DMPP氮肥蔬菜硝酸盐污染控制及硝酸盐速测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在田间和盆栽试验条件下采用含硝化抑制剂DMPP(3,4—二甲基吡唑磷酸盐,3,4-dimethylpyrazole phosphate,DMPP)氮肥(含硝化抑制剂DMPP硫硝铵,简称ASN+DMPP和含硝化抑制剂DMPP尿素,简称urea+DMPP)探讨了蔬菜硝酸盐污染控制技术,以便为绿色蔬菜生产提供理论依据及科学方法;探讨了硝酸盐速测技术,以为食品卫生监督、监测部门提供一种硝酸盐快速、简便的检测手段,取得如下主要结果:
     1.通过田间试验对过量施氮条件下硝化抑制剂DMPP氮肥对小青菜硝酸盐累积及营养品质的影响作了研究。结果表明:与尿素(urea)、硫硝铵(ASN)相比,硝化抑制剂DMPP与尿素、硫硝铵配合形成的新型氮肥均可显著降低小青菜硝酸盐累积,提高Vc、氨基酸、可溶性糖和Zn含量,改善品质,ASN+DMPP作用更为明显。与ASN、urea相比,ASN+DMPP处理小青菜硝酸盐含量分别降低16.0%、14.1%,均达到了显著性水平;urea+DMPP与urea、ASN相比,小青菜硝酸盐含量分别降低7.9%和7.6%,均达到了显著水平。urea+DMPP、ASN+DMPP明显减少茎叶、特别是茎中硝酸盐积累,抑制幅度以ASN+DMPP较大。此外,ASN+DMPP还可缓解因氮肥过多引起的减产效应。
     2.对田间正常施氮情况下ASN+DMPP对小青菜硝酸盐累积及营养品质的影响作了研究。结果表明:与碳铵(NH_4HCO_3)、尿素(urea)、硫硝铵(ASN)等常规氮肥相比,ASN+DMPP处理小青菜略有增产,且显著降低小青菜硝酸盐的累积,提高Vc、氨基酸和可溶性糖等含量,改善品质。此外,对小青菜不同生长期体内硝酸盐含量变化动态分析可知,与常规氮肥相比,施用含硝化抑制剂DMPP氮肥可提早蔬菜硝酸盐含量达到绿色蔬菜生产标准,可提早蔬菜上市时间,在本试验条件下可提早3-4天上市,获得较高的市场价值。
     3.在田间试验条件下对氮肥品种、用量及不同基肥种类对长生长期蔬菜作物包心菜硝酸盐累积及品质的影响做了探讨。结果表明:ASN+DMPP与ASN、urea相比,不仅可以提高包心菜的产量,降低NO_3~--N含量,还可以提高Vc、氨基酸、可溶性糖和矿质营养元素(P、K、Ca、Fe、Zn)含量。ASN+DMPP与urea相比,NO_3~--N含量降低了6.1%(金华)、16.5%(新昌),而与ASN相比NO_3~-N含量降低了7.3%(新昌)、9.4%(金华)。适当降低氮肥用量包心菜不会减产,还可降低硝酸盐含量。ASN80%用量水平(360kg·hm~(-2))与100%用量水平(450kg·hm~2)相比,包心菜NO_3~--N含量分别降低了5.0%(新昌)、18.7%(金华),Vc和K含量显著提高。用硫基复合肥(NPK15-15-15S)作基肥与用氯基复合肥(NPK16-16-16Cl)
    
    相比,包心菜产量、N03一N含量没有显著差别。用氯基复合肥作基肥可提高包心菜Vc、N、
    P、K、Fe含量,特别是显著地提高了K和Fe含量。
     4.土培试验条件下对ASN+D入4PP不同基追肥比例对小青菜硝酸盐累积及营养品质的影
    响做了探讨。结果表明,等氮量(0 .5 Ng·kg一,土)施用条件下基肥75%、追肥25%的基追
    肥比例不仅可提高蔬菜产量、降低硝酸盐含量,还可提高V。、氨基酸、Zn、N和K含量,
    改善蔬菜品质。
     5.就田间施用硝化抑制剂DN护P对冰箱贮藏条件下小青菜可食部分硝酸盐、维生素C
     (Vc)含量变化的影响作了研究。结果表明:在贮藏过程中,施与不施DMPP二种处理小青
    菜硝酸盐含量呈现先降低后略有升高的趋势,vc含量呈降低的趋势;DMPP在贮藏前期能够
    有效地降低硝酸盐含量,延缓Vc含量的降低。贮藏2天后,DMPP处理小青菜硝酸盐、Vc
    含量分别降低了74.4 mg·吨一,和9 mg·kg一,,而对照处理分别降低了54.4mg·kg一,和50
    mg·kg一,,降低幅度均达显著水平;贮藏2一4天中,DMPP处理硝酸盐、vc含量分别降低
    了20.1 mg·kg-,和91 mg·kg-,,而对照处理分别降低了一44,7 mg·kg-,和84 mg·kg-,。蔬
    菜贮藏时间不要过长,以不超过4天左右为宜。
     6.在恒温培养和田间试验条件下就硝化抑制剂DMPP对菜园土按态氮和硝态氮含量的
    影响作了研究。结果表明:无论是在恒温培养,还是在田间试验条件下硝化抑制剂DN[PP都
    有较好的硝化抑制作用,土壤中硝态氮含量维持在较低水平。
     7.根据特定的硝酸盐、亚硝酸盐显色反应,制成一种能快速、简便地检测蔬菜硝酸盐、
    亚硝酸盐浓度的半定量试纸。
The control techniques of nitrate contaminated in vegetable were discussed in this paper with application of nitrogen fertilizer (ammonium sulphate nitrate and urea) with nitrification inhibitor (NI) 3,4-dimethylpyrazole phosphate (DMPP) (ASN+DMPP and urea+DMPP) under field and pot experiments to provide acedemic foundation and scientific method of green vegetable production. Quick determination technique of nitrate was also discussed to provide a quick, simple nitrate determination for the supervise department of foodstuff. Results were shown as follows:
    The influences of nitrogen fertilizer with nitrification inhibitor (NI) 3,4-dimethylpyrazole phosphate (DMPP) on nitrate accumulation and nutritional quality of greengrocery (Brassica campestris L. ssp. chinensis) under excessive nitrogen use condition were investigated in field experiment. Results showed that nitrogen fertilizers with NI DMPP could significantly reduce nitrate accumulation, increase Vc, amino acid, soluble sugar and Zn concentration of greengrocery as compared with urea, ammonium sulphate nitrate (ASN), and hence