工业区典型重金属来源及迁移途径研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属污染对农产品安全和人类健康构成了严重威胁。人体重金属暴露途径识别及污染来源分析对控制重金属污染,保障食用农产品安全,减少危害发生具有重要的意义。本研究通过解析陕西某工业区重金属污染来源、迁移途径和人体暴露途径,旨在(1)研究重金属在“环境—农产品—人体”系统中的迁移途径和规律;(2)为重金属在“环境—农产品—人体”系统中污染源解析奠定方法基础;(3)为环境和农产品重金属污染综合防治提供技术支撑。
     以工业区居民的人体生物标志物(头发和指甲)、食用农产品、土壤、灰尘和大气降尘等介质为实验材料,采用微波消解-电感耦合等离子质谱法,测定铅(Pb)、镉(Cd)、锌(Zn)、铜(Cu)和铬(Cr)等重金属元素含量及铅同位素比率特征值;借鉴美国环境保护局提供的暴露评估模型,分析工业区居民重金属暴露途径,评估居民不同暴露途径的健康风险。根据健康风险大小,确定工业区居民主要暴露途径及危害最大的重金属元素。在确定人体主要暴露途径和危害最大元素的基础上,利用地理信息技术定性识别该元素的主要污染源;结合同位素比率分析技术定量解析各污染源的贡献率,并确定该元素在“环境—人体”系统中迁移途径和规律。
     主要结论如下:
     (1)工业区食用农产品、土壤、灰尘和大气等介质均受到不同程度的Pb、Cd、Zn、Cu和Cr污染;人体生物标志物重金属超标证实环境重金属污染对人体造成了危害。
     (2)工业区居民人体重金属主要来源于膳食和灰尘;小麦籽粒中的铅主要来源于大气降尘;大气降尘中的铅主要来源于金属冶炼活动和工业燃煤。
     (3)工业区居民Pb、Cd、Zn、Cu和Cr5种重金属经膳食途径和“灰尘—人体”途径总暴露风险均达到不可接受水平。其中,膳食途径暴露风险高于“灰尘—人体”途径;铅暴露风险高于其他重金属。小麦作为调查工业区居民最主要的食用农产品,对人体铅负荷贡献最大。
     (4)在本研究区域内,在仅考虑“大气或土壤—小麦—人体”途径的情况下,铅主要经“大气—小麦—人体”途径进入人体;经“土壤—小麦—人体”途径进入人体的比例较少。铅经“环境—小麦—人体”迁移途径应引起高度重视。
     (5)降低工业区人群重金属暴露风险的主要途径为,减少当地产农产品摄入量的同时,应降低人群接触灰尘的频率;控制小麦籽粒铅污染应从大气铅污染控制着手;控制大气铅污染的根本途径为,减少铅锌冶炼排放和燃煤排放。
     本研究的创新点在于:系统研究了重金属污染物在“环境—农产品—人体”系统中的迁移轨迹,综合运用风险评估技术、3S技术和铅同位素指纹分析技术定性和定量解析了各污染源经“环境—农产品—人体”途径的相对贡献率,有效揭示了“环境—农产品—人体”系统中铅污染的来源。
The heavy metal pollution in environment has posed great threat to agro-food products safety andhuman health. In order to control heavy metal pollution, guarantee agro-food products safety and reducethe hazard probability of human health, source identification/apportionment and transfer route ofheavy metal is of great significance. With a case study in an industrial area in Shaanxi Province, China,the heavy metal pollution source, as well as transfer route and the exposure pathway of local residents in
     environment-agro-food-human body system were identified and apportioned. Based on this research,the thesis tries:(1) to explore the law of transfer route of heavy metal in
     environment-agro-food-human body system;(2) to pave the way for heavy metal pollution sourceidentifying and apportioning of the environment-agro-food-human body system; and (3) to providetechnology support for controlling heavy metal pollution in the environment and agro-foods.
     Biomarker, agro-food products, soil, house dust and atmospheric deposit samples were collected inthe industrial area in northwestern China to analyze heavy metal (Pb, Cd, Zn, Cu and Cr) concentrationsand lead isotope compositions by microwave digest-inductively coupled plasma mass spectrometry(ICP-MS) method. Health risk of local residents in different exposure pathway in object area wasassessed under the guide of exposure model of United States of Environment Protection Agency(USEPA). Based on the result of health risk, the main exposure pathway and most hazardous element oflocal residents were identified. Then, the contribution rate of main pollution source to human body, aswell as transfer route of the most hazardous element, were identified and apportioned by GeographicInformation System (GIS) and lead isotope fingerprint technique. Finally, the transfer route of heavymetal in the environment-human body system was identified.
     The main conclusions were as follows:
     (1) Agro-food products, soil, house dust, and atmospheric deposits were all polluted by Pb, Cd, Zn,Cu and Cr in different levels. The exceeding rate of heavy metal in biomarkers (especially scalp hairand finger nail) of local residents proved that heavy metal pollution had brought adverse effects onhuman health.
     (2) Heavy metal in human body from the industrial area was mainly from agro-food products andhouse dust. Pb in wheat kernel was mainly from atmospheric deposit. Pb in atmospheric deposit wasmainly from Pb-Zn smelting and coal combustion in the local area.
     (3) The total health risk of local resident exposure to Pb, Cd, Zn, Cu, Cr through dietary pathwayand house dust-human body pathway were beyond the accepted level. Between the two pathways,health risk through dietary one was higher than that of house dust-human body pathway in terms ofTarget Hazard Quotient (THQ). THQ of Pb was higher than that of Cd, Zn, Cu, and Cr. Wheat, as astaple food of local residents, was also the main Pb contributor to human body.
     (4) Considering dietary pathway exclusively, the main transfer route of Pb from environment tohuman body was atmospheric deposit-wheat-human body route in the environment-agro-food products-human body system. The soil-wheat-human body route was secondary route. Therefore,the transfer of Pb through environment-wheat-human body route should be paid great attention.
     (5) The effective way to reduce health risk of local residents was to cut down the intake ofagro-food produced local area, as well as reduce the touching frequency of house dust. The effectiveway to control Pb pollution in wheat kernel should start with controlling Pb pollution of atmosphericaerosol. The effective way to control atmospheric aerosol pollution was to reduce the emission of Pb-Znsmelting and coal combustion.
