非平稳信号的压缩算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信号分析在数据压缩等方面具有极其重要的意义,尤其是对非平稳信号有效的分析方法更是学术和工程界关注的热点问题之一。传统信号分析方法从单一的时域或频域对信号进行描述,不能提供准确的时间和频率的定位功能,也无法提供局部时间段的频域特征信息。而对于非平稳信号,其参数随时间在不断变化,因此单一的时域或频域分析法无法对其进行有效的处理。
     本文从数值逼近理论的角度出发,针对具有缓慢变化趋势的非平稳信号进行了压缩算法及实现等内容的研究。论文主要工作包括:
     1.提出了一种基于分类和曲线拟合的非平稳信号分解算法。针对具有缓慢单调变化趋势的非平稳信号,采用改进的经验模态分解算法对信号做预处理,以消去信号中的噪声,并利用曲线拟合对信号的主要规律进行描述。针对超光谱图像数据量大、谱线间数据相关性差等特点,提出分类算法将图像数据分为主光谱区域数据和非主光谱区域数据,不同类别数据采用不同的处理方法,最后获得数据的有效表达。
     2.提出了经验数据分解算法。由非平稳数据的多项式描述引出经验数据分解算法的思想,利用局部区域数据的均值为基准,用函数表示数据的主要变化规律,从而将局部数据表示为函数与误差之和。建立了经验数据分解的一般结构,给出了经验数据分解结构中分解滤波器的设计准则。
     3.给出了经验数据分解算法的实现思路,分别利用自适应优化法和三次样条插值法设计分解算法中的预测滤波器。针对连续色调图像数据和非连续色调图像数据的特点,提出了不同的分解结构,并通过仿真实验分析了经验数据分解算法的特点。
     4.为了提高非平稳信号编译码系统的效率,对系统中的数据分解模块和比特平面编译码模块提出了并行算法,并给出了两模块实现并行算法的架构。仿真实验分析了编译码时间与内核数量之间的关系。
Finding an effective analytical method on non-stationary signal is one of the hot issues in both academia and engineering circle and it is of extremely important significance to signal analysis for data compression. Traditional signal processing methods describe the signals in the time or frequency domain separately. It provides neither precise time or frequency positioning nor information of frequency at any local time segment. Since parameters of non-stationary signals vary by time, the traditional approaches are less effective.
     This thesis gives an intensive study on non-stationary signal compression algorithm and its implementation based on the theories of numerical approaching. The main work is summarized as follows:
     1. Based on curve fitting and classification a non-stationary decomposition algorithm is presented. Studies on non-stationary signals with slow monotonic change have been performed. With the improved empirical mode decomposition algorithm, it is able to pre-process signals and to eliminate noise in the signals. The main rule of the change is described by the curve fitting. The classification algorithm is used to decompose the spectrum images into two categories as main or non-main spectrum domain, since the spectrum images have large volumes of data and the data correlation is poor. Different methods will be applied to each data domain and effective description of observation data will be obtained.
     2. The empirical data decomposition algorithm is presented. The idea of the empirical data decomposition was extracted by polynomial description of the non-stationary data. The mean of the local area data is used as a benchmark and the main change rule of data is described by the function. The sum of the function and the error denotes the local area data. The general structure of the empirical data decomposition is founded, and the design rules of the analysis filter are presented.
     3. The detailed implementation process of the empirical data decomposition is provided. The parameters of the predictive filter in the algorithm are designed by use of adaptive optimization and cubic spline interpolation functions, respectively. Different decomposition structures are presented for continuous-tone image data and non-continuous tone image data. The characteristics of empirical data decomposition algorithm are analyzed by simulation.
     4. A parallel algorithm for data decomposition module and bit plane encoding and decoding module is proposed to improve efficiency of non-stationary signal encoding and decoding system. The parallel algorithm framework for the two modules is presented. Relations between the time of encoding and decoding and the number of kernel are analyzed by simulation.
引文
[1]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998:1-8.
    [2]Gabor D. Communication theory and physics. IEEE Transactions on Information Theory.1953,1 (1):48-59.