improve greengrocery nutritional quality, ammonium sulphate nitrate fertilizer with NI DMPP (ASN+DMPP) was especially effective in these aspects. Compared to ASN and urea, nitrate concentration in greengrocery treated with ASN+DMPP reduced 16.0% and 14.1%, urea+DMPP reduced 7.9% and 7.6% respectively, and the difference reached significant level. ASN+DMPP and urea+DMPP could evidently reduced nitrate accumulation in stems and leaves, especially stems. The inhibition effect of ASN+D
    MPP was greater than urea+DMPP. In addition, ASN+DMPP could alleviate yield decreasing of vegetable due to excessive use of nitrogen fertilizers.
    The influences of ASN+DMPP on nitrate accumulation and nutritional quality of greengrocery {Brassica campestris L. ssp. chinensis) were investigated under natural nitrogen use condition in field experiment. Results indicated that ASN+DMPP could slightly increase the yield of greengrocery, significantly decrease nitrate accumulation, and increase Vc, amino acid and soluble sugar concentration of greengrocery as compared with conventional nitrogen fertilizers, such as ammonium bicarbonate, urea, ammonium sulphate nitrate etc., and hence improve nutritional quality. In addition, compared to conventional nitrogen fertilizers the time of vegetable attain the criterion of green foodstuff production might be advanced by analyzing nitrate concentration in
    
    
    different grown stage, thus the time of vegetable coming into market might be advanced, then get a better price. Under this experiment condition the time would advanced 3-4d.
    The influences of different nitrogen fertilizer variety, nitrogen level and basal manure on nitrate accumulation and quality of cabbage were investigated in field experiments. Results showed that ASN+DMPP could increase cabbage yield and decrease NO3--N concentration as compared with ASN and urea. ASN+DMPP could also increase vitamin C (Vc), amino acid, soluble sugar, and mineral nutrient element (P, K, Ca, Fe, Zn) concentration in cabbage. ASN+DMPP could decrease NO3--N concentration by 6.1% (Jinhua) 16.5% (Xinchang) as compared with urea, and 7.3% (Xinchang) 9.4%(Jinhua) as compared with ASN. Properly decreasing nitrogen level would not decrease cabbage yield, but decrease nitrate concentration. 80% of nitrogen level (360 kg hm-2) could decrease NO3--N concentration by 5.0% (Xinchang) 18.7% (Jinhua) as compared with 100% nitrogen level (450 kg hm-2) , Vc and K concentration were significantly increased. There were no significant differences in cabbage yields and nitrate concentration between composed N-P-K. fertilizer containing sulfur and fertilizer containing chlorine as basal manure. Applying composed N-P-K fertilizer containing chlorine as basal manure could increase Vc, N, P, K and Fe concentration, especially significantly increased K and Fe concentration.
    Effects of different ratios of basal application to top dressing of ASN+DMPP on nitrate accumulation and nutritional quality of greengr
引文
1) 门瑞芝,刘士斌,马晓梅.光化学动力学法测定硝酸盐和亚硝酸盐.分析化学,1992,20(4):455-457.
    2) 方力,张燕,丁佳,姚照兵.紫外分光光度法同时测定硝酸盐氮和亚硝酸盐氮.分析测试 技术与仪器,1999,5(3):142-146.
    3) 王心宇,项新华,涂晓明等.紫外检测—离子色谱法测定食品中的硝酸盐和亚硝酸盐.化学分析计量,2002,11(2):28-29.
