AckI介导前列腺癌细胞侵袭转移机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     前列腺癌是男性生殖系统最常见肿瘤,在美国肿瘤死亡率位居第二。近年来,我国前列腺癌的发病率呈明显上升趋势。当前,在经典的内分泌治疗广泛的应用的同时,晚期雄激素难治性前列腺癌(HRPC)的治疗仍就是一大难题,目前前列腺癌晚期的化疗方案以多西紫杉醇、米托葸醌等为代表,虽取得一定疗效,但肿瘤缓解率低,副作用较多等使之不能成为最理想的治疗方法。因此,探索和研究新的治疗策略,具有十分重要的临床意义。
     研究表明,Ackl(activated Cdc42associated kinase1)对恶性肿瘤的生长非常关键,并且作为一种关键转导蛋白,在许多肿瘤相关信号通路,诸如整联蛋白、EGF、PDGF信号通路等中发挥重要作用。它通过酪氨酸磷酸化作用调解着许多蛋白分子,而这些分子对于肿瘤细胞的生长、增殖以及迁移都至关重要。P130CAS适配器蛋白通过介导蛋白复合物的形成在细胞信号通路中发挥重要作用。小RNA干扰技术(RNAi)已经成为近年来发展起来的高效特异的阻断基因表达的新手段,具有广泛的应用前景。
     尽管已有很多研究涉及Ackl及P130CAS,但其在前列腺癌中的准确机制远未阐明,有待进一步研究。有鉴于此,我们拟通过实验研究Ackl以及P130CAS在前列腺癌细胞株表达情况及可能的相互关系;再构建Ackl基因敲减干扰细胞株的稳定模型,对沉默Ack后的PC-3细胞株进行相关的细胞生物学实验研究及药物干预实验研究,研究AckI蛋白基因敲减后PC-3细胞的生物学行为的改变,以及对药物干预的影响,借以充分挖掘AckI以及P130CAS在前列腺癌的发生发展以及药物治疗方面的作用。
     研究方法
     1.采用Western blot及RT-PCR方法检测AckI及P130CAS mRNA和蛋白在激素依赖性前列腺癌细胞株LNCaP及激素非依赖性前列腺癌细胞株PC-3中的表达水平。
     2.利用慢病毒介导的RNA干扰技术试行构建逆转录shRNA干扰AckI质粒,转染激素非依赖性前列腺癌细胞株PC-3细胞,干扰PC-3细胞AckI蛋白的表达,构建低表达蛋白的模型,并通过荧光显微镜观察、PCR双酶切和免疫印迹对其验证。
     3.体外采用MTT实验、平板集落形成实验、划痕愈合实验、Transwell实验等方法以及研究沉默后相关小G蛋白家族以及P130CAS蛋白的表达情况,从体外层面进行AckI基因表达调节作用机制研究。
     4.观察shRNA沉默AckI基因对PC-3细胞多西紫杉醇化疗敏感性的影响,实验分为PC-3+DTX组、PC-3+NC-shRNA+DTX组和PC-3+AckI-shRNA+DTX三组,每组另外设一个未化疗的平行对照组。转染后24小时起给予终浓度为0.25μM多烯紫杉醇,MTT法测各组细胞生长增殖变化;流式细胞术检测细胞的凋亡率和细胞的周期分布。
     研究结果
     1. Western blot及RT-PCR结果显示AckI与P130CAS mRNA和蛋白两种侵袭潜能不同的前列腺癌细胞系中均有表达,AckI蛋白相对表达水平为(1.51±0.10VS0.22±0.09),P130CAS为(1.09±0.11VS0.51±0.10),差异有显著差异(P<0.05);AckI mRNA相对表达水平为(1.22±0.15VS0.12±0.11),P130CAS为(1.19±0.21VS0.32±0.13),差异有显著差异(P<0.05)。结果提示AckI与P130CAS的高表达与前列腺癌细胞的侵袭转移潜能可能相关。
     2.结果显示AckI的低表达真核细胞载体构建成功,完成了AckI特异性重组慢病毒载体质粒的包装并完成了病毒体的包装与浓缩。通过倒置荧光显微镜观察,转染效率约为75%;通过WB实验观察,AckI基因的表达量明显下调。
     3.体外细胞研究结果显示敲减AckI的表达可以抑制PC-3细胞的侵袭迁移。划痕实验比较了PC-3细胞AckI基因敲减前后的迁移能力,结果显示敲减后较未干预的细胞迁移能力明显下降,24小时划痕愈合率分别为34%VS89%,差异具有显著性意义(P<0.05)。采用Transwell侵袭小室测定PC-3细胞AckI基因敲减后侵袭能力的不同,结果显示PC-3细胞在AckI基因敲减后侵袭能力明显下降,24小时培养后穿过Transwell的每低倍视野细胞数分别为21.31±4.15VS12.15±3.13,差异具有显著性意义(P<0.05)。而且,AckI表达沉默的PC-3细胞后蛋白的表达为:下调AckI的表达的同时P130cas蛋白的表达下降,上调了Rac1的表达,而cdc42、RhoA、RhoC则无明显改变。P130cas蛋白表达下调(0.94±0.13VS0.32±0.11),Rac1蛋白表达明显上调(0.29±0.08VS0.67±0.10),差异具有统计学意义(P<0.05),cdc42、RhoA、 RhoC蛋白表达无变化(cdc42,0.61±0.14VS0.58±0.19;RhoA,0.67±0.15vs0.58±0.15;RhoC,0.55±0.15vs0.54±0.06).差异具无统计学意义(p>0.05)。表明Ackl可能通过P130cas、Rac1与其下游蛋白进一步作用。AckI可能通过反应性下调Rac1蛋白,上调P130cas蛋白表达在激素非依赖性前列腺癌细胞凋亡中起重要的作用机制。