     Innovative point of this research: The transfer trajectory of heavy metal in theenvironment-agro-food-human body system had been studied systematically. Based on riskassessment,3S and lead isotope fingerprint technique, the contribution rate of Pb pollution source tomedia in environment-wheat-human body system were identified and apportioned. Then the transferroute and law of Pb in the environment-wheat-human body system were effectively explained.
引文
[1]边归国.大气颗粒物中铅污染来源解析技术.中国环境监测,2009,25(2):48~52.
    [2]常元勋.金属毒理学.北京:北京大学医学出版社,2008,217~346.
    [3]陈灿灿,卢新卫,王利军,等.宝鸡市街道灰尘重金属污染的健康风险评价.城市环境与城市生态,2011,24(2):35~38.
    [4]陈同斌,宋波,郑袁明,等.北京市菜地土壤和蔬菜铅含量及其健康风险评估.中国农业科学,2006,39(8):1589~1597.
    [5]陈天金.铅高暴露地区人群膳食安全暴露评估[硕士学位论文].陕西:西北农林科技大学,2006.
    [6]陈怀满,郑春荣,涂从,等.中国土壤重金属污染现状与防治对策. AMBIO-人类环境杂志.1999,28(2):130~134.
    [7]陈曦,王小燕,刘洋,等. ICP-MS用于北京市PM2.5中铅及其同位素的形态分析.光谱学与光谱分析,2009,29(2):515~518.
    [8]崔剑锋,吴小红著.铅同位素考古研究.北京:文物出版社,2008,19~30.
    [9]崔玉静,赵中秋,刘文菊,等.镉在土壤-植物-人体系统中迁移积累及影响因子.生态学报,2003,23(10):2134~2143.
    [10]戴耀华. WHO关于儿童铅暴露防治的新行动.中国妇幼健康研究,2009,20(2):111~113.
    [11]范拴喜编著.土壤重金属污染与控制.北京:中国环境科学出版社,2011,28~35.
    [12]方凤满,蒋炳言,王海东,等.芜湖市区地表灰尘中重金属粒径效应及其健康风险评价.地理研究,2010,29(7):1193~1202.
    [13]封锦芳,吴永宁,李晔,等.北京市市售食用菌中铅和镉污染状况.中华预防医学杂志,2007,41(6):458~460.
    [14]冯银凤,黄诚,周日东,等.2004年中山市食品铅污染的调查分析.华南预防医学,2005,31(4):70~71.
    [15]付万军,李勇,何翔.广州市郊区蔬菜中铅的含量特征及健康风险评估.农业环境科学学报,2010,29(5):875~880.
    [16]顾继光.不同作物品种对重金属的积累特性及农产品品质安全[博士后出站工作报告].中国科学院,2003.
    [17]郭波莉,魏益民,潘家荣著.牛肉产地溯源技术研究.北京:科学出版社,2009.
    [18]胡忻,曹密.农田蔬菜中重金属污染和铅稳定同位素特征分析.环境污染与防治,2009,31(3):102~104.
    [19]黄蕾,曲常胜,陈凯,等.重金属污染的健康风险评估与调控研究.2011年重金属污染防治技术及风险评价研讨会论文集,北京,2011,264~267.
    [20]黄薇,王舟,潘柳波,等.深圳市食品中铅污染的暴露量评估.中国食品卫生杂志,2008,20(5):405~408.
    [21]姜杰,张慧敏,林凯,等.深圳市水产品中铅镉汞含量及污染状况评价.卫生研究,2011,40(4):527~528.
    [22]李斌,汪懋华,刘刚.农田土壤重金属污染及检测技术现状与问题分析.2011年重金属污染防治技术及风险评价研讨会论文集,北京,2011,165~172.
    [23]李法云,胡成,张营.沈阳市街道灰尘中重金属的环境影响与健康风险评价.气象与环境学报,2010,26(6):59~64.
    [24]李如忠,童芳,周爱佳,等.基于梯形模糊数的地表灰尘重金属污染健康风险评价模型.环境科学学报,2011a,31(8):1790~1798.
    [25]李如忠,周爱佳,童芳,等.合肥市城区地表灰尘重金属分布特征及环境健康风险评价.环境科学,2011b,32(9):2661~2668.
    [26]李显芳,王英华,刘锋,等.大气颗粒物中铅的序列提取与分析表征.岩矿测试,2005,24(1):13~18.
    [27]李兴祥,李永华,王五一,等.铅暴露与健康风险研究之回顾与展望.广东微量元素科学,2004,11(11):1~7.
    [28]李先国,范莹,冯丽娟.化学质量平衡受体模型及其在大气颗粒物源解析中的应用.中国海洋大学学报,2006,36(2):225~228.
    [29]郦逸根,路远发.西湖茶园茶叶铅污染铅同位素示踪.物探与化探,2008,32(2):180~185.
    [30]李勇.植源性食品产地及铅污染溯源技术研究[博士学位论文].北京:中国农业科学院,2008.
    [31]李玉武,刘咸德,李冰,等.绝对主因子分析法解析北京大气颗粒物中铅来源.环境科学,2008,29(12):3310~3319.
    [32]刘冬梅,沈庆海,陈颖,等.基于重金属类有毒空气污染物重点行业分析的有限控制政策研究.2011年重金属污染防治技术及风险评价研讨会论文集,北京,2011,165~172.
    [33]刘恩峰,沈吉,朱育新,等.太湖表层沉积物重金属元素的来源分析.湖泊科学学报,2004,16(2):113~119.
    [34]刘桂华,张慧敏,姜杰,等.深圳市居民食品中铅、镉的膳食暴露量评估.华南预防医学,2009,35(6):28~31.
    [35]刘弘,吴春峰,陆屹,等.上海市居民膳食中铅镉暴露水平评估.中国食品卫生杂志,2011,23(3):218~223.
    [36]刘庆,林志勇,史衍玺,等.基于GIS的山东寿光蔬菜产地土壤重金属空间分布特征.农业工程学报,2009,25(10):258~263.
