辽东含矿岩系地球化学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辽东硼矿是我国特有的变质热液交代型硼矿,它发育在我国古元古代的“辽吉古裂谷”中,含矿岩系为经过角闪岩相区域变质作用一套变质岩组合,产于宽甸群的刘家河组、高小岭组、林家台组、老营沟组和砖庙组。含矿岩系主要分布在辽东半岛南、东部地区,西自营口,东至宽甸。主要含矿岩系包括:大石桥后仙峪含硼岩系、翁泉沟含硼岩系、杨木杆含硼岩系、砖庙含硼岩系。变质岩石类型有电气石变粒岩、黑云变粒岩、浅粒岩、斜长角闪岩、混合岩和碳酸盐岩。
     电气石变粒岩、黑云变粒岩、浅粒岩在区域上呈层状产出,层理清晰,延伸稳定,它们之间常有过渡关系。他们多为条带状、块状构造。
     电气石变粒岩原岩主要为泥岩、粘土岩、和砂岩,部分正变质岩原岩为中-酸性凝灰岩;黑云变粒岩、浅粒岩从主量元素、微量元素特征看,原岩表现出正变质的特点,但是从稀土元素看,黑云变粒岩、浅粒岩与电气石变粒岩之间关系密切,其稀土配分模式与大陆壳和次大陆壳地槽的粘土和粘土页岩稀土配分型式非常相似。辽东含矿岩系的变、浅粒岩原岩为一套泥质岩、粉砂岩和少量的火山碎屑岩。
     斜长角闪岩呈层状,透镜状;片麻状构造,细粒花岗变晶结构,斜长角闪岩的主量元素、微量元素、稀土元素都显示出其原岩为一套基性火山岩,具有大陆玄武岩的特点。混合岩为层状,其围岩为各种变粒岩和浅粒岩。它与围岩接触界线清楚,呈整合接触,在岩性上有过渡现象。在过渡层中有交错层理,岩层中常有残留的或呈夹层的斜长角闪岩。并常见有变、浅粒岩的残留体。花岗变晶结构,条带状、条痕状构造。地球化学方面,主量元素部分表现出岩浆成因特点,但其微量元素与变、浅粒岩相似,稀土配分模式也与变、浅粒岩相似。认为辽东含矿岩系混合岩为变、浅粒岩、斜长角闪岩经过选择重熔、混合交代形成的。
     碳酸盐岩一般呈似层状-透镜状,蛇纹石化强烈。在主量元素方面,与典型碳酸岩和碳酸盐岩相比,碳酸盐岩具有高镁、低钙的特点,其中TiO_2、Al_2O_3、MnO、K_2O、Na_2O、P_2O_5含量与沉积碳酸盐岩的含量相近;微量元素方面Sr、Ti亏损,特别是Ti亏损明显,反映了岩石可能是地壳成因;稀土元素方面宽甸地区的碳酸盐岩的稀土含量与中国西藏的前寒武纪碳酸盐岩和白垩纪碳酸盐岩的稀土含量非常相似,而与碳酸岩的稀土含量相差较大。反映了辽东含矿岩系的沉积成因。
East Liaoning borate deposits are special matamophic-hydrothermal-metasomatic borate deposits and distributed in“Liaoji paleorift”of Paleoproterozoic of China. Their ore-bearing series are a set of metamorphic assemblages having undergone regional metamorphism of amphibolite facies, occurring in the Liujiahe、Gaoxiaoling、Linjiatai, Laoyinggou and Zhuanmiao formations, and mainly distributed in southern and eastern East Liaoning Peninsula, from Yingkou City in the west to Kuandian in the south. The main ore-bearing series include the Houxianyu,Wengquangou,Ymugan,Zhuanmiao rock series. Their metamorphic rocks are tourmaline leptynites, biotite leptynites and leptites, amphibolite rocks, migmatite and Magnesium marbles. The tourmaline leptynites, biotite leptynites and leptites occurrring distinctly stratiform continuously extend in the region, and are commonly characterized with mutual transitional relationships and with banded and massive structures.
     The Protolithes of tourmaline leptynites are mainly mudstone, claystone and sandstone; and, some protolithes of positive metamorphic rocks are intermediate- acid tuff. According to the major elements and trace elements, the biotite granulite and granulite show characteristics of positive metamorphic rocks; but as to REE, biotite leptynites, leptites and tourmaline are closely associated mutually, and their REE distribution patterns are fairly similar to those of the clay and clay shale distributed in the continental crust and subcontinent crust geosyncline. The evidence from petrology and geochemistry indicates that protolithes of the leptynites and leptites are equivalent to a set of argillaceous rocks, siltstones and a minor amount of pyroclastic rocks. The amphibolites are stratiform or lentoid structures with gneissic texture and fine-grained granoblastic texture; the major elements, trace elements and REE of the plagioclase amphibolites all indicate that the protolithes of amphibolites are a set of basic igneous rocks with characteristics of continental basalt.
