宁夏盐池沙地沙柳柠条抗旱生理及其土壤水分特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过对宁夏盐池沙地固定沙丘的不同部位、不同立地类型的沙柳林地和柠条林地土壤水分连续两年的定位观测,生长季沙柳和柠条蒸腾速率测定,以及抗旱生理的研究,探讨了沙柳和柠条的抗旱能力以及固定沙丘不同部位、不同立地的沙柳林地和柠条林地的土壤水分布格局和变化规律。其结果如下:
     (1)植物组织含水量结果显示,沙柳和柠条的水分亏缺值较低,生长良好。从两种植物的叶片含水量的不同指标值可以看出,沙柳和柠条的抗旱性有差异,相比之下沙柳比柠条更抗旱些。沙柳和柠条的水势变化规律明显不同,沙柳水势变化呈单峰型,柠条水势呈明显的双峰型。两者相比除了在清晨柠条的水势高于沙柳的之外,其余时间沙柳的水势均高于柠条的,这就表明柠条较沙柳需要更多的水分,以维持较高的水势,也说明了沙柳较柠条对干旱环境的适应能力更强。沙柳根系属于主根型,侧根发达,根系主要分布在较浅的土层中,有利于获取较大面积的降水。柠条则以主根系的垂直沿伸获取深层土壤的水分。
     (2)日蒸腾速率类型分别为:沙柳为单峰型植物,柠条为混合型。用称重法测定的其生长季平均日蒸腾速率分别为:沙柳551.36 mg?h-1?g-1,柠条316.58 mg?h-1?g-1,生长季蒸腾耗水量分别为:沙柳226.9mm/m2,柠条202.4mm/m2。
     (3)各样地土壤水分垂直分布总体表现出明显的分层特征,可划分为三层:土壤水分低值层、土壤水分活跃层、土壤水分相对稳定层。每一层的厚度因不同的立地类型而不同。按季节变化分为三个阶段:5月土壤水分弱失水阶段、6~8月土壤水分消耗阶段、9月土壤水分缓慢恢复阶段。土壤水分的时空变化主要受植被、大气降水和地形因素等的影响。
     (4)2006、2007年两个生长季,各样地土壤水分均呈不同程度的盈亏状态。2006年由于降水稀少,各样地土壤水分均出现了亏缺,其中丘间沙柳土壤水分亏缺最为严重,其值为-57mm,亏缺最小的是峁顶沙柳林,其值为-2.2mm。2007年降水比较丰富,各样地土壤水分均出现了盈余,其中峁顶沙柳林土壤水分盈余最多,为45.64mm,固定沙丘坡腰盈余最少,为2.2mm。依据土壤水分盈余(亏缺)程度的轻重,可将各样地划分为三类,即土壤水分高度盈余(亏缺)型、土壤水分中度盈余(亏缺)型和土壤水分轻度赢余(亏缺)型。土壤水分盈亏呈现不同的时间与空间变化。土壤水分盈亏的空间分布因植物种的根系分布、植被类型、林分密度、立地条件(地下水埋深)不同而不同。
This research through two consecutive years observation to the soil moisture of different parts of sandy region , different site types woodland of Salix psammophila and Caragana Korshinskii woodland in Yanchi County of Ningxia province, determining the transpiration rate of Caragana Korshinskii and Salix psammophila in growing season, studied on the physiology of drought resistanc ,discussed the ablity of fight drought of Caragana Korshinskii and Salix psammophila and the distribution patterns and the change rule of soil moisture in different parts of sandy region, different site types woodland of Salix psammophila and Caragana Korshinskii woodland. The results as follows:
     (1) The result of plant tissue water content showed that the water deficit value of Salix psammophila and Caragana Korshinskii is lower,but they are growing well.Through the different nidex of the leaves’water content of the two plants can be seen the drought resistance of them is different , Salix psammophila is more drought. The change of rule water potential of the two plant is obviously different, Salix psammophila is single peak, Caragana Korshinskii is obvious double peak. Salix psammophila water potential is higher all the time except the early morning,this shows that Caragana Korshinskii need more water to keep higher water potential,also shows that the adaptive capacity of Salix psammophila is stronger than Caragana intermedia’s. Salix psammophila has taproot,lateral root is also very developed,the root mostly distributs in the shallower soil,this can make for abtaining larger area precipitation. The taproot of Caragana Korshinskii grows vertically in order to abtain Deep soil moisture.
