEE Transactions on Automatic Control, 2000, 45(7): 1312~1324
    [74]Blossey, Peter N. Lumely, John L., Reduced-order Modeling and Control of Near-wall Turbulent Flow, Proceedings of the IEEE Conference on Decision andControl, 1999, 3: 2851~2856
    [75]Cazemier, W. Verstappen, R. W. C. P. Veldman, A. E. P., Proper Orthogonal Decomposition and Low-dimensional Models for Driven Cavity Flows, Physics of Fluids, 1998, 10(7): 1685~1699
    [76]Gunes, H. Low-order Dynamical Models of Thermal Convection in High-aspect Ratio Enclosures, Fluid Dynamics Research, 2002, 30(1): 1~29
    [77]Narayanan, S. Khibnik, A. I. Jacobson, C. A. etc. Low-dimensional Models for Active Control of Flow Separation, IEEE Conference on Control Applications– Proceedings, 1999, 2: 1151~1156
    [78]Park, H. Sirovich, L., Turbulent Thermal Convection in a Finite Domain: PartⅡ. Numerical Results, Phys. Fluids A, 1990, 2(9): 1649~1658
    [79]Pelliccia-Kraft, B. J. Watt, D. W. Visualization of Coherent Structure in Scalar Fields of Unsteady Jet Flows With Interferometric Tomography and Proper Orthogonal Decomposition, Experiments in Fluids, 2001, 30(6): 633~644
    [80]Podvin, Berengere Lumley, John. Low-dimensional Approach for the Minimal Flow Unit, Journal of Fluid Mechanics, 1998, 362: 121~155
    [81]Podvin, Berengere, On the Adequacy of the Ten-dimensional Model for the Wall Layer, Physics of Fluids, 2001, 13(1): 210~224
    [82]Poje, Andrew C. Lumley, J. L. Model for Large-scale Structures in Turbulent Shear Flows, Journal of Fluid Mechanics, 1995, 285: 349~369
    [83]Prabhu, R. D. Collis, S.S. Chang, Y. The Influence of Control on Proper Orthogonal Decomposition of Wall-bounded Turbulent Flows, Physics of Fluids, 2001, 13(2): 520~537
    [84]Ravindran, S. S. Reduced-order Approach for Optimal Control of Fluids Using Proper Orthogonal Decomposition, International Journal for Numerical Methods in Fluids, 2000, 34(5): 425~448
    [85]Ravindran, S. S. Reduced-order Adaptive Controllers for Fluid Flows Using POD, Journal of Scientific Computing, 2000, 15(4): 457~478
    [86]Reichert, R. S. Hatay, F.F. Biringen, S. Huser, A. Proper Orthogonal Decomposition Applied to Turbulent Flow in a Square Duct, Physics of Fluids, 1994, 6(9): 3086~3092
    [87]Rempfer, Dietmar Fasel, Hermann F., Evolution of Three-dimensional Coherent Structures in a Flat-plate Boundary Layer, Journal of Fluid Mechanics, 1994, 260: 351~375
    [88]Robinson, S. K. Coherent Motions in the Turbulent Boundary Layer, Annu. Rev. Fluid Mech. 1991, 23: 601~639
    [89]Rocha, Marcelo M. Cabral, Sandro V. S. Riera, Jorge D. Comparison of Proper Orthogonal Decomposition and Monte Carlo Simulation of Wind Pressure Data, Journal of Wind Engineering and Industrial Aerodynamics, 2000, 84(3): 329~344
    [90]Rodriguez, J. D. Sirovich, L. Low-dimensional Dynamics for the Complex Ginzburg-Landau Equation, Physica D, 1990, 43(1): 77~86
    [91]Sahan, R. A. Gunes, H. Liakopoulos, A. Modeling Approach to Transitional Channel Flow, Computers & Fluids, 1998, 27(1): 121~136
    [92]刘士和,湍流结构的正交分解与低阶近似及湍流相干模式的识别,武汉水利电力大学学报,2000,33(2):2~5
    [93]陆晶,正冲击射流脉动壁压的正交分解与低阶近似,长江科学院院报,2003,20(6):6~8
    [94]陆晶,孟学军,正交分解法在脉动壁压研究中的应用,长江科学院院报,2005,22(5):92~94
    [95]陆晶,刘士和,垂直冲击射流脉动壁压深化研究,武汉大学学报(工学版),2004,37(3):23~26
    [96]陆晶,万胜红,紊流边界层脉动壁压研究,江西水利科技,2004,30(2):71~73
    [97]宫武旗,黄淑娟,徐忠,边界层中湍动能和耗散能最大的尺度分量特征研究,航空学报,2001,4:293~297
    [98]宫武旗,黄淑娟,徐忠,用小波理论研究湍流边界层湍动能的特征,工程热物理学报,2001,22(5):585~588
    [99]李士豪,护坦上脉动压力,大连工学院学刊,1957(4):1~7