    [37]刘咸德,封跃鹏,贾红,等.青岛市大气颗粒物来源的定量解析-化学质量平衡法.环境科学研究,1998,11(5):51~54.
    [38]刘咸德,李显芳,李冰.我国城市大气颗粒物的铅同位素丰度比.质谱学报,2004,25(增刊):171~172.
    [39]刘咸德,朱祥坤,董树屏,等.北京市大气颗粒物分级样品的铅同位素风度比测量与来源研究.质谱学报,2011,32(3):151~158,163.
    [40]刘玉萃,李保华,吴明作.大气-土壤-小麦生态系统中铅的分布和迁移规律研究.生态学报,1997,17(4):418~425.
    [41]罗锡文.对加速我国农业机械化发展的思考.农业工程,2011,1(4):1~9.
    [42]马瑾,周永章,窦磊,等.广东汕头市农业土壤和蔬菜铅含量及健康风险评估.安全与环境学报,2007,7(6):77~79.
    [43]孟飞,刘敏,崔健.上海农田土壤重金属含量的空间分析.土壤学报,2008,45(4):725~728.
    [44]倪刘建,张甘霖,阮心玲,等.南京市不同功能区大气降尘的沉降通量及污染特征.中国环境科学,2007,27(1):2~6.
    [45]潘锋,梁高道.武汉市市售食品中铅污染物摄入量评估.公共卫生与预防医学,2010,21(3):32~34.
    [46]潘月鹏,王跃思,杨勇杰,等.区域大气颗粒物干沉降采集及金属元素分析方法.环境科学,2010,31(3):553~559.
    [47]秦俊法.中国燃油大气铅排放量估算.广东微量元素科学,2010a,17(10):27~34.
    [48]秦俊法.1953-2005年中国燃煤大气铅排放量估算.广东微量元素科学,2010b,17(8):27~35.
    [49]仇志军,郭盘林,王基庆,等.基于质子微探针研究的大气气溶胶单颗粒源解析,环境科学,2001,22(2):51~54.
    [50]任春辉,卢新卫,杨林娜,等.宝鸡长青镇热电厂周围灰尘重金属污染评价.环境化学,2011,30(10):1820~1821.
    [51]任春辉,卢新卫,陈灿灿,等.宝鸡长青镇铅锌冶炼厂周围灰尘中重金属的空间分布及污染评价.环境科学学报,2012,32(3):706~712.
    [52]任慧敏,王金达,张学林,等.沈阳市儿童环境铅暴露评价.环境科学学报,2005,25(9):1236~1241.
    [53]尚英男.土壤-植物的重金属污染特征及铅同位素示踪研究-以成都经济区典型城市为例
    [博士学位论文].成都理工大学,2007.
    [54]史国良.因子分析和化学质量平衡模型在大气颗粒物来源解析的联合应用研究[硕士学位论文].南开大学,2007.
    [55]帅荣光,赵玉杰,高怀友,等.天津市郊蔬菜重金属污染评价与特征分析.农业环境科学学报,2005,24(增刊):169~173.
    [56]宋波,陈同斌,郑袁明,等.北京市菜地土壤和蔬菜镉含量及其健康风险分析.环境科学学报,2006,26(8):1343~1353.
    [57]宋华琴,高晖,王宁,等.儿童铅总接触量及健康危害研究.中国公共卫生,1993,9(增刊):23~25.
    [58]孙贤斌,李玉成,王宁.铅在小麦和玉米中活性形态和分布的比较研究.农业环境科学学报,2005,24(4):666~669.
    [59]滕葳,柳琪,李倩,等.重金属污染对农产品的危害与风险评估.北京:化学工业出版社,2010,1~5.
    [60]王波,毛任钊,杨苹果,等.基于Kriging法和GIS技术的迁安市农田重金属污染评价.农业环境科学学报,2006,25(增刊):561~564.
    [61]王波,刘晓青,冯昌伟.芜湖市部分市售蔬菜重金属含量及其健康风险研究.中国农学通报,2011,27(31):143~146.
    [62]王海邻,胡斌,郑继东.基于GIS的焦作市城区大气SO2污染源解析.河南理工大学学报,2005,24(6):447~450.
    [63]王军,王冬玉,曹丽玲.石家庄市10个县(市)食物中重金属污染调查分析.职业与健康,2010,26(16):1848~1849.
    [64]王琳,齐孟文.环境同位素示踪在环境学研究中的应用.环境与可持续发展,2006,1:29~30.
    [65]王琬,刘咸德,鲁毅强,等.北京冬季大气颗粒物中铅的同位素丰度比的测定和来源研究.质谱学报,2002,23(1):21~29.
    [66]王婉,刘咸德,赵立蔚,等.用同位素方法评估天津市汽油无铅化进程.中国环境科学,2003,23(6):627~630.
    [67]王晓波,陈海珍,刘冬英,等.广州市蔬菜重金属污染状况及健康风险评估.中国公共卫生,2011,27(5):549~551.
    [68]王新,吴燕玉.不同作物对重金属复合污染物吸收特性的研究.农业环境保护,1998,17(5):193~196.
    [69]王喆,刘少卿,陈晓民,等.健康风险评价中中国人皮肤暴露面积的估算.安全与环境学报,2008,8(4):152~156.
    [70]王宗爽,段小丽,刘平,等.环境健康风险评价中我国居民暴露参数探讨.环境科学研究,2009a,22(10):1164~1170.
    [71]王宗爽,武婷,段小丽,等.环境健康风险评价中我国居民呼吸速率暴露参数研究.环境科学研究,2009b,22(10):1171~1175.
    [72]魏益民,李勇,郭波莉著.植源性食品污染源溯源技术研究.北京:科学出版社,2010.
    [73]魏复盛,陈静生,吴燕玉,等.中国土壤元素背景值.北京:中国环境科学出版社,1990,329~483.
    [74]魏复盛,陈静生,吴燕玉,等.中国土壤环境背景值研究.环境科学,1991,12(4):12~19.
    [75]吴晨熙,祁士华,苏秋克,等.福建省兴化湾大气沉降中重金属的测定.环境化学,2006,25(6):781~784.