    [3]H.G.Feichtinger,T.Strohmer. Advances in Gabor analysis. Birkhauser,2002.
    [4]Wexler J., Raz S. Discrete Gabor Expansion. IEEE Transactions on Signal Processing, 1990,21(3):207-220.
    [5]Zibulski M., Zeevi Y.Y. Over sampling in the Gabor Scheme.I EEE Transactions on Signal Processing,1993,41 (8):2679-2687.
    [6]薛健,袁保宗.拟正交Gabor展开的构造.通信学报,1997,18(4):60-63.
    [7]Koening R., Dumm H.K.,Lack L.Y. The sound spectrograph. J.Acoust,1946,(18):19-49.
    [8]Potter R.K., Kopp G., Green H.C. Visible speech. New York, Van Nostrand,1947:25-34.
    [9]耿萌,石林锁.三种非平稳信号时频分析的方法,机械工程与自动化,2008(1):108-109.
    [10]S.Qian. Joint time-frequency analysis. New York:Prentice Hall,1996.
    [11]王民胜,时频分析在信号处理中的应用,西安电子科技大学博士论文,1994.
    [12]F.Pedeson. Joint time-frequency analysis in digital signal processing. Ph.D. Dissertation, Aalborg University, Denmark, May 1997.
    [13]Wigner E.P. On the quantum correction for thermodynamic Equilibrium. Phys.Rev,1932, 40:749-759.
    [14]Cohen L. Time frequency distributions-a review. Proc.IEEE,1989,(77):941-981.
    [15]C.H.Page. Instantaneous power spectra. Journal of application physics,1952,vol.23:103-106.
    [16]Choi H.I., Williams W.J. Improved time-frequency representation of multi-components signals using exponential kernels. IEEE transactions on ASSP,1989,(6):862-871.
    [17]Papandreon A., Boudreaux-Bartels G.F. Generalization of Choi-Williams distribution and butter-worth distribution for time-frequency analysis. Transactions on signal processing, 1993,(1):463-472.
    [18]Jones D.L.,Frarks J.W. A high resolution data-adaptive time-frequency representation, IEEE transactions on ASSP,1990(12):2127-2135.
    [19]C.Richard, Time-frequency based detection using discrete-time discrete-frequency Wigner distributions. IEEE transactions on signal processing,vol.50,2002:2170-2176.
    [20]A.Papandreou-Suppappola,S.B.Suppappola. Analysis and classification of time-varying signals with multiple time-frequency structures, IEEE signal processing letters,Vol.9,2002:92-95.
    [21]Jones D.L.,Baranimuk R.G. an adaptive optimal kernel time-frequency representations. IEEE transactions on signal processing,1995(l):2361-2371.
    [22]Mallat S.G, Zhifeng Zhang. Matching pursuits with time-frequency dictionaries. IEEE transactions on signal processing,1993(12):3397-3415.
    [23]Barbarossa S. Analysis of multi-component LFM signals by a combined wigner-Hough transform. IEEE transactions on signal processing,1995(6):1511-1515.
    [24]Barbarossa S.,et al. A combined wigner-ville and hough transform for cross terms suppression and optimal detection and parameter estimation. ICASSP'92,vol.4:173-176.
    [25]Barbarossa S.,O.Lemovic. Analysis of nonlinear FM signals by pattern recognition of their time-frequency representation. IEEE signal processing letters,1996,vol.3(4):112-115.
    [26]J.C.Wood,D.T.Bary. Radon transform of time-frequency distributions for analysis of multicomponent signals. IEEE transactions on signal processing,1994,vol.42(11):3166-3177.
    [27]J.C.Wood,D.T.Bary. Tomographic time-frequency analysis and its application toward time-varying filtering and adaptive kernel design for multi-component linear-FM signals. IEEE transactions on signal processing,1994,vol.42(8):2094-2104.
    [28]J.C.Wood,D.T.Bary. Linear signal synthesis using the radon-wigner transform. IEEE transactions on signal processing,1994,vol.42(8):2105-2111.