     (2) Plants daily transpiration types as follows: Salix psammophila is single peak, Caragana Korshinskii is mixed. Transpiration rate: Salix psammophila 551.36 mg?h-1?g-1, Caragana Korshinskii 316.58 mg?h-1?g-1 Transpiration weighs in growing season: Salix psammophila 226.9mm/m2 Caragana Korshinskii 202.4mm/m2 .
     (3) The vertical distribution of soil moisture in different research samples appears obviously stratified features, can be divided into three tiers: low soil moisture layer, active soil moisture layer, relative jarless soil moisture layer. The thickness of each layer is different for different site type. Seasonal changes divided into three stages: May soil moisture weak dehydrate stage,June-August on soil water consumption stage, September soil moisture slow recovery phase. Vegetation, atmospheric precipitation and terrain are the main factors affected changes in soil moisture.
     (4)All the plots’soil moisture appears different levels of profit and loss status in two growing seasons of 2006 and 2007. Because of scarce rainfall in 2006, all the plots’soil moisture have deficits,in which the Salix psammophila woodland that growing in interdual land is the most, -57mm,growing in hilly top is the least, its value is -2.2mm. Because of abundant rainfall in 2007, all the plots’soil moisture have surplus, in which the Salix psammophila woodland that growing in hilly top is the most, its value is 45.64mm,the bottom of sandy region is the least, its value is 2.2mm. According to the degree of profit and loss of soil moisture,the plot can be divided into three species:the soil moisture is in a high degree, moderate degree and minor degree of surplus or deficits.The profit and loss of soil moisture is changed for different time and space.which is different in spatial distribution,because of different root distribution of plant, vegetation types, stand density, site conditions,especially the depth of groundwater.
引文
[1] 董学军,张新时.依据野外实测的蒸腾速率对几种沙地灌木水分平衡的初步研究[J].植物生态学报,1997,21(3):208~225.
    [2] 董学军.几种沙生植物水分生理生态特性的研究[J].植物生态学报,1994,18(1):86~94
    [3] 董学军.九种沙生灌木水分关系参数的实验测定及生态意义[J].植物学报,1998,40(7):657~664
    [4] 董光荣,李保生,鄂尔多斯高原第四纪古凤成沙的发现及其意义[J].科学通报,1983,16:998~1001.
    [5] 康绍忠,刘晓明,熊运章.土壤—植物—大气连续体水分传输理论及其应用[M]. 北京:水利电力出版社,1994.
    [6] 李红丽,董智,王林和.浑善达克沙地流沙与四种主要植物群落土壤水分时空变化的研究[J].干旱区资源与环境,2006,20(3):169~174.
    [7] 冯起,高前兆.沙地水分的研究进展[J].中国沙漠,1993,13(2):9~13.
    [8] 陈有君,红梅,李绍良,乔春林.浑善达克沙地不同植被下的土壤水分状况[J].干旱区资源与环境, 2004,18(1):68~73.
    [9] 王鸣远,关三和,王义.毛乌素沙地过渡地带土壤水分特征及其植物利用[J].干旱区资源与环境.,2002,16(2):37~43.
    [10] 刘发民,张应华,忤彦卿.黑河流域荒漠化地区梭梭人工林土壤水分动态研究[J],干旱区研究 ,2002,19(1):21~31.
    [11] 张雷明,上官周平.黄土高原土壤水分和植被生产力的关系[J].干旱区研究,2002,19(4):59~63.
