Cu(In,Ga)Se_2薄膜和CuInSe_2/CdS复合薄膜的制备及光电性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的进步、经济的发展,人们对能源需量求越来越多,而不可再生能源的枯竭以及对环境造成的污染与破坏已经成为21世纪主要问题之一。将太阳能转换成电能是解决能源枯竭和地球环境污染等问题的一个最好、最直接和最有效的方法之一。在各种类型的太阳电池中,Cu(In_(1-x)Ga_x)Se_2(CIGS)太阳电池已经成为目前光伏领域中的研究热点。
     CIGS是一种Ⅰ-Ⅲ-Ⅵ族四元化合物直接带隙的半导体材料,黄铜矿的晶体结构。其禁带宽度可以在1.04-1.67eV范围内调整,可见光吸收系数高达105cm-1数量级。CIGS薄膜太阳电池因具有转换效率高、性能稳定、可薄膜化和低成本等优点而最有可能实现商业化生产的第三代太阳电池。制备低成本、高质量和大面积的CIGS吸收层是实现CIGS太阳电池的商业化生产的关键所在。在众多的制备方法中,电化学沉积法制备CIGS薄膜具有成本低、可实现大面积制备、原材料利用率高和制备系统稳定性好等优点而受到广泛关注,具有良好的应用发展潜力。本论文利用一步电化学法制备了CIGS薄膜,在此基础上通过化学水浴制备了CdS缓冲层。研究了沉积条件对CIGS形貌结构的影响,并且利用表面光伏技术研究了CIGS薄膜以及CIS/CdS薄膜的光电特性。
     首先以氯化铜,三氯化铟,三氯化镓,亚硒酸以及氨基磺酸和邻苯二甲酸氢钾做为缓冲剂的水溶液做为电解液,添加缓冲剂氨基磺酸和邻苯二甲酸氢钾,调节溶液pH值避免了沉积过程中氢气的产生,利用一步电化学法在FTO玻璃基底上沉积出CIGS薄膜。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电子能谱仪(EDS)对样品表征,结果发现电解液pH值为2.0,退火温度为500℃时,制备的CIGS薄膜形貌结构、结晶效果最为理想。同时采用表面光伏技术,研究了不同化学计量比对CIGS薄膜中光电荷动力学过程,其中化学计量比Ga/(In+Ga)约为0.3时,表面光伏最强,光电性能最好。
     其次通过在CIS薄膜上利用化学水浴法沉积了CdS过渡层,利用表面光伏技术研究了CdS/CIS界面电荷传输过程,结果发现:通过HCl溶液处理去掉CdS过渡层后的CIS薄膜的光伏强度明显增加。EDS结果发现CIS薄膜中Cu元素含量较少并且存在Cd元素,这可能是由于在沉积CdS过程中,部分Cd元素通过扩散进入CIS薄膜内部代替了Cu元素形成CdCu施主,促使CdS/CIS表面反型,改善了CIS表面缺陷,促进了光生电子-空穴对的分离。
Along with social progress, economic development, energy demand higher and higher,while the depletion of non-renewable energy and the environment caused by pollution anddestruction has became one of the main problems of the21st century. The use of solar cellsdirectly convert solar energy into electrical energy is to solve the problems of energydepletion and the earth and environmental pollution is one of the best, one of the most directand most effective way. Various types of solar cells from Cu (In_(1-x)Ga_x)Se_2(CIGS) as absorblayer of solar cells to become a research hotspot in the field of photovoltaic. CIGS is aI-III-VI family compound semiconductor materials, has a crystal structure of chalcopyrite. Itsband gap can be adjusted within the1.04-1.67range, with a direct band gap, and visible lightabsorption coefficient of up to105cm-1order of magnitude. CIGS thin film solar cell withhigh conversion efficiency, stable performance, low cost and so on become the mostpromising third-generation solar cell to achieve commercial production of solar cells. The keyis how low-cost preparation of large area, high-quality solar cells, the key part of the CIGSabsorber layer can achieve the commercial production of CIGS solar cells. CIGS thin filmprepared by electrodeposition method can achieve the preparation of large area, low prices,preparation of high efficiency, good stability of the preparation system, which has beenextensively studied, with a wide range of application development prospects. Our team hasprepared CIGS thin films by one step electrodeposition using a constant voltage, and thedeposition conditions and preparation of CIGS thin film optical and electrical properties wereanalyzed.