    4) 王双明.几种化学物质对小白菜硝酸盐积累及某些营养品质的影响.绵阳农专学报,1992,9(1):35-39.
    5) 王玉文,孙玉华.反相高效液相色谱法(RPHPLC)测定水体中硝酸盐及亚硝酸盐.环境科学,1990,11(4):87-88.
    6) 王庆,王丽,赫崇岩等.过量施肥对不同蔬菜中硝酸盐积累的影响及调控措施研究.农业环境保护,2000,19(1):46-49.
    7) 王银起,吕凤英,王素霞,等.示波极谱法测定水中硝酸盐氮.中国公共卫生,1996,12(1):37-38.
    8) 王海鹰,郭慧儒,晨阳.镉还原剂低频振荡法快速测定食品中硝酸盐.黑龙江日化,1998,(3):40-42.
    9) 王群芳,罗文贱.离子色谱法同时测定叶菜中的硝酸盐和亚硝酸盐.化学分析计量,2002.11(2):7-8.
    10) 王锦莺.蔬菜中硝酸盐和亚硝酸盐含量测定—2.5次微分电分析法.福州大学学报(自然科学版,1989,17(3):91-96.
    11) 王耀光,齐秀贞,张丽红.偶联反应新极谱法测定痕量NO_2~-.食品科学,1995,16(3):57-61.
    12) 王朝辉,田霄鸿,李生秀.土壤水分对蔬菜硝态氮累积的影响.西北农业大学学报,1997,25(6):15-20.
    13) 王朝辉,李生秀,田霄鸿.不同氮肥用量对蔬菜硝态氮累积的影响.植物营养与肥料学报,1998,4(1):22-28.
    14) 王景安,程炳嵩.叶菜类不同生育期体内硝酸盐、亚硝酸盐及维生素C含量的变化.
    
    河北农业技术师院学报,1989,3(2):33-38.
    15) 戈早川,周彤,倪永华.通用标准加入—偏最小二乘导数分光光度法测定卤肉制品中的亚硝酸盐与硝酸盐.中国卫生检验杂志,1999,9(5):340-342.
    16) 邓学良,邓健,袁亚莉.血清中亚硝酸盐的化学发光测定法.衡阳医学院学报,1998,26(4):433-434.
    17) 牛建平.催化分光光度法测定水中痕量亚硝酸盐氮.河南师范大学学报,1999,27(3):51-54.
    18) 史东坡,李莉,雷成江.气相色谱法测定水中硝酸盐氮、亚硝酸盐氮的方法探讨.中国公共卫生,1999,15(9):855.
    19) 冯枫,邹丽丽,郑娇,等.催化动力学光度法测定痕量亚硝酸盐.中国公共卫生,2002,18(11):1327-1328.
    20) 丘星初,李萃升.高灵敏度光度法测定地表水中硝酸盐和亚硝酸盐.环境科学,1992,13(4):63-66.
    21) 卢善玲,周根娣.上海地区蔬菜硝酸盐含量状况及食用卫生评价.上海农业科技,1989.(4):15-16.
    22) 卢善平,周根娣.上海蔬菜硝酸盐残留状况及其控制途径.上海农业学报,1990,9 (4):59-66.
    23) 任志刚,田若涛,徐卫红.对改进重氮偶合比色法测定水中亚硝酸盐的探讨.山西预防医学,2002,9(1):43-44.
    24) 任祖淦,邱孝煊,蔡元呈等.化学氮肥对蔬菜积累硝酸盐的影响.植物营养与肥料学报,1997,3(1):81-84.
    25) 任祖淦,邱孝煊,蔡元呈等.化学氮肥对蔬菜硝酸盐污染影响的研究中国环境科学,1997,17(4):326-329.
    26) 关虹,徐律涂.藏红T在磷酸介质中比色测定微量亚硝酸盐氮.分析试验室,1992,11(5):54-55.
    27) 汤丽玲,陈清,张宏彦,等.采用试纸条—反射仪法快速测定蔬菜硝酸盐含量.北方园艺,2001,(5):9-10.
    28) 牟怀德,杨志琼.示波极谱法间接测定饮水中硝酸盐氮.中国卫生检验杂志,1994,4(5):303-304.
    29) 李劲松,吴爱东.亚硝酸盐氮的荧光光度法测定.理化检验—化学分册,1999,35
    
    (11):510-511.
    30) 李梦,史学增,于少华.试纸法快速检测牛乳中的亚硝酸盐.农业与技术,1992,(4):22-24.
    31) 李萍,赵杉林.一阶导数紫外分光光度法直接测定水中硝酸盐.理化检验—化学分册,1991,27(6):346-347.
    32) 朱祝军,蒋有条.不同形态氮素对不结球白菜生长和硝酸盐积累影响.植物生理学通讯,1994,30(3):198-201.
    33) 庄舜尧,孙秀廷.氮肥对蔬菜硝酸盐积累的影响.土壤学进展,1995,(3):29-35.
    34) 陈振德,冯东升.几种叶菜类蔬菜中硝酸盐和亚硝酸盐含量变化及其化学调控.植物学通报,1994,11(3):25-26,33.