    [29]Chunguang Xu,Xinbo Gao,Weixin Xie.Localized Radon-Wigner transform proceedings of the 6th IEEE intelligent signal processing and communication systems,ISPACS'98,1998, vol(2):757-761.
    [30]刘建成,王雪松,肖顺平等.基于Wigner-Hough变换的径向加速度估计.电子学报,2005,33(12):2235-2238.
    [31]孙晓昶,皇甫堪.基于Wigner-Hough变换的多分量LFM信号分析及离散计算方法。电子学报,2003,31(2):241-244.
    [32]Grossmann A.,Morlet.J. Decomposition of Hardy function into square intelligent wavelets of constant shape. Philadephia:society for industrial and applied mathematics(SIAM), 1984,15(4):723-736.
    [33]Mallat S G. Multi-resolution representations and wavelets. Ph.D. Thesis, University of Pennsylvania, Philadephia, PA,1988.
    [34]Mallat S G. Multi-resolution approximation and wavelet orthonormal bases of L2(R). Trans, on American Math. Society,1989,315(1):69-87.
    [35]Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE transactions on information theory,1990(36):961-1005.
    [36]Vetterli M.,Herley C. Wavelets and filter banks:theory and design. IEEE transactions on signal processing,1992,40(9):2207-2232.
    [37]Torresani B. Wavelets associated with representations of the affine wely-heisenberg group. J.Math.Phys,1991,32(5):1273-1279.
    [38]Daubechies I. Ten lectures on wavelt,philadephia,PA:1992.
    [39]Stephane Mallat著,杨力华,戴道清等译.信号处理的小波导引,北京:机械工业出版社,2002.
    [40]Chui.C.K.Wavelet:a tutorial theory and applications.New York:Academic Press,1992.
    [41]Wolfgang Dahmen,Angela Kunoth,Karsten Urban. Biorthogonal spline wavelets on the interval stability and moment conditions. Applied and computational harmonic anlysis,1999,6(2):132-196.
    [42]Xie J.,Zhang D,Xu W. Spatially adaptive wavelet de-noising using the minimum description length principle, IEEE transactions on image processing,2004,13(2):179-187.
    [43]Azzalini,Alexandre,Farge,Marie. Nonlinear wavelet thresholding:a recursive method to determine the optimal denoising threshold. Applied and computational harmonic analysis.2005, 18(2):177-185.
    [44]Ferreira da silva,Adelino R. Wavelet denoising with evolutionary algorithms.digital signal processing 2005,15(4):382-399.
    [45]Averkamp R,Houdre C. Wavelet thresholding for nonnecessarily gaussian noise:functionality. Ann,Statist.2005,33(5):2164-2193.
    [46]Vinay U.Kale,Nikkoo N.Khalsa.Performance Evaluation of various wavelets for image compression of natural and artificial images. International journal of computer science and communication,vol.1 (1),2010:179-184.
    [47]Yan.R.,Gao.R.tutorial 21 wavelet transform:a mathematical tool for non-stationary signal processing in measurement science part 2 in a series of tutorials in instrumentation and measurement. IEEE of instrumentation and measurement magazine,vol.12(5),2009:35-44.
    [48]Namias V. The fractional fourier transform and its applications in quantum mechanics. J.Inst.Math. Its Appl.,1980,25:241-265.
    [49]L.B.Almeida. The fractional fourier transform and time -frequency representations. IEEE tansactions on signal processing,1994,42(11):3084-3091.
    [50]H.M.Ozaktas,O.Arikan,M.A.Kutay. Digital computation of the fractional fourier transform. IEEE transactions on signal processing,1996,44(9):2141-2150.
    [51]Soo-Chang Pei, Jian-jiun Ding,R. Relations between fractional operations and time frequency distributions and their applications.EEE transactions on signal processing, 2001,49(8):1638-1655.
    [52]G.Gariolaro,T.Erseghe,P.Kraniauskas. A unified framework for the fractional fourier transform. IEEE transactions on signal processing,1998,46(12):3206-3219.