     In this paper, we make copper chloride, indium trichloride, gallium trichloride, seleniousacid as electrolyte, amino acid and potassium hydrogen phthalate as a buffer aqueous solution, CIGS thin films were deposited on the FTO glass substrate by one step electrochemicalmethod in a constant potential.The CIGS films were selenide annealed to improve thecrystallinity of the film and optimize the stoichiometry. By X-ray diffraction (XRD), scanningelectron microscope (SEM), energy dispersive spectroscopy (EDS), and surface photovoltagespectrometer to sudy the characterization of the samples. From adjustting the pH value byadding the buffer amino acid and potassium hydrogen phthalate, we can avoid the generationof hydrogen in the deposition process. We conduct research and analysis prepared by one stepelectrodeposition of CIGS conditions and influencing factors.When the pH is2.0of theelectrolyte, annealing temperature is500°C, the crystallization effect and photoelectricproperties is best ideal.
     Finally, we deposit CdS thin films on the CIS thin-film by chemical bath deposition(CBD), then remove the CdS thin films by hydrochloric acid. We use surface photovoltagespectroscopy (SPS) to study the CIS thin film surface photovoltage changes before and afterdepositing CdS thin films. The results showed that CdS thin films can enhance separationefficiency of the CIS thin films. We use the EDS to study the composition of CIS thin-filmbefore and after depositting CdS thin films. The results showed that we can find Cd elementin CIS thin film after remove the CdS, we think that this phenomenon is in the process ofdeposition of CdS, some Cd elements enter inside the CIS thin film by diffusion instead ofCu, to become CdCudonor, promote the CdS/CIS surface anti-type improve the CISsurface defects, to promote the photoinduced electron-hole pair separation, so that the opticaland electrical properties of CIS thin-film obtain enhancement.
引文
[1]政府间气候变化专门委员会,2007:决策者摘要.气候变化2007:影响、适应和脆弱性。政府间气候变化专门委员会第四次评估报告第二工作组的报告[R].英国,剑桥,剑桥大学出版社,7-22.
    [2]加速中国可再生能源商业化能力建设项目[J].中国能源,2000,4:24-25.
    [3] European Roadmap for PV R&D. European Commission Joint Rrsearch Center [R],2004EUR21087EN.
    [4] Poliakoff M., Licence P. Sustainable technology: green chemistry[J]. Nature,450(7171):810-812.
    [5]赵芸.节约能耗的现代生活-太阳能的应用[J].建筑与发展,2000,4:19-20.
    [6] Romeo A., Terheggen M., Abou-Ras. D., et al. Development of thin-film Cu(In,Ga)Se2and CdTe solarcells[J]. Prog.Photovolt:Res.Appl.,2004,12:93-111.
    [7] Goetzberger A, Hebling. C. Phtotvoltaic materials,past,present, future[J]. Solar Energy Materials andSolar Cells.2000,62:1-19.
    [8]黄昆,韩汝琦.固体物理学[M].北京:科学出版社,1988.
    [9] Sze S. M.半导体器件物理与工艺[M].王阳元,嵇光大,卢文豪等译.北京:科学出版社,1992.
    [10]刘恩科,朱秉升.半导体物理学[M].北京:国防工业出版社,1979.
    [11]顾祖毅,田立林,富力文.半导体物理学[M].北京:电子工业出版社,1995.
    [12]庄大明,张弓.铜铟镓硒薄膜太阳能电池的发展现状以及应用前景.[J]真空.2004,4(2):1-7.
    [13]王长贵,关于我国薄膜太阳能电池研发与产业化问题的探讨[J].阳光能源,2010,8:38-40.
    [14]耿新华,孙云.王宗畔,李长健.薄膜太阳电池的研究进展[J].物理,1999,28:96-102.
    [15] Jaffe J. E., Zunger A. Theory of the band-gap anomaly in ABC2chalcopyrite semiconductors[J].Phys.Rev.B,1984,29:1882-1906.
    [16]李承辉,王锴,郑炜,等.宽光谱太阳能电池[J].化学进展,2012,4:8-16.
    [17] Green M. A. Lambertian light trapping in textured solar cills and light-emitting diodes: analyticalsolutions. Prog.Photovolt:Res.Appl.[J],2002,10:235-241.