     4.化疗48小时后PC-3+AckI-shRNA+DTX组细胞存活数明显低于PC-3+DTX组(?)(?)PC-3+NC-shRNA+DTX组(P<0.05),两化疗对照组间无显著性差异。化疗后48小时PC-3+DTX组、NC-shRNA+DTX组、PC-3+AckI-shRNA+DTX凋亡率分别为23.79%,14.96%以及15.10%,PC-3+AckI-shRNA+DTX组凋亡率高于对照组(P<0.05)。流式细胞仪测定化疗后48小时各组PC-3细胞的周期分布,结果显示未化疗的AckI-shRNA转染组PC-3细胞发生了G0/G1期阻滞解除。
     结论AckI和P130CAS在Pca细胞中存在高表达,其之间发生相互作用,可能形成复合物在Pca的形成的相关信号通路中担当重要角色,与Pca侵袭性相关。成功通过构建shRNA干扰质粒沉默AckI基因,并发现AckI的表达下调后Pca细胞的增殖、迁移和侵袭能力下降。AckI可能通过调控P130CAS以及Racl的表达从而实现促进Pca细胞生长与演进。AckI-shRNA转染能增加PC-3细胞对多西紫杉醇化疗的敏感性。沉默AckI基因对PC-3细胞多烯紫杉醇的化疗增敏作用与凋亡率升高及G0/G1期阻滞解除有关。
Background
     Prostate cancer is the most common malignancy generated from the male reproductive system. In the United States, it is the second cause of cancer mortality which is only less than lung cancer. During recent years, detection rate of prostate cancer has been increasing in China. Currently, endocrine therapy is a very effective method for ADPC, however, HRPC is still a therapeutic challenge not to overcome. Docetaxel and Mitoxantrone are the representative drugs for the advanced prostate cancer. Although these drugs, to some extent, can postpone the progression of the disease, it is still not an ideal, effective therapy for HRPC. Therefore, to explore and study novel therapeutic strategies for AIPC is of clinical significance.
     AckI(activated Cdc42associated kinase1) has been shown to be critical for malignant tumors growth, and to be a key transducer in several cancer-related signaling pathway such as integrins, EGF, PDGF pathways and so on. It regulates activity of a number of proteins by tyrosine phosphorylation especially proteins critical for cell migration, cell growth, and proliferation. P130CAS adaptor proteins play an important role during cellular signaling by mediating the formation of protein complexes. A new very efficient and special tool for gene knockdown, RNAi(RNA interference) technology, has developed rapidly and has a wide application prospect during recent years. Indeed, the detailed mechanism of AckI and p130cas in prostate cancer remain far from clear and is needed to be investigated, though many studies have shown some mechanism about it.. In view of this, we carried out the present study to investigate the expression of AckI and p130cas in Pca as well as the role of it in the growth and metastasis of Pca and the possible underlying molecular mechanism. By using plasmid transfection and RNA interference(shRNA), as well as a series of in vitro assays, we got results as follows.