    [12] 韩德儒,杨文斌,杨茂仁.干旱半干旱区沙地灌(乔)木种水分动态关系及其应用[M].北京:中国科学技术出版社,l 996.
    [13] 吕贻忠,胡克林,李保国.毛乌素沙地不同沙丘土壤水分的时空变异[J].土壤学报,2006,43(1):152~154.
    [14] 中华人民共和国林业部防治荒漠化办公室.联合国关于在发生严重干旱和/或沙漠化的国家特别是在非洲防治沙漠化的公约[M].北京:中国林业出版社,1994.
    [15] 王守春,干旱区环境变迁研究进展[J].地理译报,1981,(1):1~4.
    [16] 王晓云.灌木林放牧利用对沙地水分的缓解作用[J].水土保持通报(增刊),1992,14(7).
    [17] 王庆锁,等.油蒿群落不同演替阶段某些群落特征的研究[J].植物生态学报,1997,21(6):531~538.
    [18] 王礼先.全球荒漠化防治现状及发展趋势[J].世界林业研究,1994,(01):10-17.
    [19] 王林和,董智,等.毛乌素沙地天然臭柏群落新梢生长规律的研究[J].内蒙古林学院学报,1998,20(3):15-21.
    [20] 王美兰,毛云峰.伊克昭盟沙漠化危害及治理对策[J].内蒙古林业科技,999,1:1-2.
    [21] 王孟本,李洪建.树种蒸腾作用、光合作用和蒸腾效率的比较研究[J].植物生态学报,1999,23(5):401-410.
    [22] 布仁等,内蒙古杭锦旗土地退化与防治对策研究[J].水土保持研究,1998,5(3):88-94.
    [23] 冯起,程国栋.我国沙地水分分布状况及其意义[J].土壤学报,1999,36(5):225~236.
    [24] 冯金朝,陈荷生,康跃虎,等.腾格里沙漠沙坡头地区人工植被蒸散耗水与水量平衡的研究[J].植物学报,1995,37(10):815~821.
    [25] 冯起,高前兆.禹城沙地水分动态规律及其影响因子[J].中国沙漠,1995,15(2):153~157.
    [26] 白光梅,王赛峰.伊克昭盟境内水土流失及风沙现状分析和治理对策[J].内蒙古林业调查设计,1998,158-159.
    [27] 丘明新.甘肃民勤地区沙枣等植物生理、生态学特性初步研究[J].植物学报,1981,23(5):393~399.
    [28] 任海,彭少麟编著,恢复生态学导论[M1.北京:科学出版社,2002.
    [29] 朱震达,等.中国的沙漠化及其治理[M].北京:科学出版社,1989.
    [30] 朱震达,等.中国土地沙质荒漠化[M].北京:科学出版社,1994.
    [31] 朱震达,王涛,等.从若干典型地区的研究对近 10 余年来中国土地沙漠化演变趋势的分析[J].地理学报,1990,45(4):16-24.
    [32] 孙保平.荒漠化防治工程学[M].北京:中国林业出版社,2000.
    [33] 孙长惠,黄宝龙.黄土高原“林分自创性”有效水分供给体系的研究[J].生态学报,1999,19(5):614-621.
    [34] 李孝泽,董光荣.浑善达克沙地的形成时代与成因初步研究[J].中国沙漠,1998,18(1);16-21.
    [35] 李新荣,赵雨兴,扬志忠,等.毛乌素沙地飞播植被与生境演变的研究[J].植物生态学报,1999,23(2):116~124.
    [36] 李银芳,杨戈.梭梭固沙林水分平衡研究:I 梭梭柴秋灌固沙林的水分状况[J].干旱区研究,1996,13 (2):44~59.
    [37] 李银芳,杨戈.梭梭固沙林水分平衡研究:(梭梭柴径流集水固沙林的水分状况)[J].干旱区研究,1996,13 (2):57~62.