    [76]吴春发,吴嘉平,骆永明,等.冶炼厂周边土壤重金属污染范围的界定与不确定性分析.土壤学报,2009,46(6):1006~1012.
    [77]吴开兴,胡瑞忠,毕献武,等.矿石铅同位素示踪成矿物质来源综述.地质地球化学,2002,30(3):73~81.
    [78]吴龙华,张长波,章海波,等.铅稳定同位素在土壤污染物来源识别中的应用.环境科学,2009,30(1):227~230.
    [79]吴双桃,朱慧.市郊公路边土壤和蔬菜中重金属含量特征.湖北农业科学,2009,48(3):587~589.
    [80]肖锐,董树屏,郭婧,等.正矩阵因子分析方法识别北京市大气颗粒物铅污染的来源.质谱学报,2007,28(增刊):51~52.
    [81]肖锐,刘咸德,梁汉东,等.北京市春夏季大气气溶胶的单颗粒分析表征.岩矿测试,2004,23(2):125~131.
    [82]许中坚,史红文,邱喜阳.铅锌冶炼厂周边蔬菜对重金属的吸收与富集研究.湖南科技大学学报,2008,23(4):107~110.
    [83]严加永,吕庆田,葛晓立. GIS支持下的土壤重金属污染预测预警研究.吉林大学学报(地球科学版),2007,37(3):592~596.
    [84]杨红梅,路远发,段桂玲,等.茶叶中铅同位素比值的测定方法.地球化学,2005,34(4):373~378.
    [85]杨文麟,闭向阳,韩志轩,等.中国部分省份农村室内灰尘铅污染特征.生态学杂志,2011,30(6):1246~1250.
    [86]银燕,童尧青,魏玉香,等.南京市大气细颗粒物化学成分分析.大气科学学报,2009,32(6):723~733.
    [87]于令达,王广甫,朱光华,等.2008年北京采暖开始前后大气颗粒物化学成分及来源研究.环境科学学报,2010,30(3):204~210.
    [88]岳伟生,李晓林,李燕,等.用质子微探针研究上海吴淞空气含铅颗粒物来源.中国环境科学,2003,23(6):614~617.
    [89]曾静,王京宇,刘雅琼,等. ICP-MS分析四城市血铅浓度及同位素指纹地区特征.光谱学与光谱分析,2011,31(11):3101~3104.
    [90]曾希柏,李莲芳,梅旭荣.中国蔬菜土壤重金属含量及来源分析.中国农业科学,2007,40(11):2507~2517.
    [91]查燕,杨居荣,刘虹,等.污染谷物中重金属的分布及加工过程的影响.环境科学,2000,21(3):52~55.
    [92]张丙春,任凤山,孟立红,等.汞在春小麦植株中的富集及转移规律研究.麦类作物学报,2011,31(5):965~968.
    [93]张长波,骆永明,吴龙华.土壤污染物源解析方法及其应用研究进展.土壤,2007,39(2):190~195.
    [94]张桂林,谈明光,李晓林,等.上海市大气气溶胶中铅污染的综合研究.环境科学,2006,27(5):831~836.
    [95]张红振,骆永明,章海波,等.水稻、小麦籽粒砷、镉、铅富集系数分布特征及规律.环境科学,2010,31(2):488~495.
    [96]赵多勇,郭波莉,魏益民,等.铅对人体的危害及暴露途径分析.第七届全国农产品贮藏加工交流大会论文集,北京,2010,106~109.
    [97]赵多勇,郭波莉,魏益民,等.重金属污染源解析研究进展.安全与环境学报,2011a,11(4):98~103.
    [98]赵多勇,魏益民,郭波莉,等.铅同位素比率分析技术在食品污染源解析中的应用.核农学报,2011b,25(3):534~539.
    [99]赵多勇,魏益民,郭波莉,等.铅同位素指纹分析技术在区域土壤铅污染源解析中的应用.重金属污染防治技术及风险评价研讨会论文集,北京,2011c,173~179.
    [100]赵多勇,魏益民,魏帅,等.工业区土壤和农产品镉污染状况及暴露评估.安全与环境学报,2012a,12(1):114~118.
    [101]赵多勇,魏益民,魏帅,等.小麦籽粒铅污染来源的同位素解析研究.农业工程学报,2012b,28(8):258~262.
    [102]赵多勇,魏益民,郭波莉,等.区域食用农产品铅污染暴露评估.第五届北京国际食品安全高峰论坛论文集,北京,2012c,119~125.
    [103]赵冬丽,巩俐彤,房宁.北京市大兴区2006年食品污染物铅、镉状况分析.中国卫生检验杂志,2007,17(2):318~319.
    [104]郑娜,王起超,刘景双,等.葫芦岛市土壤、蔬菜重金属污染空间变化规律.环境科学,2009,30(7):2071~2075.
    [105]郑娜,王起超,郑冬梅.锌冶炼厂周围农作物和蔬菜的汞污染及健康风险评价.农业环境科学学报,2007,26(2):688~693.
    [106]钟宇红.环境空气中总悬浮颗粒物无机组分源解析的比较研究[博士学位论文].吉林大学,2008.
    [107]周斌斌,徐家骝,胡广宇.上海市大气颗粒物中金属元素特征.上海环境科学,1994,13(9):21~26.
    [108]周传龙,张亚雷,代朝猛,等.中国土壤重金属污染防治技术路线的探讨.2011年重金属污染防治技术及风险评估研讨会论文集,北京,2011,248~256.
    [109]周莉薇.环境铅接触对儿童智商的影响.宁夏医学杂志,2005,27(6):429~431.
    [110]朱赖民,张海生,陈立奇.铅稳定同位素在示踪环境污染中的应用.环境科学研究,2002,15(1):27~30.
    [111]朱赖民,陈立奇,张远辉,等.北极楚科奇海、白令海上空大气气溶胶铅浓度及同位素研究.环境科学学报,2004,24(5):846~851.
    [112]祝青,向南平.基于GIS的农产品重金属残留预警系统.微计算机信息,2008,4:191~193.