     Methods and Results
     First of all, Western blot and RT-PCR methods were used to examine the expression levels of AckI and P130CAS in androgen-dependent prostate cancer(ADPC) cells LNCaP and andandrogen-independent prostate cancer(AIPC) PC-3cells. As a result, the expression levels of AckI and P130CAS was lower in LNCaP than PC-3with significant difference(P<0.05), indicating that AckI and P130CAS may play an important role in the development of prostate cancer.
     Second, by the aid of the Technology of RNA interference via lentivirus which Can transcribe a short hairpin RNA against AckI, we have successfully generated AckI knockdown PC-3cells lines. The interfection result was confirmed by western bolt and RT-PCR and fluorescence microscopy was used to determine the fluorescence.
     Third, Cell proliferation was quantitated by the3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl-tetrazolium Bromide (MTT) assay and Colony formation assay, Cell migration was measured by in vitro wound healing assay and transwell healing assay. As a result, Inhibition of the expression of Ackl lead to decrease of the invasion ablitiy of PC-3cells migration in vitro. The results of scratch healing showed that migration ability of PC-3after AckI knockdown was significantly impaired,24-hour scratch healing rates of PC-3cells before and after AckI knockdown were34%VS89%, the difference was significan(P<0.05). Different invasive ability were found in pc-3cells before and after AckI knockdown by Transwell assay. After24hours cell culture, cell count of permeate through Transwell(10w power field)were21.31±4.15VS12.15±3.13, difference was significant(P<0.05). These results indicate that in vitro inhibition of AckI expression in PC-3cells can inhibit the invasion and metastasis of prostate cancer.
     We further detected the expression of cdc42, RhoA, RhoC, Racl, P130CAS protein levels in PC-3cells respectively after AckI gene knockdown. Down-regulating the expression of AckI-silenced in PC-3cells lead to down-regulated expression of p130cas protein expression (0.94±0.13VS0.32±0.11), up-regulated expression of Rac1(0.29±0.08VS0.67±0.10),with statistically significant difference(p<0.05).No statistically significant difference was found in cdc42, RhoA and RhoC protein expression(cdc42,0.61±0.14VS0.58±0.19; RhoA,0.67±0.15vs0.58±0.15; RhoC,0.55±0.15vs0.54±0.06).
     In the end, we evaluated the influence of knocking down of AckI gene with shRNA on the chemosensitivity of Docetaxel in PC-3cell line. PC-3cell was divided into three groups as previous study, Docetaxel was given as final concentration of0.25μM at24h after transfection. MTT test was used to measure the proliferation of PC3cell. Flow cytometer was used to measure cell apoptosis, cycle distribution. Inhibition ratio of PC3+AckI-shRNA+DTX group is higher than PC3+DTX group and PC3+NC-shRNA+DTX group (P<0.05, at48h), while there was no difference between two control groups(P>0.05). Cell apoptosis rate of PC3+AckI-shRNA+DTX group, PC3+DTX group and PC3+NC-shRNA+DTX group was23.79%,14.96%and15.10%respectively at48h after docetaxe1given. The apoptosis rate of PC3+AckI-shRNA+DTX group was the highest (P<0.05). Flow cytometry analysis showed there was less G0/G1phase arrest in PC3+AckI-shRNA group than two control groups without chemotherapy.
     Conclusions Our experiments have demonstrated AckI was overexpressed in AIPC cell and played an important role in the invasion and metastasis of Pca. we eidentified that P130cas was involved in AckI and AckI may promote invasion and metastasis of human prostate cancer via regulating P130cas and Racl. What's more, AckI-shRNA can enhance chemosensitivity of docetaxel in PC-3cell in vitro by knocking down of AckI gene expression. The possible mechanisms involved in chemosensitization of AckI-shRNA include increasing apoptosis rate and releasing cell cycle arrest of G0/G1. Our findings suggest AckI as a novel prognostic marker and a potential therapeutic target for treatment of Pca.
引文
[1].那彦群,孙光.中国泌尿外科疾病诊断治疗指南(2009版),人民卫生出版社,2009,47-48.
    [2].孙颖浩.我国前列腺癌的研究现状.中华泌尿外科杂志,2005,2:77-78.
    [3].马潞林,邱敏,黄毅.经尿道前列腺电切术后的腹腔镜下前列腺癌根治术.中华泌尿外科杂志,2011(2):119-121.
    [4].Crawford ED. Epidemiology of prostate cancer. Urology,2003.,62(6 suppl 1):3-12.
