核电站循环冷却水系统一氯胺消毒影响因素试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是社会发展的重要支柱,核电以其消耗少、产能大、对环境的污染少的优点作为重要的新兴能源。冷却循环系统是核电站稳定运行的保障,在该系统内存在大量的微生物和金属离子等腐蚀系统、恶化水质的问题,抑制微生物和金属离子的影响是目前研究的热点。本研究以丹皮尔核电站为研究对象,利用丹皮尔核电站的冷却塔模型,对采用一氯胺消毒剂进行研究试验,分析一氯胺的稳定性、动力学方程以及生物膜和金属元素影响等问题。
     考察一氯胺的稳定性影响因素。使用空白水样和冷却原水,采用DPD显色分析方法对即时的剩余一氯胺浓度进行分析。结果表明:一氯胺的稳定性受到N/Cl_2、温度、pH和蒸发的影响。N/Cl_2越大,温度越低,pH越高,会使一氯胺越稳定。但是考虑到经济效益等因素,核电站采用的一氯胺条件为:N/Cl_2=1.05,系统内平均温度为35oC,原水pH约为8.5。以天然原水为循环水介质的一氯胺消耗动力学符合一级反应的动力学模型,其反应速率常数为0.002min~(-1)。
     对核电站冷却水循环系统中微生物进行分析,培养填料表面的生物粘膜七天可稳定,并且其微生物生长曲线特征为:开始培养后三天生物粘泥进入对数期,七天后成形,十天后稳定;经平板培养法及菌落群体和个体的观察进行菌种鉴定试验得知,生物粘泥的细菌包含假单胞菌属、葡萄球菌属、短芽孢杆菌属的菌类;一氯胺的消耗主要来于固相(填料表面)和液相两部分,不放置填料时,6小时液相消耗一氯胺18.8%;放置填料时,固液两相共同消耗一氯胺60.3%,固相消耗是液相的两倍以上;在一氯胺循环投加时间为6~8小时时,塔前加氯发挥的效能好于池中加氯。
     由于管道通常采用金属管道,因此进行金属元素的影响研究。在固相中(填料表面),铁元素对一氯胺有一定分解作用,并且一氯胺的消耗量与填料表面的铁元素比重呈正比关系,符合关系式:y=0.359x+57.7;液相中的铁在系统条件下不会影响一氯胺的分解;在液相中,铜离子会与一氯胺发生反应,从而影响一氯胺的消毒效率,一氯胺分解量与液相中铜离子的浓度成正比关系,关系式为:y=0.013x+21.21;锌、锰离子在液相中不会对一氯胺分解造成影响。对核电站冷却水消毒剂一氯胺的研究,可以对核电站的稳定运行提供保障,对我国核电水系统的设计与运行管理提供技术支持与指导。
Energy is the prop of development of human society. Nuclear power, as a newenergy has advantages as: it cost little but generate lot, and it leads very littlepollution to the environment. The cooling circulation system ensures the stableoperating, while in the system there is a large number of microbes, these microbescan corrode the system and deteriorate the water quality, in that way the system cannot operate normally, so the disinfection is imperative. The research works with themodule of cooling tower of nuclear power plant of Dampierre, we study on thestability, kinetic reaction, biofilm on packing and influence of metal elements ofmonochloramine.
     First of all, we study on the stability of monochloramine. We use the method ofDPD to measure the residuel concentration of monochloramine with blank waterand raw water. From the results we know: the stability of monochloramine isinfluenced by N/Cl_2, temperature, pH and evaporation. When N/Cl_2 is high,temperature is low, pH is high, monochloramine is very stable. However weconsider the factor of economy, the final condition is: N/Cl_2=1.05, the averagetemperature is 35 oC in the system and pH of raw water is environ 8.5. Moreover,we study on the kinetic of consumption of monochloramine as a desinfect in orderto determine consumption of monochloramine with raw water is first-order kineticreaction, and the rate constant is 0.002 min~(-1).
     Raw water from river of Loire is used in cooling system of Dampierre nuclearplant, it has nice quality as cooling water; the biofilm on the packings grow normallyas theoric curve of growth of microbe,and can be stable in seven days; we identify thespecies of the microbes, and we find Pseudomonas, Staphylococcus and Bacillus inthe biofilm. the consumption of monochloramine has two parts: solid phase(surfaceof packing) and liquid phase(raw water). When we donot put in the packings, wehave only liquid phase consumption, which cost 18.8% of monochloramine; andwith the packings, both the solid phase and liquid phase consume 60.3% ofmonochloramine, solid phase is more than two times than liquid phase; as thecirculant time is 6~8 hours to add monochloramine, it is more efficient to addbefore the cooling tower than in the cooling pool.
     From the researches on metal elements we can find that: in solid phase, ironcan decompose some monochloramine, and the consumption of monochloramine isproportional to the proportion of iron on surface of packing, the relationship is:y=0.359x + 57.7; in liquid phase, iron cannot influence monochloramine, but cupric ion can consume monochloramine with relationship: y=0.013x + 21.21; zinc ion andmanganese ion cannot consume monochloramine.