    [18] Green M. A. Multiple band impurity photovoltaic solar cells: General theory and comparison totandem cells. Prog.Photovolt:Res.Appl[J].2001,9:137-144.
    [19] Green M. A.20085th. Intemational Conference on Group IV Photonics[R].2008,389.
    [20] Yakushev M. V., Mudryi A. V., Gremenok V. F., et al. Influence of growth conditions on the structuralquality of Cu(InGa)Se2and CuInSe2thin films[J]. Thin Solid Films.2004,452:133-136.
    [21] Zhang L., Jiang F. D., Feng J. Y. Formation of CuInSe2and Cu(InGa)Se2films by electrodepositionand vacuum annealing treatment[J]. Solar Engergy Materials&Solar Cills,2003,80:483-490.
    [22] Jackson P., Hariskos D., Lotter E., et al. New world record efficiency for Cu(In, Ga)Se2thin-film solarcells beyond20%[J]. Prog. Photovolt: Res. Appl.,2011,19:894-897.
    [23]张晓科,关勇辉,王可等. CIS/CIGS基黄铜矿系光伏材料研究进展[J].稀有金属.2006,30(4):528-532.
    [24] Pudov A O. Impact of secondary barriers on CuIn1-xGaxSe2Solar-cell operation. In partial Fulfillmentof the Requirements for the Degree of Doctor of Philosophy Colorado State[D] University For Collins,Colorado,2005.
    [25]李文科,唐振方. Se量对CIGS薄膜的结构及光学性质的影响[J].材料科学与工程学报.2010,28(3):408-411.
    [26]叶飞,禹争光. CIGS薄膜太阳能电池研究进展[J].东方电气评论.2011,25:61-67.
    [27] Repins I, Contreras M A, Egaas B, et al.19.9%-efficient ZnO/CdS/CuInGaSe2solar cell with81.2%fill factor[J]. Prog. Photovolt: Res. Appl.,2008,16:235-239
    [28]曹洁,曲胜春,刘孔等.周期换向脉冲电沉积-硒化法制备铜铟镓硒薄膜[J].功能材料与器件学报.2011,17(2):187-194.
    [29] Mrin L. Outdoor stability performance of thin-film photovoltaic modules at SERL[J]. IEEE PVSC.1989,89:761-763.
    [30] Gay R. Prerequisites to manufacturing thin-film photovoltaics[J]. Progress in Photovoltaics: Researchand Applications.1997,5:337-343.
    [31] Kushiya K., Kuriyagawa S., Tazawa K. Improved stability of CIGS-based thin film PV modules[J].Proc. IEEE PVSC,2006:348-351.
    [32] Cheng C. L., Chan C. Y. Empirical approach to BIPV evaluation of solar irradiation for buildingapplications[R].2005,30:1055-1074
    [33] Birkmire R. W. Compound polycrystalline solar cells: recent progress and Y2K perspective[J]. SolarEnergy Materials&. Solar Cells,2001,65:17-28.
    [34] Wagner S., Shay J. L., Migliorato P. CuInSe2/CdS heterojunction photovoltaic detectors[J]. Appl.Phys. Lett.,1974,25:434-435.
    [35] Rockett A., Birkmire R. W. CuInSe2for photovoltaic applications[J]. Appl. Phys.,1991,70:81-97.
    [36] Tarrant E., Ermer J.Ⅰ-III-Ⅵ multinary solar cells based on CuInSe2. Proc. of23th IEEE PVSC[R],1993,372-378.
    [37] Gabor A. M, Tuttle J. R., Albin D. S., et al. High-efficiency CuIn1-xGaxSe2solar cells mmade from(InxGa1-x)2Se3precursor films[J]. Appl. Phys. Lett.,1994,65:198-200.
    [38] Kessler J., Wennerberg J., Bodegard M. Highly efficient Cu(In, Ga)Se2mini-modules[J]. Solar EnergyMaterials&. Solar Cells,2003,75:35-47.
    [39] Dhere R. G. Thin film photovoltaic[J]. J. Vac. Sci. Technol. A,2005,23:1208-1214.
    [40] Dimmler B., Powalla M., Schaeffler R. CIS solar modules: pilot production at wuerth solar[J]. IEEEPVSC,2005:189-194.