    35) 何天秀,何成辉,吴德意.蔬菜中硝酸盐含量及其与钾含量的关系.农业环境保护,1992,11(5):209-211.
    36) 苏文智,折振安.环境水中硝酸盐测定方法研究.西安矿业学院学报,1994,(3):233-238.
    37) 吴仲可,徐允梁,顾荷英.高效液相色谱法同时测定蔬菜中的硝酸盐和亚硝酸盐.上海农学院学报,1993,11(1):7-11.
    38) 汪春学.应用HPLC快速分析环境样品中的硝酸盐.仪器仪表与分析监测,1994(4):12-13.
    39) 辛梅华,徐金瑞.反相离子对色谱法—电化学检测测定亚硝酸根,硫氰酸根,苯胺.分析化学,1993,21(12):1442-1445.
    40) 张金华.紫外分光光度法测定水中硝酸盐氮的改进.环境污染与防治,1991,13(1):43-45.
    41) 张霞,史晓滨,吴长瑛.重氮化偶合反应测定亚硝酸盐方法的改进.环境污染与防治.1997,19(2):42-43.
    42) 张漱茗,闫晓松.济南市售蔬菜硝酸盐含量及施肥影响.土壤肥料,1997(5):22-23.
    43) 刘明月,秦玉芝.NPK施用量与芹菜硝酸盐积累量和产量的相关性.中国蔬菜,1998(6):4-7.
    44) 刘秀茹,孙晓荣.有机肥与氮化肥对蔬菜产量及硝酸盐含量的影响.辽宁农业科学,1991,(5):50-52.
    45) 杨景和,邹华彬,任学贞,等.荧光光度法测定天然水中痕量NO_2~-和NO_3~-,理化检验
    
    —化学分册,1993,29(5):278.
    46) 杨伟,陈振德.甘氨酸对黄瓜幼苗硝酸盐吸收还原和硝态及氨态氮积累的影响.植物生理学199127同学(3):186-188.
    47) 沈明珠,翟宝杰,东惠茹,等.蔬菜硝酸盐累积的研究.Ⅰ.不同蔬菜硝酸盐和亚硝酸盐含量评价.园艺学报,1982,9(4):41-48.
    48) 杜猛军.不同NO_3~-N和NH_4~+-N比例对生菜的产量和品质的影响.杭州农业科技,1992.(4):1-3.
    49) 周本军,谢福会,才立辉.采用固体格氏试剂快速测定水中的亚硝酸盐氮.煤炭技术,2002.21(5):49-50.
    50) 周传新,于徊萍,张昕.快速测定亚硝酸盐试纸的研制.吉林粮食高等专科学校学报,1998,13(2):8-10.
    51) 周梅素,郭东龙.离子色谱法测定蔬菜中硝酸盐含量.分析化学,2000,28(8):1056.
    52) 周艺敏,任顺荣.氮素化肥对蔬菜硝酸盐积累的影响.华北农学报,1989,4(1):110-115.
    53) 周艺敏,景海春.钾及其他元素配合施用对几种作物产量和品种的影响.土壤肥料,1995,(1):18-21,25.
    54) 周根娣,卢善玲.磷钾肥、光照、贮藏加工对蔬菜硝酸盐含量的影响.上海农业学报,1991.7(2):53-56.
    55) 林志刚,赵仪华,薛耀英.叶菜类蔬菜的硝酸盐累积规律及其控制方法的研究.土壤通报,1993,(24):253-255.
    56) 林观捷,林家宝,陈火英.影响蔬菜硝酸盐含量累积因素的探讨.上海农学院学报,1995,13(1):47-52.
    57) 林家宝,吴仲可,林观捷.控制芥菜、苋菜硝酸盐含量遗传的初步研究.上海农学院学报,1994,12(2):125-130.
    58) 林家宝,陈火英,林观捷.菠菜硝酸盐含量遗传的初步研究.上海农学院学报,1995,13(2):98-102.
    59) 郑相穆,谷丽萍,周阮宝.钼对降低普通叶菜叶片硝态N的作用.植物生理学通讯,1995,31(2):95-96.
    60) 姜宏,于维森.气相色谱—质谱联用仪(GC-MS)测定乳粉中的亚硝酸盐.中国公共
    
    卫生,2001,17(3):286.
    61) 姚庆祯,范燕,谭加强,等.超声波锌(卷)—镉法测定天然水中的硝酸盐.海洋科学,1999,(6):11-13.
    62) 胡勤海,叶兆杰,马生良.杭州市蔬菜硝酸盐污染现状及防治对策.环境污染与防治,1991,13(4):5-9.
    63) 段咏新,付庭治.氮磷钾施用对蔬菜钟硝酸盐积累的数学模型.生态学杂志,1993,12(6):34-36.
    64) 赵玲.宁波市蔬菜中硝酸盐含量及控制途径探讨.环境污染与防治,1995,17(4):37-39.
    65) 贾琦,叶秀莲,杨成根.不同处理对常见叶菜中亚硝酸盐含量的影响.江苏农学院学报,1997,18(2):94-96.