     The stratiform migmatites are surrended by their country rocks composed of a variety of leptynites and leptites. The migmatites are conformable contact with their country rocks with distint boundaries. There are cross-beddings in the transitional layers and some interbedded amphibolites still remain in the strata so that the relics of leptynites and leptites are commonly discovered. The characteristic of major elements are similar to igneous, but the trace and REEelements are similar to the leptynites and leptites. According to the characteristics, the migmatites were formed by the selected remelting or mix replacement of amphibolites, leptynites and leptites.
     The stratiform and lenticular Magnesium marbles with intense serpentinization can be traced across the area with discontinuation. Compare to the sedimentary and igneous carbonates , they are higher Mg and lower Ca compare, and the content of TiO2, Al2O3, MnO, K2O, Na2O, P2O5 are similar to carbonates sedimentary in the major elements, and as to trace elements, they are decrement Sr and Ti, especially Ti, which suggests that the carbonates are of originated from crust. Compare to carbonates of sedimentary of Cretaceous and Precambrian in Tibet onion of China, the REE elements are similar, but to the carbonate of igneous, they are different. So, the magnesium marbles of the ore-bearing series are of sedimentary origin.
引文
[1]宋世文,王运华.硼矿粉直接施用的研究.土壤肥料.1997(3):36-37.
    [2]罗锡裕.超硬材料的发展.产业论坛,2000(9):35-38.
    [3]肖荣阁,大井隆夫,野村雅夫,等.湘南高温热液矿床中硼同位素组成及分馏作用研究.华南地质与矿产,2001(2),1-7.
    [4]肖荣阁,大井隆夫,候万荣,等.天津蓟县锰方硼石矿物硼同位素研究,现代地质,2002,16(3):270-275.
    [5]孙福.我国西部硼市场前景广阔.建材工业信息,1996,6:19.
    [6]李文光.我国硼矿资源概况及利用.化工矿物与加工,2002,9:37.
    [7]冯本智,朱国林,董清水,等.辽东海城-大石桥超大型菱镁矿矿床的地质特点及成因.长春地质学院学报,1995,25(2):121-124.
    [8]冯本智,卢静文,邹日,等.中国辽吉地区早元古代大型-超大型硼矿床的形成条件.长春科技大学学报,1998,28(1):1-15.
    [9]姜春潮.辽吉东部前寒武纪地质.沈阳:辽宁科学技术出版社,1987.
    [10]刘敬党,肖荣阁,王文武,等.辽宁宽甸砖庙硼矿区成矿地质特征及找矿.地质与资源,2005,14(2):126-131.
    [11]刘敬党,肖荣阁,王翠芝,等.辽宁大石桥花岗质岩石成因分析及其在硼矿勘查中的意义.吉林大学学报[地球科学版],2005,6:714-719.
    [12]刘敬党.辽东地区下元古界镁硼酸盐矿床控矿模型及其勘查与评价研究:[博士学位论文] .北京:中国地质大学(北京),2006.
    [13]王翠芝.辽东古元古界镁质岩石成因及其对硼矿成矿控制作用:[博士学位论文] .北京:中国地质大学(北京),2007.
    [14]李永达.辽东早元古宙构造环境及岩石圈构造.辽宁地质,1992(3).
    [15]王秀璋.东北内生硼矿床的矿物组成和矿床成因研究.北京:科学出版社,1974.
    [16]辽宁省地质局第五勘探队.辽宁省营口县后仙峪硼矿床最终勘探储量报告,1966.
    [17]辽宁省地质局丹东地质大队二队.辽宁省凤城县翁泉沟铁硼矿矿床总结勘探报告,1976.
    [18]化学工业部地质勘探公司辽宁地质勘探大队.辽宁省宽甸县砖庙硼矿区栾家沟矿段勘探地质报告,1988.
    [19]张秋生.辽东半岛早期地壳与矿床.北京:地质出版社,1988 年.
    [20]化学工业部化学矿产地质研究院.辽东—吉南地区硼矿床控构造研究,1991.
    [21]化学工业部化学矿产地质研究院.辽吉内生硼矿矿物学及找矿标志研究,1993.
    [22]黄作良,王濮,冯本智.辽吉硼矿床矿物学.北京:地质出版社,1999.
    [23]路远发,陈毓川,李华芹,等.辽东古元古代裂谷中硼矿床成矿年代学研究.《地质学报》英文版,2005,79(2):287.
    [24]彭齐鸣,许虹.辽东-吉南地区早元古宙变质蒸发岩系及硼矿床.长春:东北师范大学出版社,1994.