     The research provide s some support to new energy trend of human society andto environment. The research results can also make China's nuclear power systemdesign and operation of water management to provide technical support andguidance.
引文
1张晓今,钟毫忠.中国水电资源在开发和利用中存在的问题及其解决方法.吉林水利,2009,2(321): 4-6
    2史永谦.核能发电的优点及世界核电发展动向.研究与探讨,2007: 1-6
    3张时芳.循环冷却水处理技术探讨.山西电力技术,1997,3(17): 59-64
    4李绍全.循环冷却水用杀菌剂综述.工业用水与废水,2000,2(31): 7-9
    5沈丽娜,完颜华.循环冷却水杀菌剂的发展.甘肃科技,2003,8(19): 52-53
    6邓曼适.臭氧消毒技术原理及其应用前景分析.华南建设学院西院报,2000,8(3): 54-58
    7孙晓航.成都市自来水氯胺消毒试验研究.重庆大学工程硕士学位论文,2003
    8邵志良.两种有前途的饮用水消毒剂——氯胺和二氧化氯.环境工程,1988,7(4): 51-53
    9刘洪文.电厂循环冷却水系统生物污染的氯胺控制.华北电力技术,1992
    10鲍其鼐,何高荣,季淑邑.冷却水处理中杀生剂研制与使用的新进展.工业水处理,2000,20(1): 5-9
    11赵敏,赵殿生.循环冷却水用杀剂种类及其发展方向.环境与可持续发展,2006
    12郭强.饮用水液氯消毒机理及其消毒副产物的控制.山西科技,2005
    13陈聪龙,张星,林玉霞.二氧化氯消毒机理的研究与应用.医药工程设计杂志2002,23(4): 17-20
    14 DavidW.Ferguson,et.al. ,Applying Ozone for Organies ControlandDisinfeetion,JournalAWA, 1991(5): 32-38
    15陈颖敏,赵英,李滨.臭氧处理循环冷却水.电力环境保护,1995,11(4): 52-54
    16安徽省石油化工设计院.循环冷却水水质处理.工业用水与废水,1976
    17大庆石油化工总厂卧里屯化肥厂.循环冷却水系统水质稳定处理的总结.工业用水与废水,1976
    18张常书.HAS型水质稳定剂在工业循环冷却水处理中的应用.工业水处理,1987
    19张常书.HAS型水质稳定剂在循环冷却水处理中的应用.化肥工业,1988
    20张时芳.循环冷却水处理技术探讨.山西电力技术,1997,17(3): 59-64
    21甘雨虹,禹海斌.污水处理工程中的消毒比较.山西科技,2007
    22游同想,王进山,郝忠臣,张保国.二氧化氯在循环冷却水中的应用.山东化工,1999
    23黄志明.二氧化氯在合成氨厂循环冷却水中的应用.化工标准化与质量监督,2000
    24李胜男.二氧化氯在工业循环冷却水中的应用.第二届全国冶金节水,污水处理技术研讨会论文集,2005
    25光辉.臭氧杀菌在工业循环冷却水中的应用.水处理技术,2000,17(2):45-46
    26李松田,郭芳,邢朝晖.臭氧在循环冷却水处理中的杀菌作用.安全与环境学报,2005,5(4): 49-50
    27张世超,吴志龙,陈锦萍,许维钧.PS-12缓蚀杀菌剂的性能研究.腐蚀与防护,2001,22(3): 109-110
    28王昶.双季铵盐杀菌剂的杀菌试验研究.工业用水与废水,2000,31(6):23-24
    29何铁林.国外循环冷却水处理技术进展.工业水处理,1992,12(4): 3-8
    30 Pernin P., Pélandakis M., Rouby Y., Faure A. and Siclet F. Comparativerecoveries of Naegleria Fowleri amoebae from seeded river water by filtrationand centrifugation. Applied and Environmental Microbiology, 1998,3(64):955-959
    31 Rodriguez-Zaragoza S. Ecology of free-living amoebae. Critical Reviews inMicrobiology, 1994,3(20): 225-241
    32 Cunliffe D.A. Inactivation of Legionella pneumophila by monochloramine.Journal of Applied Bacteriology, 1990(68): 453-459
    33 Soreau S., Pringuez E., Tousset N., Le-Brun M. et Mataix V. Ma ?trise du risqueliéàla présence de Naegleria Fowleri dans les circuits de refroidissement descentrales nucléaires. 15ème Journée Information Eaux. 2002,9: 18-20
    34 DoréChimie des oxydants et traitement des eaux. Tec et Doc, 1989
    35 Diyamandoglu V. Nitrate and chloride formation in chloramination. WaterScience and Technology, 1994,9(30): 101-110
    36 Jafvert C.T. and Valentine R.L. Reaction scheme for the chlorination ofammoniacal water. Environ. Sci. Technol., 1992, 3(26): 57-586
    37 Hand V.C. and Margerum D.W. Kinetics and mechanisms of the decomposition ofdichloramine in aqueous solution. Inorg. Chem., 1983,10(22): 1449-1456
    38 Yiin B.S. and Margerum D.W. Non-metal redox kinetics: reactions of trichloraminewith ammonia and with dichloramine. Inorg. Chem, 1990(29): 2135-2141
    39 Vikesland P.J., Ozekin K. and Valentine R. Monochloramine decay in model anddistribution system waters. Balances. Water Research, 2001,7(35): 1766-1776
    40 Topudurti K. V. and Haas C.N. Chloroform formation by the transfer of activechlorine from monochloramine to phloroacetophenone. Water chlorination:Chemistry, Environmental Impact and Health Effects, Jolley Ed., 1987(6):649-665
    41 Heasley V.L., Alexander M.B., Deboard R.H., Hanley J.C., McKee T.C., WadleyB.D. and Shellhamer D.E. Reactions of resorcinol and its chlorinatedderivatives with monochloramine : Identification of intermediates and products.Environmental toxicology and chemistry, 1999,11(18): 2406-2409