    [5].Hiroyoshi S, Naoto K, Takashi I. Current topics and perspectives relating to hormone therapy for prostate cancer. Int J Clin Oncol.2008,13; 262 (2):401-410
    [6].孙浩林,李淳德,宋毅.激素难治性前列腺癌骨转移的治疗进展.中华外科杂志.2008(14):1104-1106.
    [7]. Sountoulides, P., et al., Secondary malignancies following radiotherapy for prostate cancer. Ther Adv Urol,2010.2(3):p.119-25.
    [8].Basu, S. and D.J. Tindall, Androgen action in prostate cancer. Horm Cancer,2010. 1(5):p.223-8.
    [9].Urbanucci, A., et al., Overexpression of androgen receptor enhances the binding of the receptor to the chromatin in prostate cancer. Oncogene,2011.
    [10].周际昌.实用肿瘤内科学,人民卫生出版社,2003.
    [11]. Shin, H.R., E. Masuyer, and J. Ferlay, et al., Cancer in Asia-Incidence rates based on data in cancer incidence in five continents Ⅸ (1998-2002). Asian Pac J Cancer Prev,2010.11 Suppl 2:p.11-6.
    [12]. Prieto-Echague, V. and W.T. Miller, Regulation of ack-family nonreceptor tyrosine kinases. J Signal Transduct,2011.2011:p.742372.
    [13]. Zahedi, B., W. Shen, and X. Xu, et al., Leading edge-secreted Dpp cooperates with ACK-dependent signaling from the amnioserosa to regulate myosin levels during dorsal closure. Dev Dyn,2008.237(10):p.2936-46.
    [14]. Galisteo, M.L., Y. Yang, and J. Urena, et al., Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proc Natl Acad Sci U S A,2006.103(26):p.9796-801.
    [15]. Shen, H., S.M. Ferguson, and N. Dephoure, et al., Constitutive activated Cdc42-associated kinase (Ack) phosphorylation at arrested endocytic clathrin-coated pits of cells that lack dynamin. Mol Biol Cell,2011.22(4):p. 493-502.
    [16]. Liu, X., Y. Zhu, and S.T. Yang, Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnol Prog,2006.22(5):p.1265-75.
    [17]. Suwannakham, S., Y. Huang, and S.T. Yang, Construction and characterization of ack knock-out mutants of Propionibacterium acidipropionici for enhanced propionic acid fermentation. Biotechnol Bioeng,2006.94(2):p.383-95.
    [18]. Yang W, Cerione RA. Cloning and characterization of a novel Cdc42-associated tyrosine kinase, ACK-2, from bovine brain. J Biol Chem 1997;272:24819-24.
    [19]. Teo M, Tan L, Lim L, Manser E. The tyrosine kinase ACK1 associates with clathrin-coated vesicles through a binding motif shared by arrestin and other adaptors. J Biol Chem 2001;276:18392-8.
    [20]. Satoh T, Kato J, Nishida K, Kaziro Y. Tyrosine phosphorylation of ACK in response to temperature shift-down, hyperosmotic shock, and epidermal growth factor stimulation. FEBS Lett 1996;386:230-4
    [21]. Worby CA, Simonson-Leff N, Clemens JC, Huddler D, Jr., Muda M, Dixon JE. Drosophila Ack targets its substrate, the sorting nexin DSH3PX1, to a protein complex involved in axonal guidance. J Biol Chem 2002;277:9422-8.
    [22]. Yokoyama N, Miller WT. Biochemical properties of the Cdc42-associated tyrosine kinase ACK1-Substrate specificity, autophosphorylation, and interaction with Hck. J Biol Chem 2003;278:47713-23.
    [23]. MacKeigan JP, Murphy LO, Blenis J. Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 2005; 7:591-600.
    [24]. Nur-E-Kamal A, Zhang AL, Keenan SM, Wang XI, Seraj J, Satoh T, Meiners S, Welsh WJ.Requirement of activated Cdc42-associated kinase for survival of v-Ras-transformed mammalian cells. Mol Cancer Res 2005; 3:297-305.
    [25]. van der Horst, E.H., Y.Y. Degenhardt, and A. Strelow, et al., Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci U S A,2005.102(44):15901-6.
    [26]. Eisenmann, K.M., J.B. McCarthy, and M.A. Simpson, et al., Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130cas. Nat Cell Biol,1999.1(8):507-13.