    [53]冉启文,谭立英.小波分析与分数傅里叶变换及应用.北京:国防工业出版社,2002.
    [54]Mann S,Haykin S. Chirplets and wavelets:novel time-frequency methods. Electronic letters,1992,28:114-116.
    [55]Mihovilovic D,Bracewell T N. Whistler analysis in the time-frequency plane using chirplets. J.Geophysical research,1992,97:17199-17204.
    [56]Zhang Q,Benveniste A. Wavelet networks. IEEE transaction on Neutral Network,1992, 3(6):889-898.
    [57]Sene kah Phooi,Ang.L.M. Adaptive RBF neural network training algorithm for nonlinear and non-stationary signal.2006 international conference on computational intelligence and security. ICCIAS,2006(1):433-436.
    [58]苏伟生,何文雪,谢剑英.基于递归神经网络结构的非平稳信号自适应盲分离.计算机工程,2004,30(22):30-31.
    [59]Lai L.L.,Chan W.L. Real time-frequency and Harmonic evaluation using artificial neural network. IEEE transactions on power delivery.1999,14(l):52-60.
    [60]N.E. Huang, Z.Shen, The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. Roy. Soc. London A,1998(454):903-995.
    [61]Huang N. E, Shen Z, Long S.R. A new view of nonlinear water waves:the Hilbert spectrum. Ann Rev Fluid Mech,1999,31:417-457.
    [62]Rilling G, Flandrin P, Goncalves P. Empirical mode decompositions a filter bank. IEEE Signal Processing Letters,2004,11(2):12-114.
    [63]Rilling.QFlandrin.P.One or two frequencies? The empirical mode decomposition answers. IEEE transactions on signal processing,vol.56(1),2008:85-95.
    [64]Marcus D,Torsten S. Performance and limitations of the Hilbert Huang transformation with an application to irregular water waves. Journal of ocean engineering,2004,31(14):1783-1834.
    [65]Loh C.H,Huang N.E. Application of the empirical mode decomposition Hilbert spectrum method to identify near fault ground motion characteristics and structural response. Bulletin of the seismological society of american,2001,91(5):1339-1352.
    [66]Z.K.Peng,Peter W. Tse. An improved Hilbert-Huang transform and its application in vibration signal analysis, Journal of sound and vibration,vol.286(1),2005:187-205.
    [67]让晓勇,叶俊勇,郭春华.基于二维经验模态和均值滤波的图像去噪方法.计算机应用,2008,28(11):2884-2886.
    [68]Z.K.Peng,Peter W. Tse. A comparison study of improved Hilbert-Huang transform and wavelet transform:application to fault diagnosis for rolling bearing. Mechanical systems and signal processing,vol.l9(5),2005:974-988.
    [69]Mark G Frei,Ivan Osorio. Intrinsic time-scale decomposition:time-frequency-energy analysis and real-time filtering of non-stationary signals.Proceedings of the royal of society,vol.463,2007:321-342.
    [70]R.X.Gao,R.Yan. Non-stationary signal processing for bearing health monitoring,international journal of manufacturing research,vol.1(1),2006:18-40.
    [71]Ruqiang Yan,Yongbin Liu. Correlation dimension analysis:a non-linear time series analysis for data processing. IEEE of instrumentation and measurement magazine,vol.13(6),2010:19-25.
    [72]徐春光.非平稳信号的时频分析与处理方法研究,西安电子科技大学博士论文,1999.
    [73]王波,杨建宇,熊金涛.改进非平稳信号的分析方法,电子科技大学学报,2004,33(1):9-11.
    [74]J.C Nunes,Y Bouaoune. Image analysis by bi-dimensional empirical mode decomposition. Image and vision computing,vol.21(12),2003:1019-1026.
    [75]Sachin P.Nanavati, Prasanta K.Panigrahi. Wavelets:applications to image compression. Humanities, social sciences and law,vol.10(2):52-61.
    [76]张宗平,刘贵忠。基手小波的视频图像压缩研究进展,电子学报,vo1.30(6),2002:883-889.