    [113]庄树宏,王克明.城市大气重金属(Pb, Cd, Cu, Zn)污染及其在植物中的富集.烟台大学学报(自然科学与工程版),2000,13(1):31~37.
    [114]卓文珊,唐建锋,管东生.广州市城区土壤重金属空间分布特征及其污染评价.中山大学学报(自然科学版),2009,48(4):47~51.
    [115]邹晓锦,仇荣亮,周小勇,等.大宝山矿区重金属污染对人体健康风险的研究.环境科学学报,2008,28(7):1406~1412.
    [116] berg G. The use of natural strontium isotopes as tracers in environmental studies. Water, Air,&Soil Pollution,1995,79(1-4):309~322.
    [117] Acosta J. A., Faz A., Martínez-Martínez S., et al. Multivariate statistical and GIS-based approachto evaluate heavy metals behavior in mine sites for future reclamation. Journal of GeochemicalExploration,2011,109(1-3):8~17.
    [118] Angle C. R., Manton W. I.,&Stanek K. L. Stable isotope identification of lead sources inpreschool children-the Omaha Study. Clinical Toxicology,1995,33(6):657~662.
    [119] Augagneur S., Medina B.,&Grousset F. Measurement of lead isotope ratios in wine by ICP-MSand its applications to the determination of lead concentration by isotope dilution. FreseniusJournal of Analytical Chemistry,1997,357(8):1149~1152.
    [120] Bacon J. R.,&Dinev N. S. Isotopic characterisation of lead in contaminated soils from the vicinityof a non-ferrous metal smelter near Plovdiv, Bulgaria. Environmental Pollution,2005,134(2):247~255.
    [121] Bennett D. H., Kastenberg W. E.,&Mckone T. E. A multimedia, multiple pathway riskassessment of atrazine: the impact of age differentiated exposure including joint uncertainty andvariability. Reliability Engineering&System Safety,1999,63(2):185~198.
    [122] Bi X. Y., Feng X. B., Yang Y. G., et al. Allocation and source attribution of lead and cadmium inmaize (Zea may L.) impacted by smelting emissions. Environmental Pollution,2009,157(3):834~839.
    [123] Bollh fer A.,&Rosman K. J. R. Isotopic source signatures for atmospheric lead: the NorthernHemisphere. Geochimica Cosmochimica Acta,2001,65(11):1727~1740.
    [124] Casarett Doull. Toxicology: the basic science of poisons. Kansas City: The McGraw-HillCompanies, Inc.,2005.
    [125] Cast C. H., Jansen E., Bierling J., et al. Heavy metals in mushrooms and their relationship with soilcharacteristics. Chemosphere,1988,17(4):789~799.
    [126] Chamberlain A. C. Fallout of lead and uptake by crops. Atmospheric Environment,1983,17(4):693~706.
    [127] Chamon A. S., Gerzabek A. H., Mondol M. N., et al. Influence of cereal varieties and siteconditions on heavy metal accumulations in cereal crops on polluted soils of Bangladesh.Communications in Soil Science and Plant Analysis,2005,36(7-8):889~906.
    [128] Chaney R. L.,&Ryan J. A. Heavy metals and toxic organic pollutants in MSW-composts: researchresults on phytoavailability, bioavailability, etc. In: Hoitink A. J., Keener H. M.(Eds.), Science andEngineering of Composting: Design, Environmental, Microbiological and Utilization Aspects.Ohio State University, Columbus, OH,1994, pp.451~506.
    [129] Chen J. M.,Tan M. G., Li Y. M., et al. A lead isotope record of Shanghai atmospheric leademissions in total suspended particles during the period of phasing out of leaded gasoline.Atmospheric Environment,2005,39(7):1245~1253.
    [130] Chen J. M., Tan M. G., Li Y. L., et al. Characteristics of trace elements and lead isotope ratios inPM2.5from four sites in Shanghai. Journal of Hazardous Materials,2008,156(1-3):36~43.
    [131] Cheng H. F.,&Hu Y. A. Lead (Pb) isotopic fingerprinting and its applications in lead pollutionstudies in China: A review. Environmental Pollution,2010,158(5):1134~1146.
    [132] Chiaradia M., Chenhall B. E., Depers A. M., et al. Identification of historical lead sources in roofdusts and recent lake sediments from an industrialized area: indications from lead isotopes. TheScience of the Total Environment,1997,205(2-3):107~128.
    [133] Chien L. C., Hung T. C., Choang K. Y., et al. Daily intake of TBT, Cu, Zn, Cd and As forfishermen in Taiwan. The Science of the Total Environment,2002,285(1-3):177~185.
    [134] Chow T. J.,&Johotone M. S. Lead isotopes in gasoline and aerosols of Los Angeles Basin,California. Science,1965,147(3657):502~503.
    [135] Cloquet C., Carignan J., Libourel G., et al. Tracing source pollution in soils using cadmium andlead isotopes. Environmental Science&Technology,2006,40(8):2525~2530.
    [136] Cui Y. J., Zhu Y. G., Zhai R. H., et al. Transfer of metals from soil to vegetables in an area near asmelter in Nanjing, China. Environment International,2004,30(6):785~791.
    [137] Dalenberg J. W.,&Driel W. Contribution of atmospheric deposition to heavy metal concentrationsin field crops. Netherlands Journal of Agricultural Science,1990,38(3):369~379.
    [138] Davis H. T., Aelion C. M., Mcdermott S., et al. Identifying natural and anthropogenic sources ofmetals in urban and rural soils using GIS-based data, PCA, and spatial interpolation.Environmental Pollution,2009,157(8-9):2378~2385.
    [139] Demirbas A. Accumulation of heavy metals in some edible mushrooms from Turkey. FoodChemistry,2000,68(4):415~419.
    [140] Demirbas A. Concentrations of21metals in18species of mushrooms growing in the East BlackSea region. Food Chemistry,2001,75(4):453~457.
    [141] Duzgoren-Aydin N. S. Sources and characteristics of lead pollution in the urban environment ofGuangzhou. Science of the Total Environment,2007,385(1-3):182~195.