    66) 高祖明,严晓风.几种叶菜的硝酸盐和亚硝酸盐积累及其与有关酶活性的关系.植物生理通讯,1990,(3):21-24.
    67) 高祖明,章满芬.氮磷钾对叶菜硝酸盐和硝酸还原酶,过氧化氢酶活性的影响.园艺学报,1989,16(4):293-298.
    68) 徐卫红,王正银,林春云.液培条件下养分组成对叶菜硝酸盐及营养品质的影响.农业环境保护,2002,21(4):322-324,336.
    69) 倪吾钟,何念祖.钾对大白菜的营养作用及其生理机制研究.植物营养与肥料学报,1997.3(2):117-122.
    70) 袁亚莉,邓健,许金生.溴酸钾—亚甲蓝催化光度法测定硝酸盐和亚硝酸盐.光谱学与光谱分析,2002,22(5):806-808.
    71) 黄志勇,邓满萍.用比光谱导数法测定肉制品中NO_3~-和NO_2~-含量的方法.食品工业科技,2001,22(1):75-78.
    72) 黄启为,李天贵.食前处理对降低蔬菜体内硝酸盐效果的研究.湖南农学院学报,1991,17(增刊):409-412.
    73) 黄继茂,段昆生.低硝酸盐优质高产叶菜的营养配方研究.土壤,1990,22(4):222-224.
    74) 黄建国,袁玲.重庆市蔬菜硝酸盐、亚硝酸盐含量及其与环境的关系.生态学报,1996,16(4):383-388.
    75) 蒋治良,梁爱惠,戴国忠。催化反应—示波极谱测定痕量亚硝酸根——
    
    NO_2~--MR-BrO_3~-催化体系.高等学校化学学报,1992,13(6):749-751.
    76) 曾宪锋,邱贺媛.不同生长发育阶段荠菜基生叶硝酸盐及维生素C含量的研究.植物学通报,1994,11(增刊):42-43
    77) 窦宪民,高岐,石焱.偶合化学发光法测定环境水样中的痕量亚硝酸根.分析试验室,2002.21(3):43-45.
    78) Ahemed Mj, Stalikas CD, Tzouwara-Karayarmi SM, et al. Simultaneous spectrophotometric determination of nitrite and nitrate by flow-injection analysis. Talanta, 1996, 43: 1009-1018.
    79) Ali IA, Kafkafi U, Ymaguchi I, Sugimoto Y, Inanaga S. Response of oilsed rape plant to low root temperature and nitrate: ammonium ratios. J Plant Nutr, 1998, 21 : 1463-1481.
    80) Aoki T, Fukuda S, Hosoi Y, Mukai H. Rapid flow injection analysis method for successive determination of ammonia, nitrite,and nitrate in water by gas-phase chemiluminescence. Anal Chim. Acta., 1997, 349:11-16.
    81) Azam F, Benckiser G, Müller C, et al. Release, movement and recovery of 3,4-dimethylpyrazole phosphate (DMPP), ammonium and nitrate from stabilized nitrogen fertilizer granules in a silty clay soil under laboratory conditions. Biol Fertil Soils, 2001, 34: 118-125.
    82) Badea M., Amine A., Palleschi G., et al. New electrochemical sensors for detection of nitrites and nitrates. Journal of Electroanalytical Chemistry, 2001, 509: 66-72.
    83) Bauls J, Quifiones A, Primo-Millo E, Legaz F. A new nitrification inhibitor (DMPP) improves the nitrogen fertilizer efficiency in citrus-growing system. Plant nutrition-Food security and sustainability of agro-ecosystems. Dordrecht: Kluwer Academic Publishers, 2001,762-763.
    84) Barciela Alonso MC, Pergo R. Determination of silicate, simultaneously with other nutrients (nitrite, nitrate and phosphate), in fiver waters by capillary electrophoresis. Analytica Chimica Acta, 2000, 416:21-27.
    85) Barth G, Tucher S, Schinidthalter U. Influence of soil parameters on the effect of 3,4-dimethylpyrazole phosphate as a nitrification inhibitor. Boil Fertil Soils, 2001, 34: 98-102.
    86) Belcher R, Bogdanski SL, Calokerinos AC, and Townshend A. Determination of
    
    ammonium- and nitrate-nitrogen by molecular emission cavity analysis. Analyst, 1981, 106: 625-635.
    87) Bogard JS, Johnson SA, Kumar R, and Cunningham PT. Quantitative analysis of nitrate ion in ambient aerosols by Fourier-transform spectroscopy. Environ. Sci. Technol., 1982, 16: 136-140.
    88) Bodes PN, Sehierman E, and Dziedzic L. Analysis of nitrite and nitrate in biological fluids by capillary electrophoresis. Clinical Biochemistry, 1999, 32 (1): 9-14.
    89) Cantliffe DJ. Nitrate accumulation in vegetable crops as affected by photoperiod and light duration. J. Amer. Soc. Hort. Sci., 1972,97(8): 414-418.