    [41]王育伟,刘小峰,陈婷婷,等.薄膜太阳电池的最新进展[J].半导体光电,2008,2:151-157
    [42]马光耀,康志君,谢元锋.铜铟镓硒薄膜太阳能电池的研究进展及发展前景[J].2009,16(5):46-49.
    [43] Shigeru N, Miguel C., Ingrid R., et al. CIGS absorbers and processes[J]. Prog. Photovolt: Res. Appl.2010;18:453–466
    [44] Romeo A., Terheggen M., Abou-Ras D., et al. Development of thin-film Cu(In, Ga)Se2and CdTeSolar Cell[J]. Prog. Photovolt: Res. Appl.2004,12:93-111.
    [45]张力,孙云,何青等. Cu(I n,Ga) Se2集成电池吸收层的三步共蒸工艺[J].太阳能学报.2006,27(9):898-899.
    [46] Klenk R., Walter T., Schock H. W., et al. A model for the successful growht of polycrystalline films ofCuInSe2by multisource physical vacuum evaporation[J]. Adv. Mater.,1993,5:114-119.
    [47] Chichibu S. F., Sugiyama M., Ohbasami M., et al. Use of diethylselenide as a less-hazzrdous sourcefor preparation of CuInSe2photo-absorbers by selenization of metal precursors[J]. Journal of CrystalGrowth,2002,243:404-409.
    [48] Huang Q., Reuter A., Amhed K., et al. Electrodeposition of Indium on Copper for CIS and CIGS SolarCell Applications[J]. Journal of The Electrochemical Society.2011,158(2):57-61.
    [49] Woo-Chul K., Sung-Hwan H., Tae G. K., et al. Electrodeposition of Cu(In,Ga)Se2Crystals onHigh-Density CdS Nanowire Arrays for Photovoltaic Applications[J]. Crystal Growth&DesignArticle.2010,10:5297-5301.
    [50]李建庄,赵修建,夏冬林.热处理对电沉积制备CulnGaSe2薄膜的影响[J].感光科学与光化学.2005,23(4):241-246.
    [51]李建庄,赵修建,夏冬林.电沉积制备CulnGaSe2薄膜及性能[J].武汉理工大学学报.2005,27(10):1-3.
    [52]吴世彪,徐玲.电沉积法制备CIGS薄膜的工艺研究[J].安徽化工.2007,33(6):32-33.
    [53] Sebastian P. J, Calixto M. E., Bhattacharya R. N. CIS and CIGS based photovoltaic structuresdeveloped from electrodeposited precursors[J]. Solar Energy Materials&Solar Cells59(1999)125-135.
    [54] Xia D., Xu M., Li J. Z., et al. Co-electrodeposition and Characterization of Cu (In, Ga)Se2thin films[J].J MATER SCI.41(2006)1875–1878.
    [55] Xia D., Li J., zhuang, X. M., et al. Electrodeposited and selenized CIGS thin films for solar cells[J].Journal of Non-Crystalline Solids354(2008)1447–1450.
    [56] Friedfeld R., Raffaelle R. P., Mantovani J. G. Electrodeposition of Cu(In, Ga)Se2films[J]. SolarEnergy Materials&Solar Cells58(1999)375-385
    [57] Yusuke Oda, Masakazu Matsubayashi, Takashi Minemoto, et al. Fabrication of Cu(In, Ga)Se2thin filmsolar cell absorbers from electrodeposited bilayers[J]. Current Applied Physics,2010,10:146–149.
    [58] Ugarte R., Schrebler R., Cordova R., et al. Electrodeposition of CuInSe2thin films in a glycine acidmedium[J]. Thin Solid Films,1999,340:117-124
    [59] Bhattacharyaa R. N., Hiltner J. F., Batchelor W., et al.15.4%Cu(In, Ga)Se2-based photovoltaic cellsfrom solution-based precursor films[J]. Thin Solid Films361-362(2000)396-399.
    [60] Brown B. J. Chemical spary pyrolysis of copper indium diselenide cadmium sulfide solar cells[R].Stanford University,1989.
    [61] Joliet M. C., Antoniadis. C., Andrew. R. Laser-induced synthesis of thin CuInSe2[J]. Appl. Phys. Lett.,1984,46:266-267.
    [62] Laued L. D., Joliet. M. C, Antoniadis. C. Laser-induced synthesis of thin CuInSe2.films[J]. Solar Cells,1986,16:199.