    [142] Duzgoren-Aydin N. S.,&Weiss A. L. Use and abuse of abuse of Pb-isotope fingerprintingtechnique and GIS mapping data to assess lead in environmental studies. EnvironmentalGeochemistry Health,2008,30(6):577~588.
    [143] Eades L. J., Farmer J. G., Mackenzie A. B., et al. Stable lead isotopic characterisation of thehistorical record of environmental lead contamination in dated freshwater lake sediment cores fromnorthern and central Scotland. The Science of the Total Environment,2002,292(1-2):55~67.
    [144] Erel Y., Axelrod T., Veron A., et al. Transboundary atmospheric lead pollution. EnvironmentalScience&Technology,2002,36(15):3230~3233.
    [145] Ettler V., Mihaljevi M.,&Komárek M. ICP-MS measurements of lead isotopic ratios in soilsheavily contaminated by lead smelting: tracing and the sources of pollution. Analytical andBioanalytical Chemistry,2004,378(2):311~317.
    [146] Facchinelli A., Sacchi E.,&Mallen L. Multivariate statistical and GIS-based approach to identifyheavy metal sources in soils. Environmental Pollution,2001,114(3):313~324.
    [147] Ferreira-Baptista L.,&Miguel E. D. Geochemistry and risk assessment of street dust in Luanda,Angola: a tropical urban environment. Atmospheric Environment,2005,39(25):4501~4512.
    [148] Fewtrell L. J., Prüss-üstün A., Landrigan P., et al. Estimating the global burden of desease of mildmental retardation and cardiovascular diseases from environmental lead exposure. EnvironmentalResearch,2004,94(2):120~133.
    [149] Gobeil C. Sources and burden of lead in St. Lawrence Estuary sediments: isotopic evidence.Environmental Science&Technology,1995,29(1):193~201.
    [150] Graney J. R., Halliday A. N., Keeler G. J., et al. Isotopic record of lead pollution in lake sedimentsfrom the northeastern United States. Geochimica et Cosmochimica Acta,1995,59(9):1715~1728.
    [151] Gulson B. L., Davis J. J., Mizon K. J., et al. Sources of lead in soil and dust and the use of dustfallout as a sampling medium. The Science of the Total Environment,1995,166(1-3):245~262.
    [152] Gulson B. L., Tiller K. G., Mizon K. J., et al. Use of lead isotopes in soils to identify the source oflead contamination near Adelaide, South Australia. Environmental Science&Technology,1981,15(6):691~696.
    [153] Gulson B. L., Lee T. H., Mizon K. J., et al. The application of lead isotope ratios to the determinethe contribution of the tin-lead to the lead content of wine. American Journal of Enology andViticulture,1992,43(2):180~190.
    [154] Gulson B. L. Nails: concern over their use in lead exposure assessment. The Science of the TotalEnvironment,1996,177(1-3):323~327.
    [155] Gulson B., Mizon K., Korsch M., et al. Changes in the lead isotopic composition of blood, diet andair in Australia over a decade: Globalization and implications for future isotopic studies.Environmental Research,2006,100(1):130~138.
    [156] Han W. Y., Shi Y. Z., Ma L. F., et al. Effect of liming and seasonal variation on lead concentrationof tea plant (Camellia sinensis (L.) O. Kuntze). Chemosphere,2007,66(1):84~90.
    [157] Hansmann W.,&K ppel V. Lead-isotopes as tracers of pollutants in soils. Chemical Geology,2000,171(1-2):123~144.
    [158] Han W. Y., Zhao F. J., Shi Y. Z., et al. Scale and causes of lead contamination in Chinese tea.Environmental Pollution,2006,139(1):125~132.
    [159] Harrison R. M.,&Chirgawi M. B. The assessment of air and soil as contributors of some tracemetals to vegetable plants I. Use of a filtered air growth cabinet. Science of the Total Environment,1989,83(1-2):13~34.
    [160] Hogervorst J., Plusquin M., Vangronsveld J., et al. House dust as possible route of environmentalexposure to cadmium and lead in the adult general population. Environmental Research,2007,103(1):30~37.
    [161] Hopper J. F., Ross H. B., Sturges W. T., et al. Regional source discrimination of atmosphericaerosols in European using the isotopic composition of lead. Tellus,1991,43(1):45~60.
    [162] Hou X., Parent M., Savard M. M., et al. Lead concentrations and isotope ratios in the exchangeablefraction: tracing soil contamination near a copper smelter. Geochemistry: Exploration,Environment, Analysis,2006,6(2-3):229~236.
    [163] Hu X.,&Ding Z. H. Lead/cadmium contamination and lead isotopic ratios in vegetables grown invegetables grown in Peri-Urban and mining/smelting contaminated sites in Nanjing, China.Bulletin of Environmental Contamination and Toxicology,2009,82(1):80~84.
    [164] Huang M. L., Zhou S. L., Sun B., et al. Heavy metals in wheat grain: assessment of potentialhealth risk for inhabitants in Kunshan, China. Science of the Total Environment,2008,405(1-3):54~61.
    [165] Injuk J., Van Grieken R.,&De Leeuw G. Deposition of atmospheric trace elements into the NorthSea: coastal, ship, platform measurements and model predictions. Atmospheric Environment,1998,32(17):3011~3025.
    [166] J rup L. Hazards of heavy metal contamination. British Medical Bulletin,2003,68(1):167~182.
    [167] Jin C. W., He Y. F., Zhang K., et al. Lead contamination in tea leaves and non-edaphic factorsaffecting it. Chemosphere,2005,61(5):726~732.
    [168] Khan S., Cao Q., Zheng Y. M., et al. Health risks of heavy metals in contaminated soils and foodcrops irrigated with wastewater in Beijing, China. Environmental Pollution,2008,152(3):686~692.
    [169] Komárek M., ChrastnyV.,&Stichova J. Metal/metalloid contamination and isotopic compositionof lead in edible mushrooms and forest soils originating from a smelting area. EnvironmentInternational,2007,33(5):677~684.
    [170] Komárek M., Ettler V., Chrastny V., et al. Lead isotopes in environmental sciences: A review.Environment International,2008,34(4):562~577.