    [77]Skodras.A.Christopoulos.C. The JPEG2000 still image compression standard, IEEE of signal processing magazinemvol.18(5),2001:36-58.
    [78]Majid Rabbani,Rajan Joshi. An overview of the JPEG 2000 still image compression standard. Signal processing:Image communication,vol.17(1),2002:3-48.
    [79]Grossman A, Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal.,1984,15(4):723-736.
    [80]Strang G, Nguyen T. Wavelet and Filter Banks. Cambridge Wellesley Press,1996.
    [81]焦李成,保诤.子波理论与应用,进展与展望.电子学报,1993,21(7):91-96.
    [82]刘贵忠,邸双亮.小波分析及应用.西安电子科技大学出版社,1992.
    [83]Mallat S.G. A theory for multi-resolution signal decomposition:the wavelet representation. IEEE transactions on pattern anal.math.intell,1989,11(7):674-693.
    [84]Mallat S.G. Multi-resolution approximation and wavelet orthonormal bases of L2 (R). Trans. On American Math.Society,1989,315(1):69-87.
    [85]Mallat S G. A Wavelet Tour of Signal Processing. Second Edition, Academic Press, San Diego, 1999.
    [86]Cotronei M,Lazzaro D,Montefusco L.B,Puccio L. Image compression through embedded multiwavelet transform coding. IEEE transactions on image processing,2000,9(2):184-189.
    [87]Przelaskowski A. Performance evaluation of JPEG2000-like data decomposition schemes in wavelet codec. IEEE conference,2001:788-791.
    [88]Ramchandran K,Vetterli M. Best wavelet packet bases in a rate-distortion sense. IEEE transactions on image processing,1993,2(2):160-175.
    [89]Rogers J.K,Cosman P.C. Wavelet zero-tree image compression with packetization. IEEE signal processing letters,1998(5):105-107.
    [90]Antonini M, Barlaud M, Mathieu P, Daubechies I. "Image coding using vector quantization in the wavelet transform domain". Proc. of IEEE ICASSP'90, Albuquerque, NM., USA, Apr. 1990, pp.2297-2300.
    [91]Vaidyanathan P P. Multi-rate Systems and Filter Banks. Prentice Hall,1993.
    [92]Antonini M, Barlaud M., Mathieu P, Daubechies I. Image coding using wavelet transform. IEEE Trans. on Image Processing,1992,1(2):205-220.
    [93]Villasenor J D, Belzer B, Liao J. Wavelet filter evaluation for image compression. IEEE Trans. on Image Processing,1995,4(8):1053-1060.
    [94]E.Y.Hamid,Z.I.Kawasaki. Wavelet-based data compression of power system disturbances using the minimum description length criterion.IEEE transaction on power delivery,2002,1792):460-466.
    [95]Z.T.Lu,D.Y.Kim. Wavelet compression of EGG signals by the set partitioning in Hierarchical trees algorithm,IEEE transactions on biomedical engineering.2000,47(7):849-856.
    [96]Albanesi M, Bertoluzza S. Human vision model and wavelets for high-quality image compression. Proc. of 5th Int. Conference in Image Processing and its Applications, Edinburgh, UK,4-6 July 1995(410):311-315.
    [97]O'Rourke T, Stevenson R. Human visual system based wavelet decomposition for image compression. J. VCIP,1995(6):109-121.
    [98]李庆扬,王能超,易大义等.数值分析(第5版),清华大学出版社,2008:22-65.
    [99]林成森,数值计算方法(上册),科学出版社,2003:116-167.
    [100]徐萃薇,孙绳武等.计算方法引论(第2版),高等教育出版社,2002:17-82.
    [101]张韵华,奚梅成,陈效群等.数值计算方法和算法,科学出版社,2000:63-67.
    [102]Daniel Dusek. Decomposition of non-stationary signals based on the cochlea function principle. Solid state phenomena,vol.147,2009:594-599.