    [27]. Mahajan NP, Whang YE, Mohler JL, et al. Activated tyrosine kinase Ackl promotes prostate tumorigenesis:Role of Ackl in polyubiquitination of tumor suppressor Wwox. Cancer Res 2005;65:10514-23.
    [28].张正良,龚伟.p130cas和甲胎蛋白共表达在原发性肝细胞癌中的临床意义.中国医药指南,2010.8(35):181-182.
    [29].王舟,王学春.p130Cas信号转导与肿瘤.济宁医学院学报,2008.31(2):175-176.
    [30]. Shi, J. and J.E. Casanova, Invasion of host cells by Salmonella typhimurium requires focal adhesion kinase and p130Cas. Mol Biol Cell,2006.17(11): 4698-708.
    [31]. Van Slambrouck, S., C. Grijelmo, and O. De Wever, et al., Activation of the FAK-src molecular scaffolds and p130Cas-JNK signaling cascades by alpha1-integrins during colon cancer cell invasion. Int J Oncol,2007.31(6): 1501-8.
    [32].Sharma, A. and B.J. Mayer, Phosphorylation of p130Cas initiates Rac activation and membrane ruffling. BMC Cell Biol,2008.9:50.
    [33].Kim SH, Kim SH. Antagonistic effect of EGF on FAK phosphorylation/dephosphorylation in a cell. Cell Biochem Function 2008; 26:539-547.
    [34].Choi UJ, Jee BK, Lim Y, Lee KH. KAI1/CD82 decreases Racl expression and cell proliferation through PI3K/Akt/mTOR pathway in H1299 lung carcinoma cells. Cell Biochem Function 2009; 27:40-47.
    [35].Honda, H., H. Oda, and T. Nakamoto, et al., Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130Cas. Nat Genet,1998.19(4):361-5.
    [36].Ambrogio, C., C. Voena, and A.D. Manazza, et al., p130Cas mediates the transforming properties of the anaplastic lymphoma kinase. Blood,2005. 106(12):3907-16.
    [37].Cabodi, S., A. Tinnirello, and B. Bisaro, et al., p130Cas is an essential transducer element in ErbB2 transformation. FASEB J,2010.24(10):3796-808.
    [38].Pylayeva, Y, K.M. Gillen, and W. Gerald, et al., Ras-and PI3K-dependent breast tumorigenesis in mice and humans requires focal adhesion kinase signaling. J Clin Invest,2009.119(2):252-66.
    [39].Cabodi, S., A. Tinnirello, and P. Di Stefano, et al., p130Cas as a new regulator of mammary epithelial cell proliferation, survival, and HER2-neu oncogene-dependent breast tumorigenesis. Cancer Res,2006.66(9):4672-80.
    [40].Tornillo, G, B. Bisaro, and M.P. Camacho-Leal, et al. pl30Cas promotes invasiveness of three-dimensional ErbB2-transformed mammary acinar structures by enhanced activation of mTOR/p70S6K and Racl. Eur J Cell Biol, 2011.90(2-3):237-48.
    [41].van der Flier, S., C.M. Chan, and A. Brinkman, et al., BCAR1/p130Cas expression in untreated and acquired tamoxifen-resistant human breast carcinomas. Int J Cancer,2000.89(5):465-8.
    [42].van der Flier, S., T.H. van der Kwast, and C.J. Claassen, et al., Immunohistochemical study of the BCAR1/p130Cas protein in non-malignant and malignant human breast tissue. Int J Biol Markers,2001.16(3):172-8.
    [43].Dorssers, L.C., N. Grebenchtchikov, and A. Brinkman, et al., The prognostic value of BCAR1 in patients with primary breast cancer. Clin Cancer Res,2004. 10(18 Pt1):6194-202.
    [44].Cabodi, S., P.C.M. del, and P. Di Stefano, et al., Integrin signalling adaptors:not only figurants in the cancer story. Nat Rev Cancer,2010.10(12):858-70.
    [45].Fromont, G. and O. Cussenot, The integrin signalling adaptor p130cas is also a key player in prostate cancer. Nat Rev Cancer,2011.11(3):227.
    [46].张云汉,RNA干扰作用的机制及其在肿瘤基因治疗中的应用前景.郑州大学学报:医学版,2006.41(3):393-395.
    [47].陈忠斌,于乐成.RNA干扰作用(RNAi)研究进展.中国生物化学与分子生物学报,2002.18(5):525-528.