    [171] Leung A. O. W., Duzgoren-aydin N. S., Cheung K. C., et al. Heavy metals concentrations ofsurface dust from e-waste recycling and its human health implications in southeast China.Environmental Science&Technology,2008,42(7):2764~2680.
    [172] Li X. P.,&Feng L. N. Spatial distribution of hazardous elements in urban topsoils surroundingXi’an industrial areas,(NW, China): controlling factors and contamination assessments. Journal ofHazardous Materials,2010,174(1-3):662~669.
    [173] Lübben S.,&Sauerbeck D. The uptake and distribution of heavy metal by spring wheat. Water,Air,&Soil Pollution,1991,57(1):239~247.
    [174] Manton W. I., Angle C. R., Stanek K. L., et al. Acquisition and retension of lead by young children.Environmental Research,2000,82(1):60~80.
    [175] Medina B., Augagneur S., Barbaste M., et al. Influence of atmospheric pollution on the leadcontent of wines. Food Additives and Contaminants,2000,17(6):435~445.
    [176] Meyer I., Heinrich J.,&Lippold U. Factors affecting lead, cadmium, and arsenic levels in housedust in a smelter town in Eastern Germany. Environmental Research, Section A,1999,81(1):32~44.
    [177] Mihaljevi M., Ettler V., ebek O., et al. Lead isotopic signatures of wine and vineyardsoils-tracers of lead origin. Journal of Geochemical Exploration,2006,88(1-3):130~133.
    [178] Monna F., Hamer K., Lévêque J., et al. Pb isotopes as a reliable marker of early mining andsmelting in the Northern Harz province (Lower Saxony, Germany). Journal of GeochemicalExploration,2000,68(3):201~210.
    [179] Monna F., Lancelot J., Croudace I. W., et al. Pb isotopic composition of airborne particulatematerial from France and the southern United Kingdom: Implications for Pb pollution sources inurban areas. Environmental Science&Technology,1997,31(8):2277~2286.
    [180] Mukai H., Furuta N., Fujii T., et al. Characterization of sources of lead in the urban air of Asiausing ratios of stable lead isotopes. Environmental Science&Technology,1993,27(7):1347~1356.
    [181] Müller M.,&Anke M. Distribution of cadmium in the food chain (soil-plant-human) of a cadmiumexposed area and the health risks of the general population. Science of the Total Environment,1994,156(2):151~158.
    [182] Munksgaard N. C., Batterham G. J.,&Parry D. L. Lead isotope ratios determined by ICP-MS:investigation of anthropogenic lead in seawater and sediment from the Gulf of Carpentaria,Australia. Marine Pollution Bulletin,1998,36(7):527~534.
    [183] Murphy B. L.,&Morrison R. D. Introduction to environmental forensics (Second Edition). NewYork, Elsevier Science,2007,273~310.
    [184] Naeher L. P., Rubin C. S., Hernández-Avila M., et al. Use of isotope ratios to identify sourcescontributing to pediatric lead poisoning in Peru. Archives of Environmental Health,2003,58(9):579~589.
    [185] Nan Z. R., Li J. J., Zhang J. M., et al. Cadmium and zinc interactions and their transfer in soil-cropsystem under actual field conditions. The Science of the Total Environment,2002,285(1-3):187~195.
    [186] Notten M. J. M., Walraven N., Beets C. J., et al. Investigating the origin of Pb pollution in aterrestrial soil-plant-snail food chain by means of Pb isotope ratios. Applied Geochemitry,2008,23(6):1581~1593.
    [187] Querol X., Viana M., Alastuey A., et al. Source origin of trace elements in PM from regionalbackground, urban and industrial sites of Spain. Atmospheric Environment,2007,41(34):7219~7231.
    [188] Rasmussen P. E., Subramanian K. S.,&Jessiman B. J. A multi-element profile of housedust inrelation to exterior dust and soils in the city of Ottawa, Canada. The Science of the TotalEnvironment,2001,267(1-3):125~140.
    [189] Rieuwerts J. S., Farago M., Cikrt M., et al., Heavy metal concentrations in and around householdsnear a secondary lead smelter. Environmental Monitoring and Assessment,1999,58(3):317~335.
    [190] Rodushkin I.,&Axelsson M. D. Application of double focusing sector field ICP-MS formultielemental characterization of human hair and nails. Part I. Analytical methodology. Science ofthe Total Environment,2000,250(1-3):83~100.
    [191] Rosman K. J. R., Chisholm W., Jimi S., et al. Lead concentrations and isotopic signatures invintages of French wine between1950and1991. Environmental Research,1998a,78(2):161~167.
    [192] Rosman K. J. R.,&Taylor P. D. P. IUPAC table of isotopic compositions of the elements. Pureand Applied Chemistry,1998b,70(1):217~235.
    [193] Rossini P., Guerzoni S., Molinaroli E., et al. Atmospheric bulk deposition to lagoon of Venice:Part I. fluxes of metals, nutrients and organic contaminants. Environment International,2005,31(7):959~974.
    [194] Samara C., Kouimtzis T., Tsitouridou R., et al. Chemical mass balance source apportionment ofPM10in an industrialized urban area of Northern Greece. Atmospheric Environment,2003,37(1):41~54.
    [195] Shah M. H., Shaheen N.,&Jaffar M. Characterization, source identification and apportionment ofselected metals in TSP in an urban atmosphere. Environmental Monitoring and Assessment,2006,114(1-3):573~587.
    [196] Sharma R. K., Agrawal M.,&Marshall F. Heavy metal contamination of soil and vegetables insuburban areas of Varanasi, India. Ecotoxicology and Environmental Safety,2007,66(2):258~266.
    [197] Sharma R. K., Agrawal M.,&Marshall F. Heavy metal (Cu, Zn, Cd and Pb) contamination ofvegetables in urban India: A case study in Varanasi. Environmental Pollution,2008,154(2):254~263.
    [198] Singh A., Sharma R. K., Agrawal M., et al. Health risk assessment of heavy metals via dietaryintake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food andChemical Toxicology,2010,48(2):611~619.
    [199] Song B., Lei M., Chen T. B., et al. Assessing the health risk of heavy metals in vegetables to thegeneral population in Beijing, China. Journal of Environmental Sciences,2009,21(12):1702~1709.