    90) Cantliffe DJ. Nitrate accumulation in spinach grown at different lemperature. J. Amer. Soc. Hort. Sci., 1972, 97(5): 674-676.
    91) Carrasco I, Villar J M. Field evaluation of DMPP as a nitrification inhibitor in the area irrigated by the canal d'Urgell (Northeast Spain). Plant nutrition-Food security and sustainability of agro-ecosystems. Dordrecht: Kluwer Academic Publishers, 2001, 764-765.
    92) Celik A. and Henden E. Determination of ammonium-,nitrite- and nitrate-nitrogen by molecular cavity analysis using a cavity containing an entire flame. Analyst, 1989, 114: 563-566.
    93) Connolly D, Paull B. Rapid determination of nitrate and nitrite in drinking water samples using ion-interaction liquid chromatography. Analytiea Chimica Acta, 2001, 441: 53-62.
    94) Cox RD. Determination of nitrate and nitrite at the parts per billion level by chemiluminescence. Anal. Chem., 1980, 52: 332-336.
    95) Crumpton WC, Isenhart TM and Mitchell PD. Nitrate and organic N analyses with second-derivative spectroscopy. Limnol Oceanogr, 1992, 37: 907-913.
    96) Davis J, Mckeegan KJ, Cardosi MF, Vaughan DH. Evaluation of phenolic assays for the detection of nitrite. Talanta, 1999, 50: 103-112.
    97) Ditter K, Bol R, Chadwick D, Hatch D. Nitrous oxide emissions from injected ~(15)N-labelled cattle slurry into grassland soil as affected by DMPP nitrification inhibitor. Plant nutrition-Food security and sustainability of agro-ecosystems. Dordrecht: Kluwer Academic Publishers, 2001, 768-769.
    
    
    98) Ferree MA. and Shannon RD. Evaluation of second derivative UV/Visible spectroscopy technique for nitrate and total nitrogen analysis of wastewater samples. Water Research, 2001,35: 327-332.
    99) Fettweis U, Mittelstaedt W, Schimansky C, et al. Lysimeter experiments on the translocation of the carbon-14-1abelled nitrification inhibitor 3,4—dimethylpyrazole phosphate (DMPP) in a gleyic carnbisol. Boil Fertil Soils, 2001, 34: 126-130.
    100) Finch MS, Hydes D J, Clayson CH, et al. A low power ultra violet spectrophotometer for measurement of nitrate in seawater: introduction, calibration and initial sea trials. Analytica Chemica Acta, 1998, 377: 167-177.
    101) Gerendás J, Sattelmacher B. Einflu β des Ammoniumangebotes auf Wachstum, Mineralstoff-und Polyamingehalt junger Maispflanzen. Z Pflanzenemaehr Bodenkd, 1995,158: 299-305.
    102) Glass ADM, Erner Y, Kronzucker HJ, et al. Ammonium fluxes into plant roots: Energetics, kinetics and regulation. Z Pflanzenemaehr Bodenkd, 1997, 160:261-268.
    103) Green LC, Wagner J, Glogowski PL, et al. Analysis of nitrate, nitrite and [~(15)N] nitrate in biological fluids. Anal.Biochem, 1982, 126:131-138.
    104) Guan F, Wu HF, Luo Y. Sensitive and selective method for direct determination of nitrite and nitrate by high-performance capillary electrophoresis. Journal of Chromatography A, 1996, 719:427-433.
    105) Guerrero RS, Benito CG, Calatayud JM. Flow-injection analysis spectrophotometric determination of nitrite and nitrate in water samples by reaction with proflavin. Talanta, 1996, 43: 239-246.
    106) Guiraud G, Marol C. Influence of temperature on mineralization kinetics with a nitrification inhibitor (mixture of dicyandiamide and ammonium thiosulphate). Biol Fertil Soils, 1992, 13: 1-5.
    107) Hubble DS, and Harper DM. A revised method for nitrate analysis at low concentrations. Water Research, 2000, 34(9): 2598-2600.
    108) Kage S, Kudo K, Ikeda N. Determination of nitrate in blood by gas chromatography and gas chromatography-mass spectrometry. Journal of Chromatography B, 2000, 742: 363-368.
    
    
    109) Kazemzadeh A, and Ensafl AA. Sequential flow injection spectrophotometric determination of nitrite and nitrate in various samples. Analytiea Chimica Acta, 2001,442: 319-326.
    110) Kazemzadeh A, and Ensafi AA. Simultaneous determination of nitrite and nitrate i various samples using flow-injection spectrophotometric detection. Microchemieal Journal, 2001, 69: 159-166.
    111) Klein H, Priebe A, Jger HJ. Putrescine and spermidine in peas: effect of nitrogen source and potassium supply. Physiol Plant, 1979, 45: 497-499.
    112) Koch GNW, Schulib ED, Percival F, Mooney H A, Chu C. The nitrogen balance of Raphanus sativax Ⅹ Paphanistrum Plants. Ⅱ. Growth, nitrogen redidtribution and photosynthesis under NO3- deprivation. Plant, Cell and Environment, 1988,11: 755-767.