    [38] 杨新民,杨文治.灌木林地的水分平衡研究[J].水土保持研究,1998,5(1):109-118.
    [39] 张劲松,盂平,等.植物蒸散耗水量计算方法综述[J].世界林业研究,2001,14(2):23~28.
    [40] 张国盛,王林和.毛乌素沙区风沙土机械组成及含水率季节变化[J].中国沙漠,1999,19(2):145~150.
    [41] 张利平,王新平,等.沙坡头主要建群植物油蒿和柠条的气体交换特征研究[J] .1998,18(2):133,137.
    [42] 张秀芳,石东里,等.气孔蒸腾的动力及小孔定律[J].生物学通报,2002,37(03.
    [43] 张国盛等.毛乌素沙地几种植物蒸腾速率的季节变化特征[J].内蒙古林学院学报,1998,20(01):7-12.
    [44] 张维江等.毛乌素沙地南缘赖草生育期蒸腾速率过程线的初步研究[J].水土保持研究,2004,11(03):37-40.
    [45] 宋炳煜.草原区不同植物群落蒸发蒸腾的研究[J].植物生态学报,1995,19(4):391~328.
    [46] 宋炳煜.几个主要地面因子对草原群落蒸发蒸腾的影响[J].植物生态学报,1996,20(6):485~493.
    [47] 陈家宙等.土壤水分状况及环境条件对水稻蒸腾的影响[J].应用生态学报,2001,12(01):63-67.
    [48] 周海燕,黄子琛.不同时期毛乌素沙区主要植物种光合作用和蒸腾作用的变化植物[J]. 生态学报,1996,20(2):120-131].
    [49] 周海燕.科尔沁沙地冷蒿和差巴嘎蒿对水分胁迫的反应及其差异性[J].中国草地,1999(6):13-17.
    [50] 周海燕.科尔沁沙地主要植物种的生理生态学特性[J].应用生态学报,2000,11(4):587~590.
    [51] 赵文智.奈曼沙区樟子松生长状况与水分关系[J].中国沙漠,1992,12(1):64-70.
    [52] 赵翠仙,黄子琛.腾格里沙漠主要旱生植物旱性结构的初步研究[J].植物学报,1981,23:278—283.
    [53] 赵明,郭志中,等.渗漏型蒸渗仪对梭梭和柠条蒸腾蒸发的研究[J].西北植物学报,1997,17(3):305—314.
    [54] 赵丽娅,赵哈林.我国沙漠化过程中的植被演替研究概述[J].中国沙漠,2000,20,增刊:7~14.
    [55] 赵哈林.科尔沁沙地两种主要群落的沙漠化演替特征[J].中国沙漠,1983,1 3(3).
    [56] 姚洪林,廖茂彩.毛乌素流动沙地适宜植被覆盖率研究.见:中国治沙暨沙业学会主编.中国治沙暨沙业学会论文集[C],北京:北京师范大学出版社,1995.
    [57] 贾志清等.黄家二岔小流域不同树种蒸腾作用研究[J].水土保持通报,1999,19(05):12-15:
    [58] 郭柯,董学军.毛乌素沙地沙丘土壤含水量特点—兼论老固定沙地上油蒿衰退原因[J].植物生态学报,2000,24(3):275-279.
    [59] 继贤.沙波头地区风沙土的水热状况[J].中国沙漠,1997,17(2):154~158.
    [60] 钱鞠,马金珠,等.腾格里沙漠西南缘固定沙丘水分动态与水分势能变化特征研究[J],兰州大学学报,1999,35(1):218~224.
    [61] 阎秀峰,孙国荣.星星草光合蒸腾季节变化与气候因子的关系[J].植物研究,1997,17(3):325~331.
    [62] 韩德儒,杨文斌,杨茂仁.干旱半干旱区沙地灌(乔)木种水分动态关系及其应用[M].北京:中国科学技术出版社,1996.