    [200] Sturges W. T.,&Barrie L. A. Lead206/207isotope ratios in the atmosphere of North America astraces of US and Canadian emission. Nature,1987,329(6135):144~146.
    [201] Sturges W. T.,&Barrie L. A. Stable lead isotope ratios in Arctic aerosols: evidence for the originof Arctic air pollution. Atmospheric Environment,1989a,23(11):2513~2519.
    [202] Sturges W. T.,&Barrie L. A. The use of stable lead206/207isotope ratios and elementalcomposition to discriminate the origins of lead in aerosols at a rural site in Eastern Canada.Atmospheric Environment,1989b,23(8):1645~1657.
    [203] Spencer K., Shafer D. J., Gauldie R. W., et al. Stable lead isotope ratios from distinctanthropogenic sources in fish otoliths: a potential nursery ground stock marker. ComparativeBiochemistry and Physiology, Part A,2000,127(3):273~284.
    [204] Sweet C. W., Weiss A.,&Stepen J. V. Atmospheric deposition of trace metals at three sites nearthe Great Lakes. Water, Air,&Soil Pollution,1998,103(1-4):423~439.
    [205] US Department of Energy. RAIS: Risk assessment information system.2004.http://risk.1sd.ornl.gov/rap_hp.shtml.
    [206] US Environmental Protection Agency. Risk assessment guidance for superfund (vol.1): humanhealth evaluation manual. Washington: Office of Solid Waste and Emergency Response. USEnvironmental Protection Agency,1989,15~28.(EPA/540/1-89/002). Fromhttp://www.epa.gov/oswer/risk assessment/ragsa/index, htm.
    [207] US Environmental Protection Agency. Soil screening guidance: technical background document.Washington: Office of Solid Waste and Emergency Response, US Environmental ProtectionAgency,1996.(EPA/540/R-95/128). From http://www.epa.gov/superfund/health/conmedia/soil/toc.htm.
    [208] US Environmental Protection Agency. Supplemental guidance for developing soil screening levelsfor superfund sites. Washington, DC: Office of Emergency and Remedial Response,2001. Fromhttp://www.epa.gov/superfund/health/conmedia/soil/pdfs/ssgmarch01.pdf
    [209] Van den Berg R. Human exposure of soil contamination: A qualitative and quantitative analysistowards proposals for human toxicological intervention values.1994. Fromhttp://www.rivm.nl/bibliotheek/rapporten/725201011.html.
    [210] Verner J. F.,&Ramsey M. H. Heavy metal contamination of soils around a Pb-Zn smelter inBukowno, Poland. Applied Geochemistry,1996,11(1-2):11~16.
    [211] Wang G., Su M. Y., Chen Y. H., et al. Transfer characteristics of cadmium and lead from soil tothe edible parts of six vegetable species in southeastern China. Environmental Pollution,2006,144(1):127~135.
    [212] Wang W., Liu X. D., Zhao L. W., et al. Effectiveness of leaded petrol phase-out in Tianjin, Chinabased on the aerosol lead concentration and isotope abundance ratio. Science of the TotalEnvironment,2006,364(1-3):175~187.
    [213] Wang X. L.,, Sato T., Xing B. S., et al. Health risks of heavy metals to the general public in Tianjin,China via consumption of vegetables and fish. Science of the Total Environment,2005,350(1-3):28~37.
    [214] WBG (World Bank Group). Pollution prevention and abatement handbook. Washington,1998,215~218.
    [215] WHO (World Health Organization). Air quality guidelines for Europe. Copenhagen: WHORegional Office for Europe.1987,1.
    [216] Wong C. S. C., Li X. D., Zhang G., et al. Atmospheric deposition of heavy metals in the PearlRiver Delta, China. Atmospheric Environment,2003,37(6):767~776.
    [217] Wright D. A.,&Welbourn P.编著,(朱琳译). Environmental Toxicology.北京,2007,1:276.
    [218] Wu B.,&Chen T. B. Changes in hair arsenic concentration in a population exposed to heavypollution: follow-up investigation in Chenzhou City, Hunan Province, Southern China. Journal ofEnvironmental Sciences,2010,22(2):283~289.
    [219] Yamac M., Yidiz D., Sarikürkcü C., et al. Heavy metals in some edible mushrooms from theCentral Anatolia, Turkey. Food Chemistry,2007,103(2):263~267.
    [220] Yang Z. P., Lu W. X., Long Y. Q., et al. Assessment of heavy metals contamination in urbantopsoil from Changchun City, China. Journal of Geochemical Exploration,2011,108(1):27~38.
    [221] Zhang C. B., Wu L. H., Luo Y. M., et al. Identifying sources of soil inorganic pollutants on aregional scale using a multivariate statistical approach: Role of pollutant migration and soilphysicochemical properties. Environmental Pollution,2008,151(3):470~476.
    [222] Zhao F. J., Adams M. L., Dumont C., et al. Factors affecting the concentrations of lead in Britishwheat and barley grain. Environmental Pollution,2004,131(3):461~468.
    [223] Zheng N., Wang Q. C.,&Zheng D. M. Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitantsaround Huludao Zinc Plant in China via consumption of vegetables. Science of the TotalEnvironment,2007a,383(1-3):81~89.
    [224] Zheng N., Wang Q. C., Zhang X. W., et al. Population health risk due to dietary intake of heavymetals in the industrial area of Huludao city, China. Science of the Total Environment,2007b,387(1-3):96~104.
    [225] Zheng J., Tan M. G., Shibata Y., et al. Characteristic of lead isotope ratios and elementalconcentrations in PM10fraction of airborne particulate matter in Shanghai after the phase-out ofleaded gasoline. Atmospheric Environment,2004,38(8):1191~1200.
    [226] Zheng N., Liu J. S., Wang Q. C., et al. Health risk assessment of heavy metal exposure to streetdust in the smelting district, Northeast of China. Science of the Total Environment,2010,408(4):726~733.
    [227] Zhuang P., McBride M. B., Xia H. P., et al. Health risk from heavy metals via consumption of foodcrops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment,2009,407(5):1551~1561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700