    42 Heasley V.L., Fisher A.M., Herman E.E., Jacobsen F.E., Miller E.W., RamirezA.M., Royer N.R., Whisenand J.M., Zoetewey D.L. and Shellhamer D.F.Investigations of the reactions of monochloramine and dichloramine withselected phenols: examination of humic acid models and water contaminants.Environ. Sci. technol. , 2004(38): 5022-5029
    43 Duirk S. E., Gombert B., Choi J. and Valentine R. L. Monochloramine loss inthe presence of humic acid. J. Environ. Monit., 2002(4): 1-6
    44 Jensen J. N., Aubin J. J., Christman R. F. and Johnson J. D. Characterization ofthe reaction between monochloramine and isolated aquatic fulvic acid. Waterchlorination : Chemistry, Environmental Impact and Health Effects., 5, LewisPublishers, USA, 2005: 973-951
    45 Cowman G. A. and Singer P. C. Effect of bromide ion on haloacetic acidspeciation resulting from chlorination and chloramination of aquatic humicsubstances. Environ. Sci Technol., 1996(30): 16-24
    46 Diehl A.C., Speitel G.E., Symons J.M., Krasner S.W., Hwang C.J. and BarretS.E. DBP formation during chloramination. AWWA, 2000,6(92): 76-90
    47 Heller-Grossman L, Idin A., Limoni-Relis B. and Rebhun M. Formation ofcyanogen bromide and other DBPs in the disinfection of Bromide-Rich lakewater. Environ. Sci. Technol., 1999(33): 932-937
    48 Pope P.G., Speitel G.E., Martin-Doole M. and Collins M.R. Factors contributingto DXAA formation during chloramination. Water Quality technologyconference. Seattle, Washington, 2002
    49 Trofe T.W., Inman G.W. and Johnson J.D. Kinetics of chloramine decompositionin the presence of bromide. Environmental science and technology, 1980,5(14):544-549
    50 Vikesland P.J. and Valentine R. Reaction pathways Involved in the reduction ofMonochloramine by Ferrous Iron. Environ. Sci Technol., 2000(34): 83-90
    51 Valentine R.L. and Selleck R. Effect of bromide and nitrite on the degradationof monochloramine. Water Chlorination: Environmental Impact and HealthEffects, 1983(4): 125-137
    52 Margerum D.W., Schurter L.M., Hobson J. and Moore E.E. Water chlorinationchemistry : Nonmetal redox kinetics of chloramine and nitrite ion. Environ. Sci.Technol., 1994(28): 331-337
    53 Gray E.T., Margerum D.W. and Huffman R.P. Chloramine equilibra and thekinetics of disproportionation in aqueous solution. Organometals andorganometalloids : Occurrence and fate in the environment, 1978(16): 264-277
    54 Galal-Gorchev H. and Morris J.C. Formation and stability of bromamide, bromimide,et nitrogen tribromide in aqueous solution. Inorg. Chem., 1965,6(4): 899-905
    55 Bousher A., Brimblecome P. and Midgley D. Kinetics of reactions in solutionscontaining monochloramine and bromide. Water Research, 1989,8(23):1049-1058
    56 Valentine R.L.. Bromochloramine Oxidation of N, N-Diethyl-P-phenylenediamine inthe presence of bromide. Environ. Sci. Technol. 1986, 2(20): 166-170
    57 Johnson J.D., Inman J.R., G.W. and Trope T.W. Cooling water chlorination: thekinetics of chlorine, bromide and ammonia in sea water, NTIS Ed., 121p, 1982
    58 Vikesland P.J and Valentine R.L. Modelling the kinetics of ferrous ironoxidation by monochloramine. Environ. Sci Technol., 2002,4(36): 662-668
    59 Vikesland P.J and Valentine R.L. Iron oxide surface-catalyzed oxidation offerrous iron by monochloramine: implications of oxide type and carbonate onreactivity. Environ. Sci Technol., 2002,3(36): 512-519
    60 Fu J., Qu J., Liu R., Qiang Z., Zhao X. and Liu H. Mechanism ofCu(II)-catalysed monochloramine decomposition in aqueous solution. Sci. TotalEnviron., article sous presse, 2009
    61 Ferris F.G., Tazaki K., FyFE W.S. Iron oxides in acid mine drainageenvironments and their association with bacteria. Chemical Geology,1989,3-4(74): 321-330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700