    [100]罗赞诺夫,负压与高速水流情况下的过水建筑物设计问题,北京:中国工业出版社,1963
    [101]清华大学水利系试验研究报告,坝身双层泄水孔水流脉动压力及其模型律研究,1978
    [102]赵世俊,李桂芬,周胜,水流脉动压力研究中的几个问题,水利学报,1959(2):42~50
    [103]陈鹦,孟继组,厂房顶溢流脉动的相干结构与相似律的研究,水利水运科学研究,1984(1):70~76
    [104]黄涛,水流压力脉动的特性及模型相似律,水利学报,1993(1):51~57
    [105]孙建,阎晋垣,张宗孝等,掺气分流墩墩头脉动壁压及其模型律试验研究,水利学报,1996(1):63~68
    [106]张声鸣,水跃区水流脉动压力相似律的试验研究,长江科学院院报,1991,8(4):1~9
    [107]G. Rehbinder, Slot Cutting in Rock with a High Speed Water Jet, Int. J. Rock Mech. Min. Sic., 1977, 14: 229~234
    [108]姜文超,梁兴蓉,应用紊流理论探讨脉动压力沿缝隙的传播规律,水利学报,1983(9):53~59
    [109]赵耀南,梁兴蓉,水流脉动压力沿缝隙的传播规律,天津大学学报,1988(3):55~65
    [110]Virgilio Fiorotto and Andrea Rinaldo, Turbulent Pressure Fluctuations under Hydraulic Jumps, Journal of Hydraulic Research, 1992, 30(4): 499~520
    [111]刘沛清,冬俊瑞,余常昭,在岩缝中脉动压力传播机理探讨,水利学报,1994(12):31~36
    [112]刘沛清,李忠义,冬俊瑞,用二维瞬变流方程分析缝面层中脉动压力传播规律,水利学报,1996(4):27~32
    [113]刘沛清,邓学蓥,多级板块缝隙中脉动压力传播过程数值研究,力学学报,1998,30(6):662~671
    [114]李爱华,刘沛清,脉动压力在消力池底板缝隙传播的瞬变流模型和渗流模型统一性探讨,水利学报,2005,36(10):1236~1240
    [115]李爱华,刘沛清,脉动压力在板块缝隙中传播衰变机理研究,水利水电技术,2006,37(9):33~37
    [116]张建民,杨永全,戴光清等,水垫塘底板缝隙中脉动压力传播特性,四川大学学报(工程科学版),2000,32(3):5~8
    [117]王玉蓉,张建民,刁明军等,脉动水压力沿缝隙传播的试验研究,水利学报,2002(12):44~48
    [118] J. F. Melo, A. N. Pinheiro, and C. M. Ramos, Forces on Plunge Pool Slabs: Influence of Joints Location and Width, Journal of Hydraulic Engineering, 2006, 132(1): 49~60
    [119]刘昉,水流脉动壁压特性及其相似率研究:[博士学位论文],天津,天津大学,2007
    [120]MH Abdul Khader, K elango. Turbulent pressure field beneath a hydraulic jump, Journal of Hydraulic Research, 1974, 12(4): 469-489
    [121]R A Lopardo, J C Delio, G F Vernet,水跃大尺度紊动引起空穴趋势的物理模拟,国际水工模型实验会议论文选集,1984
    [122]Schiebe F, Bowers C E. Boundary pressure fluctuations due to macro turbulencein hydraulic jumps, On Turbulence in Liquids, University of Missouri, Columbia, 1971
    [123]倪汉根,水流脉动压力的相似律,大连工学院学报,1982,21(1):107~113
    [124]C. F. N.科恩、P. M.格兰特,自适应滤波器(邵祥义等),上海:复旦大学出版社,1990
    [125]Matlab Function Reference. The Math Works, Inc, 2006
    [126]胡广书,数字信号处理,北京:清华大学出版社,2003
    [127]潘士先,谱估计和自适应滤波,北京:北京航空航天大学出版社,1991
    [128]B. Widrow, S. D. Stearns, Adaptive Signal Processing, Prentice-Hall, 1985
    [129]Dryden, H. L., A. M. Kuethe, Natl. Advisory Comm. Aeronaut. Tech. Repts. No. 342, 1930
    [130]辜晋德,水跃区水流脉动压力相似律:[硕士学位论文],天津,天津大学,2006
    [131]S. Narasimhan, and Ved P. Bhargava, Pressure Fluctuations in Submerged Jump, Journal of the Hydraulics Division, 1976, 102(HY3): 3391~350
    [132]Rangaswami Narayanan, Pressure Fluctuations beneath Submerged Jump, Journal of the Hydraulics Division, 1978, 104(HY9): 1331~1342
    [133]M. K. Akbari, M. K. Mittal and P. K. Pande, Pressure Fluctuations on the Floor of Free and Forced Hydraulic Jumps, International Conference on the Hydraulic Modelling of Civil Engineering Structures,1982(9): 87~96
    [134]Joel W. Toso and C. Edward Bowers, Extreme Pressures in Hydraulic-Jump Stilling Basins, Journal of Hydraulic Engineering, 1988, 114(8): 829~843
    [135]张兆顺,崔贵香,许春晓,湍流理论与模拟,北京:清华大学出版社,2005
    [136]Freedman. D., Diaconis. P., On the Histogram as a Density Estimator: Probability Theory and Related Fields, 1981, vol.57(4), 453~476
    [137]夏毓常,张黎明,水工水力学原型观测与模型试验,北京:中国电力出版社,1999
    [138]罗抟翼,程桂芬,随机信号处理与控制基础,北京:化学工业出版社,2002
    [139]J. O. Hinze, Turbulence, McGraw-Hill, 1975
    [140]梁在潮,紊流相干结构与脉动壁压,水利学报,1985(8):12~17
    [141]赵耀南,壁压脉动的相似律,高速水流,1986(3):36~43
    [142]赵耀南,重力相似紊流结构中微结构相似律,水利学报,1988(8):44~48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700