    [63] Sang B., Chen L., Akhtar M., et al. Simplified hybrid process: application to normal, sub-micron, andlight-trapping CIGS devices[R]. U. S. DOE Solar Energy Technologies Program Review Meeting,Denver,2005
    [64] Xia D. L, Zhao X. J, Li J. Z. Influence of Na-citrate’s Concentration on Cu(In, Ga)Se2thin films byElectrodeposition[J]. J. Synth. Cryst.,2005,34(4):704-708.
    [65] Savadogo O. Chemically and electrochemically deposited thin films for energy materials[J]. SolarEnergy Materials and Solar Cells.1998,52:361-388.
    [66] Ganchev M. G., Kochev K. D. Investigation of the electrodeposition process in the Cu-In-Se system[J].Solar Energy Materials and Solar Cells,1993,31:163-170.
    [67] Kois J., Ganchev M., Kaelin M., et al. Electrodeposition of Cu-In-Ga thin metal films for Cu(In,Ga)Se2based solar cells[J]. Thin Solid Films,2008,516:5948-5952.
    [68]]方惠群,虞振新.电化学分析[M].北京:原予能出版社,1984.182-196.
    [69]王信春,胡彬彬,王广君等.以乙醇作溶剂电沉积制备CIGS薄膜[J].物理化学学报,2011,27(12):2826-2830.
    [70] Kumar S. R., Prajapati B., Tiwari S. K., et al. Growth and characterization of copper, indium andcopper-indium alloy films non-aqueous method of eletrodeposition[J]. Indian Journal of Pure&Applied Physics,2008,46:198-203
    [71] Long F., Wang W. M., Du J. J., et al. CIS(CIGS) thin films prepared for solar cells by one-stepelectrodeposition in alcohol solution[J]. Journal of Physics: Conference Series,2009,152:012074
    [72]唐雪娇,丑景垚,韩长秀等.无氰电镀铜新工艺试验研究[J].南开大学学报,2006,39:37-40
    [73]庄公惠.氨基葡聚糖对水溶液中铜离子的吸附与脱附[J].物理化学学报,1989,5:600-603
    [74] Zha S., Yuan J. S., Zhang G., et al. Growth and Properties of CuInS2Films by Solid-StateSulfurization[J]. CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY,2007,27:63-66
    [75] Liu X. Y., Wang G. J., Tian B. L., et al. Growth and Properties of CuInS2by Two-stepElectrodeposition and Solid-state Sulfurzation[J], Chin. J. Chem.2008,24:2035-2038
    [76] Wang G. J., Cheng G., Hu B. B., et al. Preparation of CuIn(SxSe1–x)2thin films with tunable band gapby controlling sulfurization temperature of CuInSe2[J]. Mater. Res.2010,25:2426-2429
    [77]]Hodsttom J., Bodegard M.,Hariskoas D., et a1. ZnO/CdS/CIGS thin film solar cells withimproved performance[J]. Electron Device Society,1993,364-371
    [78] Persson C., Zunger A. Anomalous Grain Boundary Physics in Polycrystalline CuInSe2: The Existenceof a Hole Barrier[J]. Phys. Rev. Lett.,2003,91:266401-1-266401-4
    [79] Yan Y. F., Jiang C. S., Noufi R., et al. Electrically Benign Behavior of Grain Boundaries inPolycrystalline CuInSe2Films[J]. Phys. Rev. Lett.,2007,99:235504-1-235504-4
    [80] Wuerz R., Eicke A., Frankenfeld M., et al. CIGS thin-film solar cells on steel substrates[J]. Thin SolidFilms,2009,517:2415-2418
    [81] Jebbari N., Ouertani B., Ramonda M., et al. Structural and Morphological studies of CuIn(1-x)AlxS2deposited by spray on various substrates[J]. Energy Procedia,2010,2:79–89
    [82] Calixto M. E., Sebastian P. J., Bhattacharya R. N. Compositional and optoelectronic properties of CISand CIGS thin fillms formed by electrodeposition[J]. Solar Energy Materials&Solar Cells,1999,59:75-84
    [83]敖建平,杨亮,闫礼等.硒化前后电沉积贫铜和富铜的Cu(In1-xGax)Se2薄膜成分及结构的比较[J].物理学报,2009,58:1870-1878