    [25]冯本智,邹日,谢宏远.辽吉早元古宙裂谷带内含硼热水沉积建造与硼矿床.见:中国地质学会矿床地质专业委员会编.第五届全国矿床地质论文集.北京:地质出版社,1993.512-515.
    [26]冯本智,邹日.辽宁营口后仙峪硼矿床特征及成因.地学前缘,1994,1(4):235-237.
    [27]邹日.营口虎皮峪地区早元古代含硼岩系中热水沉积建造特征及硼矿成因:[博土学位论文].吉林:长春地质学院,1993.
    [28]邹日,冯本智.营口后仙峪硼矿容矿火山—热水沉积岩系特征.地球化学,1995,12,第 24 卷(增):46-54.
    [29]张景山.辽东硼镁石型硼矿床地质特征及成矿作用.辽宁地质,1994,4:289-324.
    [30]曲洪祥,张国仁,李显东,等.辽东地区硼矿床成矿模式探讨及找矿标志.见:中国地质调查局,辽吉地区地质与成矿研讨会论文集,2001,119-126.
    [31]曲洪祥,郭伟静,张永,等.辽东地区硼矿床成因探讨与硼矿远景区预测.地质与资源,2005,14(2):131-138.
    [32]王成文,刘永江,李东涛.辽河岩群南北区域对比的新证据.长春地质学院学报,1997,27(1):17-24.
    [33]白瑾.华北陆台北缘前寒武纪地质及铅锌成矿作用.北京:地质出版社,1993,1-123.
    [34]贺高品,叶慧文.辽东-吉南地区早元古代两种类型变质作用及其构造意义.岩石学报,1998,14(2):52-162.
    [35]敖丽娟,王殿忠,张海峰,等.辽宁东部白硼矿矿床特征及找矿方向.见:中国地质调查局,辽吉地区地质与成矿研讨会论文集.北京:中国地质调查局,2001,127-136.
    [36]王殿忠,敖丽娟,王 奇.营口东部区含硼蚀变岩带特征及找矿方向.辽宁地质,1998,4:251-260.
    [37]王殿忠,敖丽娟,张海峰,等.辽宁营口东部白硼矿床特征及找矿方向.辽宁地质,2000,17(4),249-258.
    [38]辽宁省地质矿产局第七地质大队.辽宁省宽甸县杨木杆硼矿典型矿床研究报告,1986.
    [39]化学工业部地质勘探公司辽宁地质勘探大队.辽宁省宽甸满族自治县夹皮沟乡砖庙硼矿区二人沟矿段详查地质报告,1992.
    [40]化学工业部地质勘探公司辽宁地质勘探大队.辽宁省宽甸满族自治县夹皮沟乡砖庙硼矿区花园沟矿段详查地质报告,1993.
    [41]王安平,姚杰,曹林.辽东硼矿中遂安石的微结构研究及其地质意义.世界地质,1997,16(4),27-30.
    [42]王翠芝,肖荣阁,刘敬党,等.辽宁营口后仙峪硼矿区超镁橄榄岩的岩石学特征.2006 年全国博士生学术论坛论文集-地球科学领域.北京:中国地质大学(北京).2006:213-221.
    [43]王翠芝,肖荣阁,刘敬党,等.辽宁营口后仙峪硼矿区超镁橄榄岩的地球化学特征及其对源区的约束.中国地质,2006,33(6):1247-1255.
    [44]黄作良,王濮.辽吉内生硼矿反吸收金云母的发现及其地质意义.化工地质,1991,16(1):11-16.
    [45]杨晓明.后仙峪硼矿区金云母蚀变岩与硼矿化之关系初探.化工矿产地质,1998,20(1):38-40.
    [46]王翠芝,肖荣阁,刘敬党,等.辽东吉南硼矿矿石特征及其与容矿岩石的关系.矿产地质,2006年增刊:277-280.
    [47]邱家骧.岩浆岩岩石学.北京:地质出版社,1983.
    [48]王中刚,于学元,赵振华,等.稀土元素地球化学.北京:科学出版社,1989.
    [49]李昌年.火成岩微量元素岩石学.武汉:中国地质大学出版社,1992.
    [50]赵振华.微量元素地球化学原理.北京:科学出版社,1997.
    [51]陈树良,郇彦清,邴志波.辽东地区古元古代侵入岩特征及构造岩浆大陆动力学演化.辽宁地质,2001,18(1):43-51.
    [52]董云鹏,王润三,周鼎武.南天山北缘榆树沟变质基性-超基性岩的地球化学及其成因机制.地球化学,2001,30(6):559-568.
    [53]赵伦山,张本仁.地球化学.北京:地质出版社,1988.
    [54]邓宏文,钱凯.沉积地球化学与环境分析.兰州:甘肃科学技术出版社,1993.