    [63] 蒋高明,何维明.毛乌素沙地若干植物光合作用、蒸腾作用和水分利用效率种间及生境间差异[J].植物学报,1999,41(10):1114~1124.
    [64] 廖汝棠,张文军.乌素沙地适宜植被覆盖率研究-1,沙生植物的分布及盖度状况[C].毛乌素沙地开发整治研究中心论文集,内蒙古大学出版社,1992,84-92.
    [65] 廖汝棠,张文军.毛乌素沙地适宜植被覆盖率研究-2.沙生植物的水分关系与适宜种植规模[C].毛乌素沙地开发整治研究中心论文集.内蒙古大学出版社,1992,93-97.
    [66] 魏天兴,朱金兆,等.林分蒸散耗水量测定方法述评[J].北京林业大学学报,1999,21(3):85~91.
    [67] MacArthur.R. Fluctuations and animal populations,and a measure of co mmunity stability[J]. Ecology,1955,36:533-536.
    [68] Elton C.S.The ecology of invasion by animals and plants[M].London:Ch apman and Hall, 1958. 143-153
    [69] Hill A R.Ecosystems tability in relation to stress caused by human activities. Canad.Geographer,1975,19(3):206-220.
    [70] Webster J R, etal. Nutrient Recycling and the stability of e-ecosystem [A]. Shugaslt H H, et al.Systems Ecology[C].Dowden,Hutchinson and ROSS,1979.136-145.
    [71] Begon M,Tal.Individuals, populations and communities [C]. Boston: Blackwell Scientific Publications,1990,816-844.
    [72] David A Wardle.Stability of ecosystem properties in response to above groumd functional group riches and composition[j].Oikos,2000,89:409-423
    [73] MCGRADY-STEED JH L.Biodiversity, density compensation, and the dynamics of populations and functional groups[j].Ecology,2000,81(2):361-373.
    [74] Grimm V.Schmidt E and Wissel C.on the application of stability concepts in ecology of disturbance and its expression at various hierarchical levels Oikos.1989.54:129-136
    [75] Garder M R.A shky W R,Connectance of large dynamic(cybernetic)system:cr itical for stability [J].Nature,1970,288:784-788.
    [76] May R M.Willa Large complex system be stable[J]Nuture,1972,238:413-414.
    [77] May R M.Stability and complexity in model ecosystems[C].Princeton University Press,1974.
    [78] McNaughton S J.Diversity and stability of ecological community:a comment on the role of empiricism in ecology[J].The American Naturalist,1977,111:515-525.
    [79] Frank D A,Me Naught on.Stability increases with diversity in plant community:empirical evidence from the 1988 Rellowstone drought[J].Oikos,1991,62:360-363.
    [80] Hurd L E, Mellinger Mv, Wofl L L, etal Stability and diversity at three trophic levels interrestrial successional ecosystem [J].Science,1971,173:1314-1316
    [81] McCann K, Hastings A, Husel G R.Weak trophic interactions and the balance of nature [J] Nature,1998, 794-798.
    [82] [88] Moore J C, Hunt H W.Resource compartmentation and the stability of real ecosystems [j]. Nature,1988, 333:263.
    [83] McNaughton S J.Stability and diversity of ecological communities[J]. Nature, 1978, 274:251-253.
    [84] Yodzis P.The connections of real cosystems[J].Nature,1980,284:544-545.
    [85] HastingA.Food web theory and stability[J].Ecology,1988,69:165-1668.
    [86] Odum E P.Basic Ecology[C].Hiladelphia:Sauders Publishing,1983.46-50
    [87] Dexter A R ,Bird N R.A Methods for predicting the optimum and the range Of soil water contents for tillage based on the water retention curve.Soil and Tillage research ,2001,57:203-212.
    [88] Dong X J ,Zhang X S ,Yang B Z .A preliminary study on the water balance of some sandland shrubs based on the transpiration measurement in field condition.Acta Phytoecol Sin,1997,21:208-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700