    [84] Long F., Wang W. M., Du J. J., et al. CIS(CIGS) thin films prepared for solar cells by one-stepelectrodeposition in alcohol solution[J]. Journal of Physics: Conference Series,2009,152:74-120
    [85] Fu Y. P., You R. W. Lew K. K. Electrochemical Properties of Solid–Liquid Interface of CuInGaSePrepared by Electrodeposition with Various Gallium Concentrations[J]. Electrochem. Soc.,2009,156:E133–E138
    [86] Yusuke O., Masakazu M., Takashi M., et al. Fabrication of Cu(In, Ga)Se2thin film solar cell absorbersfrom electrodeposited bilayers[J]. Current Applied Physics,2010,10: S146-S149
    [87] Kois J., Ganchev M., Kaelin M., et al. Electrodeposition of Cu–In–Ga thin metal films for Cu(In,Ga)Se2based solar cells[J].Thin Solid Films,2008,516:5948–5952
    [88] Bhattacharya R. N., Arturo M. CuIn1-xGaxSe2-based photovoltaic cells from electrodeposited precursorfilms[J]. Solar Energy Materials&Solar Cells,2003,76:331–337
    [89] B er K. W. CdS enhances Voc and fill factor in CdS/CdTe and CdS/CuInSe2solar cells[J]. J.Appl.Phys.2010,107:023701-1-023701-6
    [90] Lei C., Duch M., Robertson I. M.. Effects of solution-grown CdS on Cu(InGa)Se2grain boundaries[J].J.Appl. Phys.2010,108:114908-1-114908-6
    [91] Morkel M., Weinhardt L., Lohmuller B. et al. Umbach Flat conduction-band alignment at theCdS/CuInSe2thin-film solar-cell heterojunction[J]. Appl. Phys. Lett.2001,79(27):4482-4488
    [92] David L. Young. An electrostatic barrier to trap filling in CuIn1-xGaxSe2[J]. Appl. Phys. Lett.2003,83(12):2363-2368
    [93] Pudov A. O. Secondary barriers in CdS–CuIn1xGaxSe2solar cells[J]. J.Appl. Phys.2005,97:064901-1-064901-6
    [94]敖建平,孙云,刘琪等. CIGS电池缓冲层CdS的制备工艺及物理性能[J].太阳能学报,2006,27:682-686
    [95] Bhattacharya R. N., Contreras M. A., Noufi R. N. High efficiency thin-film CuIn1xGaxSe2photovoltaic cells using a Cd1xZnxS buffer layer[J]. Appl. Phys. Lett.2006,89:253503-1-253503-2
    [1] Jackson P., Hariskos D., Lotter E., et al. New world record efficiency for Cu(In, Ga)Se2thin-film solarcells beyond20%[J]. Prog. Photovolt: Res. Appl.,2011,19:894-897.
    [2] Antonio L, Steven H. Handbook of Photovoltaic Science and Engineering[J],2nd. San Francisco:Wiley,2011:546-599.
    [3] Bhattacharya R. N, Oh M. K, Kim Y. CIGS-based solar cells prepared from electrodeposited precursorfilms[J]. Sol. Energ. Mat. Sol. C,2012,98:198-202.
    [4] Niki S, Contreras M, Repins I, et al. CIGS absorbers and processes[J]. Prog. Photovolt: Res. Appl.,2010,18:453-466.
    [5] Repins I, Contreras M. A, Egaas B, et al.19.9%-efficient ZnO/CdS/CuInGaSe2Solar Cell with81.2%Fill Factor[J].Prog. Photovolt: Res. Appl.2008,16:235-239.
    [6]张力,孙云,何青,等. Cu(In,Ga)Se2集成电池吸收层的三步共蒸工艺[J].太阳能学报,2006,27(9):895-899.
    [7] Kaelin M, Rudmann D, Kurdesau F, et al. CIS and CIGS layers from selenized nanoparticleprecursors[J]. Thin Solid Films,2003,431–432:58-62.
    [8] Kapur V. K, Bansal A, Le P, et al. Non-vacuum processing of CuIn1-xGaxSe2solar cells on rigid andflexible substrates using nanoparticle precursor inks[J]. Thin Solid Films,2003,431-432:53-57.
    [9] Xia D. L, Zhao X. J, Li J. Z. Influence of Na-citrate’s Concentration on Cu(In, Ga)Se2Thin Films byElectrodeposition[J]. J. Synth. Cryst.,2005,34(4):704-708.