    [55]王生志,徐大地,张琦.后仙峪硼矿区硼矿地质特征及其成因探讨.地质与资源,2003,12(4),221-227.
    [56]全国矿产储量委员会.硼矿床勘探类型实例附图(硼矿地质勘探规范附件,内部资料).1987.
    [57]王翠芝,肖荣阁,刘敬党,等.辽宁营口后仙峪硼矿区超镁橄榄岩的控矿作用.矿产地质,2006,25(6):683-692.
    [58]周红春.辽东地区元古界硼矿床矿石学研究[硕士论文].北京:中国地质大学(北京),2006.
    [59]张立辉.内蒙兴和黄土窑地区早前寒武纪变质岩系原岩建造及变质作用[硕士论文].吉林:长春地质学院,1990.
    [60]王仁民,贺高品等.变质岩原岩图解判别法.北京:地质出版社,1986.
    [61]杨学明,杨晓勇,等译.岩石地球化学.[英]Hugh R.Rollison 著.合肥:中国科学技术大学出版社,2000.
    [62]邱家骧,林景仟.岩石化学.北京:地质出版社,1991.
    [63] Allegre,C.J. and Hart,S.R.Trace elements in Ignous petrology.Developments in Petrology,1973,5.New York.
    [64] Liu J L,Liu Y J,Chen H,et al. The inner zone of the liaoji paleorift:its early structural styles and structural evolution.Journal of Asian Earth Sciences,1997,15(1):19-31.
    [65] Peng,Q.M.,Feng,B.Z.,Liu,J.D and Zhou,R. Geology of the early Proterozoic boron deposits in eastern Liaoning,Northeastern China. Resources Geology,Special Issue No. 1993,15: 343-350.
    [66] Peng Q M,Palmer MR.The Paleoproterozoic boron deposits in eastern Liaoning,China: a metamorphosed evaporite.Precambrian Research,1995,72:185-197.
    [67] Qi-ming PENG.The Paleoterozoic Mg-Fe borate deposits Of Liaoning and Jilin Provinces,Northeast China.Economic Geology, 2002,97:93-108.
    [68] Jiang SY,Palmer M R,Peng Q M,et al. Chemical and stable isotope (B,Si,and O)compositions of Proterozoic metamorphosed evaporite and associated tourmalines from the Houxianyu borate deposit,eastern Liaoning,China.Chem.GeoL.,1997,135:189-211.
    [69] Jiang S Y,Ni P,Ling H F,et al. Boron isotope geochemistry of borate and magnesite deposits in eastern Liaoning and Jilin provinces of China.in:piestrzynski,et al.eds.Mineral Deposits at the Beginning of the 21st Century.Swets & Zeitlinger publishers Liss. 2001,987-991.
    [70]Hess P C.Phase equilibria constraints on the origin of ocean floorbasalts .Morgen J P Blackman D K Sinton J M. MantleFlow and Melt Generation at Mid-Ocean Ridges OxfordPergamon 1992,67-102.
    [71] Hugh R.Rollonson.Using Geochemical Data-Evalution, Presention,interpretation.Pearson Education limited,1993.
    [72] Xuehui Xia,Fei Yan,YuHai Zhao,et.al.Geological features and mineralization of the uranium-bearing vonsenite deposit in the Liaodong rift.Mineral Deposit Research:meeting the global challenge.The 8# Beinnial SGA Meeting,2005.
    [73] Feihongcai et.al.Geochemical characteristics and genesis of Na-rich rocks in the bayan obo REE-Nb-Fe deposit,inner Mongolia,china,the 8th Biennial SGA meeting,August 18-21,2005.
    [74] Griffin WL,Slack J F,Ramsden AR,et al. Trace elements in tourmaline from massive sulfide deposits and tourmalinites:Geochemical controls and exploration applications. Economic Geology,1996,91:657-675.
    [75] Roda E,Pesquera A, Velasco F. Tourmaline in granitic pegmatites and their country rocks,Fregeneda area,Salamanca,Spain. Canadian Mineralogist,1995,33:835-848.
    [76] Chaussidon M,Appel PWU.Boron isotopic composition of tourmalines from the 3.8Ga-old Isua supracrustals,West Greenland:Implications on the δ11B value of Early Archean seawater. Chemical Geology. 1997,136:171-180.
    [77] Kistler,R. B.,and Helvaci,C.Boron and Borates. In Industrial Minerals and Rocks (S.J. Lefond,ed.),Soc.Min.Eng.,AIME.,1994,171-186.
    [78] Musachi M.,Oi T.,Ossaka T.,and Kakihana H. Natural boron isotope fractionation between hot spring water and rock in direct contact,Isotopenraxis 1991,27:163-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700