    113) K6nig O. Nitrifizide-Mittel zur Steigerung der Effektivitt der Stickstoffdüngung. Spez Agrochem, 1983, 12: 1-5.
    114) Legnerová Z, Solich P, Sldenárvá H, et al. Automated simultaneous monitoring of nitrate and nitrite in surface water by sequential injection analysis. Water Research, 2002,36: 2777-2783.
    115) Linzmeier W, Gutser R, Schmidhalter U. The new nitrification inhibitor DMPP allows increased N-efficiency with simplified fertilizing strategies. Plant nutrition-Food security and sustainability of agro-ecosystems. Dordrecht: Kluwer Academic Publishers, 2001, 760-761.
    116) Linzmeier W, Gutser R, Schmidhalter U. Nitrous oxide emission from soil and from a nitrogen-15-labelled fertilizer with the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP). Boil Fertil Soils, 2001, 34: 103-108.
    117) Linzmeier W, Schmidhalter U, Gutser R. Wirkung von DMPP auf Nitrifikation and N-Verluste (Nitrat, NH_3, N_2O) von Düngerstickstoff in Vergleich zu DCD. VDLUFA-Schriftenr Kongressband, 1999, 52: 485-488.
    118) Magne V, Mathlouthi M, Robilland B. Determination of some organic acids and inorganic anions in beet sugar by ionic HPLC. Food Chemistry, 1998, 61(4): 449-453.
    119) Marschner H. Mineral nutrition of higher plants. Harcourt Brace Jovanovich Martin, 1986,197-218.
    
    
    120) Masserini RT, and Fanning KA. A sensor package for the simultaneous determination of nanamolar concentrations of nitrite, nitrate, and ammonia in seawater by fluorescence detection. Marine Chemistry, 2000, 68: 323-333.
    121) Mazeikiene R, Malinauskas A. Potentiometric response of polyaniline electrode to dissolved nitrate. Synthetic Metals, 1997,89: 77-79.
    122) Monser L, Sadok S, Greenway GM, et al. A simple simultaneous flow injection method based on phosphomolybdenum chemistry for nitrate and nitrite determinations in water and fish samples. Talanta, 2002, 57:511-518.
    123) Moorcroft MJ, Davis J, Compton RG. Detection and determination of nitrate and nitrite: a review. Talanta, 2001, 54: 785-803.
    124) Okemgbo AA, Hill HH., Metcalf SG, et al. Determination of nitrate and nitrite in Hanford defense waste by reverse-polarity capillary zone electrophoresis. Journal of Chromatography A, 1999, 844: 387-394.
    125) Olday FC. A physiological basic for different patterns on nitrate accumulation in two spinach cultivars. J. Amer. Soc. Hort. Sci., 1976, 101, (3): 217-219.
    126) ztekin N, Nutku MS, Erim FB. Simultaneous determination of nitrite and nitrate in meat products and vegetables by capillary elecrophoresis. Food Chemistry, 2002, 76: 103-106.
    127) Pasda G, Hhndel R, Zerulla W. Effect of fertilizers with the new nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on yield and quality of agriculture and horticultural crops. Boil Fertil Soils, 2001, 34: 85-97.
    128) Petsul PH, Greenway GM, Haswell SJ. The development of an on-chip micro-flow injection analysis of nitrate with a cadmium reductor. Analytica Chimica Acta, 2001, 428: 155-161.
    129) Pratt PF, Nithipatikom K, Campbell WB. Simultaneous determination of nitrate and nitrite in biological samples by multichannel flow injection analysis. Anal. Biochem., 1995, 231: 383-386.
    130) Raum WR, Johnson GV. Improving nitrogen use efficiency for cereal production. Agron J, 1999, 91: 357-363.
    131) Reeves DW, Touchton JT. Relative phytotoxicity of dicyandiamide and availability of its nitrogen to cotton, corn, and grain sorghum. Soil Sci Soc Am J, 1986, 50: 1353-1357.
    
    
    132) Rozan TF, and Luther Ⅲ, GW. An anion chromatography/ultraviolet detection method to determine nitrite, nitrate, and sulfide concentrations in saline (pore) waters. Marine Chemistry, 2002, 77:1-6.
    133) Ruff7 TW Jr. Phosphorus stress effects on assimilation of nitrate. Plant Physiology, 1990, 94: 328-333.
    134) Sarudi I, Nagy I. A gas chromatographic method for the determination of nitrite ions in natural waters. Talanta, 1995, 42:1099-1102.
    135) Scaife A. The diurnal pattern of nitrate uptake and reduction by spinach. Annals of Botany, 1994, 73: 337-343.
    136) Soma MD, Bauls J, Quiones A, et al. Evaluation of 3,4-dimethylpyrazole phosphate as a nitrification inhibitor in a Citrus-cultivated soil. Boil Fertii Soils, 2001, 32: 41-46.
    137) Simal J, Lage MA. and Iglesias I. Second derivative ultraviolet spectroscopy and sulfamic acid method for determination of nitrates in water. Journal of the Association of Analytical Chemists, 1985, 68: 962-964.