    [10] Calixto M. E, Sebastian P. J, Bhattacharya R. N, et al. Compositional and optoelectronic properties ofCIS and CIGS thin films formed by electrodeposition[J]. Mat. Sol. C,1999,59:75-84.
    [11] Ganchev M, Kois J, Kaelin M, et al. Preparation of Cu(In,Ga)Se2layers by selenization ofelectrodeposited Cu–In–Ga precursors[J]. Thin Solid Films,2006,511–512:325-327.
    [12]敖建平,孙国忠,闫礼,等.一步法电化学沉积Cu(In1-x, Gax)Se2薄膜的特性[J].物理化学学报,2008,24(6):1073-1079.
    [13] Kwak W. C, Han S. H, Kim T. G, et al. Electrodeposition of Cu(In,Ga)Se2Crystals on High-DensityCdS Nanowire Arrays for Photovoltaic Applications[J]. Cryst. Growth Des.,2010,10(12):5297-5301.
    [14]王信春,王广君,庞山,等. pH值对电沉积CuInSe2薄膜的组份、结构及光电性能的影响[J].无机化学学报,2011,27(12):2437-2442.
    [15] Bhattachary R. N, Fernandez A. M. CuIn1-xGaxSe2-based photovoltaic cells from electrodepositedprecursor films[J]. Sol. Energ. Mat. Sol. C,2003,76:331-337.
    [16]王信春,胡彬彬,王广君,杨光红,等.以乙醇作溶剂电沉积制备CIGS薄膜[J].物理化学学报,2011,27(12):2826-2830.
    [17] Long F, Wang W. M, Du J. J, et al. CIS(CIGS) thin films prepared for solar cells by one-stepelectrodeposition in alcohol solution[J]. Phys.: Conf. Ser.,2009,152:012074-012078.
    [18] Kois J, Ganchev M, Kaelin M, et al. Electrodeposition of Cu-In-Ga thin metal films for Cu(In, Ga)Se2based solar cells[J]. Thin Solid Films,2008,516:5948-5952.
    [19] Gabor A. M, Tuttle J. R, Albin D. S, et al. High-efficiency CuInxGa1-xSe2solar cells made from(Inx,Ga1-x)2Se3[J]. Appl. Phys. Lett.,1994,65(2):198-200.
    [20] Hermann A. M, Mansour M, Badri V, et al. Deposition of smooth Cu(In,Ga)Se2films from binarymultilayers[J]. Thin Solid Films,2000,361–362:74-78.
    [21] Seto J Y W. The electrical properties of polycrystalline silicon films[J]. J. Appl. Phys.,1975,46(12):5247-5254.
    [22]唐雪娇,丑景垚,韩长秀,等.无氰电镀铜新工艺试验研究[J].南开大学学报(自然科学版),2006,39:37-40.
    [23]庄公惠.氨基葡聚糖对水溶液中铜离子的吸附与脱附[J].物理化学学报,1989,5:600-603
    [24]庞山,张兴堂,程轲,等.表面光电压测量中的最佳相位[J],物理化学学报,2005,21(1),42-46
    [25]王华英,朱海丰,何杰,李丽宏.半导体光电特性的表面光电压谱表征[J].河北建筑科技学院学报.2004,21(2):90-93.
    [26]刘向阳,张振龙.运用表面光电压技术对半导体表面光电特性的研究.烟台师范学院学报(自然科学版).2003,19(1):64-67
    [27]刘向阳,王蓓,郑海务,黄明举,等.表面光电压谱及其检测技术实验[J].物理实验.2009,12:1-4.
    [28]王德军,江雷,李萍,等.场调制对表面光电压谱的影响[J],高等学校化学学报,1991,12(4):541-542
    [29]井立强,孙晓君,蔡伟民,等. ZnO纳米粒子的表面光电压谱和光催化性能[J].化学学报.2002,60:1788-1783.
    [30]曹健,汪茫,孙景志,等.表面光电压谱(SPS)在有机半导体材料研究中的应用[J].功能材料.2002,33(3):231-233.
    [31] Chang S. K, Stephanie S. L, Enrique D. G, et al. Transient photovoltaic behavior of air-stable, invertedorganic solar cells with solution-processed electron transport layer[J]. APPLIED PHYSICS LETTERS2009,94,113302-1-3.