    [103]Banfu Yan,Ayaho Miyamoto. A comparative study of modal parameter identification based on wavelet and hilbert-Huang transforms. Computer-aided civil and infrastructure engineering,vol.21 (1),2006:9-23.
    [104]Karagiannis.A.,Loizou.L,Constantinou.P. Experimental respiratory signal analysis based on empirical mode decomposition. Applied sciences on biomedical and communication technologies,2008:1-5.
    [105]邓拥军等.EMD方法及Hilbert变换中边界问题的处理.科学通报,2001,46(3):257-263.
    [106]邓家先,基于分类和曲线拟合的干涉光谱图像压缩.光学学报。2007,vo1.27(1):45-51.
    [107]邓家先,黄艳.一种新的基于曲线拟合的干涉光谱图像压缩算法.电子与信息学报,2007,vo1.229(5):1140-1144.
    [108]吴林峰,冯燕.基于JPEG2000和自适应预测的高光谱图像压缩方法,计算机仿真,2006.2:168-170.
    [109]M.B.Bradley,K.Camelia. Application of the empirical mode decomposition and Hilbert Huang transform to seismic reflection data. Geophysics,2008(72):H29-H37.
    [110]郝勇,陈斌,朱锐.近红外光谱预处理中几种小波消噪方法的分析.光谱学与光谱分析,2006,26(10):1838-1842.
    [111]李素文,谢品华,李玉金等.基于小波变换的差分吸收光谱数据处理方法.光学学报,2006,26(11):1601-1604.
    [112]Ryan M.J,Arnold J.F.The lossless compression of AVIRIS image by vector quantization. IEEE transactions on geosciences and remote sensing,1997,35(3):546-550.
    [113]Hoffman R.N,Johnson D.W. Application of EOF's to multi-spectral imagery:data compression and noise detection for AVIRIS.IEEE transactions on geosciences and remote sensing,1994,32(1):25-34.
    [114]Abouselman G.P. Compression of hyper-spectral imagery using the 3-D DCT and hybrid DPCM/DCT.IEEE transactions on geosciences and remote sensing,1995,33(1):26-34.
    [115]Thomas W.F. Hyper-spectral image compression on reconfigurable platforms. Master Thesis, electrical engineering university of Washington,2001.
    [116]Said A,Pearlman W.A.A new, fast and efficient image codec based on set partitioning in hierarchical trees. IEEE transactions on circuits and systems for video technology,1996, 6(2):243-250.
    [117]Dragotti P.L,Poggi QRagozini A P R. Compression of multi-spectral images by three-dimensional SPIHT algorithms. IEEE transactions on geosciences and remote sensing,2000,38(1):1-4.
    [118]Taubman, D. High performance scalable image compression with EBCOT. IEEE Transactions on Image Processing, July 2000,9(7):1151-1170.
    [119]Taubman, D., Ordentlich, E., Weinberger, M. and Seroussi, G. Embedded block coding in JPEG 2000. Signal Processing-Image Communication, January 2002,17(1): 49-72.
    [120]C.Christopoulos J,Askel F,Larsson M. Efficient methods for encoding regions of interest in the upcoming JPEG2000 still image coding standard. IEEE signal processing letters,2000,7(9):247-249.
    [121]Vaidyanathan P P,Kirac A. Result on optimal bi-orthogonal filter banks. IEEE Trans.on Circuits and Systems Ⅱ,1998,45(8):932-947.
    [122]王美兰,水鹏朗,廖桂生,王桂宝.无完全重构约束的两通道自适应FIR滤波器组设计.电子信息学报,2005.4(27):570-573.
    [123]熊小兵,赵尔沅.FIR完全重建滤波器组构造双正交小波基.通信学报,1998(6):26-32.
    [124]张困申,晓黄Api for Windows98/2000北京:清华大学出版社,2001.
    [125]ISO/IEC 1.29.15444 JPEG2000:JPEG2000 Part I final draft international standard. Cupertino:SO/IEC,2000.
    [126]Wang L. The core algorithm and new developments of JPEG2000 standard. Tracks for standard and technology,2005:67-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700