    138) Siu DC, Henshall A. Ion chromatographic determination of nitrate and nitrite in meat products. Journal of Chromatography A, 1998, 804:157-160,
    139) Siagen IHG, Kerkhoff P. Nitrification inhibitors in agriculture and horticulture: a literature review. Fert Res, 1984, 5: 1-76.
    140) Smiciklas KD, Below FE. Role of cytokinin in enhanced productivity of maize supplied with NH_4~+ and NO_3. Plant Soil, 1992, 142:307-313.
    141) Suzuki N, and Kuroda R. Direct simultaneous determination of nitrate and nitrite by ultraviolet second-derivative spectrophotometry. Analyst, 1987, 112:1077-1079.
    142) Tortó IG, Marco JV, Calatayud JM. Flow-injection biamperometric determination of nitrate (by photoreduction) and nitrite with the NO_2~-/I reaction. Analytica Chimica Acta, 1998, 366: 241-249.
    143) Trenkel M. Improving fertilizer use efficiency controlled-release and stabilized fertilizers in agriculture. International Fertilizer Industry Association, Pads, 1997.
    144) Ullrich WR. Transport of nitrate and ammonium through plant membranes. In: Mengel K, Pilbeam DJ (eds) Nitrogen metabolism of plants. Oxford Science. Oxford: Clarendon Press, 1992, 121-137.
    
    
    145) Wang GF, Horita K, and Satake M. Simultaneous spectrophotometric determination of nitrate and nitrite in water and some vegetable samples by column preconcentration. Microchemical Journal, 1998, 58: 162-174.
    146) Wang MY, Glass ADM, Shaff JE, Kochian LV. Ammonium uptake by dee roots.Ⅲ. Electrophysiology. Plant Physiol, 1994, 104: 899-906.
    147) Wang P, Li SFY, Lee HK. Measurement of nitrate and chlorate in swimming pool water by capillary zone electrophoresis. Talanta, 1998, 45:657-661.
    148) Wang X, Below FE. Cytokinins enhanced growth and tillering of wheat induced by mixed nitrogen source. Crop Sci. 1996, 36: 121-126.
    149) Weiske A, Benckiser G, Herbert T, et al. Influence of the nitrification inhibitor 3,4-domethypyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emission, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Boil Fertil Soils, 2001, 34: 109-117.
    150) White JWJ. Relative significance of dietary source of nitrate and nitrite. J Agric Food Chem. 1975, 23(5): 886-891.
    151) WHO: Nitrates, Nitrites and N-nitroso Compounds, Environmental Health Citeda, 5 (1977).
    152) Wiesler F. Comparative assessment of efficacy of various nitrogen fertilizers. J Crop Prod,1998, 1: 81-114.
    153) Wissemeier AH, Linzmeier W, Gutser R, et al. The new nitrification inhibitor DMPP-Comparisons with DCD in model studies and field applications. Plant nutrition-Food security and sustainability of agro-ecosystems. Dordrecht: Kluwer Academic Publishers, 2001,752-753.
    154) Ximenes MIN, Rath S, Reyes FGR. Polarographic determination of nitrate in vegetables. Talanta, 2000, 51: 49-56.
    155) Xu JL, Xu X, Verstrate W. Adaption of Eo coil cell method for micro-scale nitrate measuremeng with the Griess reaction in culture media. Journal of Microbiological Methods, 2000, 41:23-33.
    156) Yordanov ND, Novakova E, Lubenova S. Consecutive estimation of nitrate and nitrite ions in vegetables and fruits by electron paramagnetic resonance spectrometry. Analytica
    
    Chimica Acta, 2001,47:131-138.
    157) Yoshizumi K, Aoki K. Determination of nitrate by a flow system with a chemiluminescent NO_x analyzer. Anal chem.. 1985, 57: 737-740.
    158) Zatar NA, Abu-Eid MA, Eid AF. Spectrophotometric determination of nitrite and nitrate using phosphomolybdenum blue complex. Talanta, 1999, 50: 819-826.
    159) Zerulla W, Barth T, Dressel J, et al. 3,4-Dimethylpyrazole phosphate (DMPP)-a new nitrification inhibitor for agriculture and horticulture. Biol Fertil Soils, 2001, 34: 79-84.
    160) Zerulla W, Pasda G, Hhndel R,Wissemeier A.H. The new nitrification inhibitor DMPP (ENTEC) for use in agricultural and horticultural crops-an overview. Plant nutrition-Food security and sustainability of agro-ecosystems. Dordrecht: Kluwer Academic Publishers, 2001, 754-755.
    161) Zhou MS, Guo DL. Simultaneous determination of chloride, nitrate and sulphate in vegetable samples by single-column ion chromatography. Microchemieal Journal, 2000, 65: 221-226.
    162) Zuther F, Ross B, Cammann K. Differential flow-injection potentiometry with double sensitivity using one ion-selective membrane. Analytica Chimica Acta, 1995, 313: 83-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700