    [32] Park. H, Zuo J. M. Direct measurement of transient electric fields induced by ultrafast pulsed laserirradiation of silicon[J]. APPLIED PHYSICS LETTERS.2009,94:251103-1-3.
    [33]张清林,王德军,魏霄,等,利用瞬态光电压技术对纳米TiO2薄膜电极中光生电荷传输机理的研究[J],高等学校化学学报,2006,27(3):550-552.
    [1] Jehad A. M. AbuShama. Properties of ZnO/CdS/CuInSe2Solar Cells with Improved Performance[J].Prog. Photovolt: Res. Appl.2004,12:39–45
    [2] Jiang C. S. Electrical modification in Cu(In,Ga)Se2thin films by chemical bath deposition process ofCdS films[J]. JOURNAL OF APPLIED PHYSICS.2005,97:053701
    [3] Karl W. B er. Cadmium sulfide enhances solar cell efficiency[J]. Energy Conversion and Management.2011,52:426-436.
    [4] Karl W. B er. CdS enhances Voc and fill factor in CdS/CdTe and CdS/CuInSe2solar cells[J].JOURNAL OF APPLIED PHYSICS.2010,107:023701
    [5] Pookpanratana S. CdS/Cu(In,Ga)Se2interface formation in high-efficiency thin film solar cells[J].APPLIED PHYSICS LETTERS.2010,97:074101
    [6] Lei C, Duch M, Robertson I. M. Effects of solution-grown CdS on Cu(InGa)Se2grain boundaries[J].JOURNAL OF APPLIED PHYSICS.2010,108,114908-1
    [7]薛玉明,孙云. CIGS薄膜太阳电池异质结的结构初析[J].人工晶体学报.2004,33(5):841
    [8] Nakada T. Direct evidence of Cd diffusion into Cu(In,Ga)Se2thin films during chemical-bathdeposition process of CdS films[J]. Appl Phys Lett.1999,74(26):2444
    [9] Morkel M, Weinhardt L, Lohmuller B, Heske C, Umbach E. Flat conduction-band alignment at theCdS/CuInSe2thin-film solar-cell heterojunction[J]. Appl Phys Lett.2001,79(27):4482.
    [10] David L. Young. An electrostatic barrier to trap filling in CuIn1-xGaxSe2[J]. Appl Phys Lett.2003,83(12):2363
    [11] A. O. Pudov. Secondary barriers in CdS–CuIn1xGaxSe2solar cells[J]. Appl Phys Lett.2005,97:064901-1
    [12] Niki, S.; Contreras, M.; Repins, I.; Powalla, M.; Kushiya, K.; Ishizuka1, S.; Matsubara, K. Prog.Photovolt: Res. Appl.2010,18:453-460.
    [13] J. Kois. One-step electrochemical deposition of CuInSe2absorber layers[J]. phys. stat. sol.2008,5(11):3441
    [14] O. Ramdani. One-step electrodeposited CuInSe2thin films studied by Raman spectroscopy[J]. ThinSolid Films.2007,515:5909–5912.
    [15] M. Bar. ILGAR-ZnO Window Extension Layer: An Adequate Substitution of theConventionalCBD-CdS Buffer in Cu(In,Ga)(S,Se)2-based Solar Cells with Superior Device Performance[J]. Prog.Photovolt: Res. Appl.2002;10:173–184
    [16] S. Abd-Lefdil. Temperature Growth and Annealing Effects on CdS Thin Films Prepared by ChemicalBath Deposition Process[J]. phys. stat. sol.(a),1998,168:417-422(1998)
    [17] O. Calzadilla. Chemical bath deposited CdS films using magnetic treated solutions[J]. phys. stat. sol.(b),2005,2429:1933–1936.
    [18] Y. J. Chang. Growth, characterization and application of CdS thin films deposited by chemical bathdeposition[J]. Surf. Interface Anal.2005;37:398–405
    [19]敖建平. CIGS电池缓冲层CdS的制备工艺及物理性能[J].太阳能学报.2006,27(7):682-685.
    [20] Bhattachary R. N, Fernandez A. M. CuIn1-xGaxSe2-based photovoltaic cells from electrodepositedprecursor films [J]. Sol.Energ. Mat. Sol. C.2003,76:331-337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700