    [48].Zeng, H., S. Zhang, and K.Y. Yang, et al., Knockdown of second mitochondria-derived activator of caspase expression by RNAi enhances growth and cisplatin resistance of human lung cancer cells. Cancer Biother Radiopharm, 2010.25(6):705-12.
    [49].Jensen, V.L., K.T. Simonsen, and Y.H. Lee, et al., RNAi screen of DAF-16/FOXO target genes in C. elegans links pathogenesis and dauer formation. PLoS One,2010.5(12):e15902.
    [50].Cheng, S.Y., RNAi screen in Drosophila yields a fat catch of Hedgehog. Protein Cell,2010.1(3):205-6.
    [51].邓飞涛,柴新群,叶伦,PLAGL2基因siRNA表达质粒的构建及体外干扰作用.华中科技大学学报:医学版,2009.38(5):598-601.
    [52]. Lee, H.C., A.P. Aalto, and Q. Yang, et al., The DNA/RN A-dependent RNA polymerase QDE-1 generates aberrant RNA and dsRNA for RNAi in a process requiring replication protein A and a DNA helicase. PLoS Biol,2010.8(10).
    [53].Maine, E.M., RNAi As a tool for understanding germline development in Caenorhabditis elegans:uses and cautions. Dev Biol,2001.239(2):177-89.
    [54].Clissold, P.M. and C.P. Ponting, PIN domains in nonsense-mediated mRNA decay and RNAi. Curr Biol,2000.10(24):R888-90.
    [55].Lipardi, C., Q. Wei, and B.M. Paterson, RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell,2001.107(3):297-307.
    [56].de Vries W, Berkhout B.RNAi suppressors encoded by pathogenic human viruses.Int J Biochem Cell Biol.2008;40(10)
    [57].Stewart, S.A., D.M. Dykxhoorn, and D. Palliser, et al., Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA,2003.9(4):493-501.
    [58].David E Rootl, Nir Hacohen, William C Hahn,et al. Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat Methods.2006 Sep;3(9):715-9.
    [59].Singer, O. and I.M. Verma, Applications of lentiviral vectors for shRNA delivery and transgenesis. Curr Gene Ther,2008.8(6):483-8.
    [60].Liu, Y., J. Tao, and Y. Li, et al., Targeting hypoxia-inducible factor-1alpha with Tf-PEI-shRNA complex via transferrin receptor-mediated endocytosis inhibits melanoma growth. Mol Ther,2009.17(2):269-77.
    [61].Huggins, C., The Treatment of Cancer of the Prostate:(The 1943 Address in Surgery before the Royal College of Physicians and Surgeons of Canada). Can Med Assoc J,1944.50(4):301-7.
    [62].Yokoyama N. Miller WT. Biochemical properties of the Cdc42-associated tyrosine kinase ACK1-Substrate specificity,autophosphorylation,and interaction wim Hck. J Biol Chem 2003:278:47713-23
    [63].Eisenmann KM, McCarthy JB, Simpson MA, Keely PJ, Guan JL, Tachibana K, Lim L。 Manser E, Furcht LT,Iida J. Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack1 and p130(cas). Nat CeUBiol 1999; 1:507-13.
    [64].Kato. Stankiewicz Jj Ueda Sj Kataoka Z Kaziro K Satoh z Epidermal growth factor stimulation ofthe ACK1/Dbl pathway in a Cdc42 and Grb2. Dependent manner. Biochem Biophys Res Commun 2001; 284:470-7.
    [65].Teo M, Tan L, Lim L, Manser E. The tyrosine kinase ACK1 associates with clathrin. coated vesicles through a binding motif shared by arrestin and other adaptors. J Biol Chem 2001; 276:18392-8.
    [66].Satoh Z Kato JINishida Kj Kaziro r Tyrosine phosphorylation of ACK in response to temperature shift, down, hyperosmotic shock, and epidermal growth factor stimulation. FEBS Lett 1996; 386:230.4. Yeow. Fong L. Lira L. Manser E. SNX9 as an adaptor for linking synaptojanin.1 to the Cdc42 effector ACK1. FEBS Lett 2005:579:5040-48.
    [67].Wbrby CA, Simonson. Lefr N, Clemens JC, Huddler D, Jr., Muda M, Dixon JE. Drosophila Ack targets its substrate, the sorting nexin DSH3PX1. to a protein complex involved in axonal guidance. J Biol Chem 2002:277:9422-8.
    [68].Oda T'Muramatsu M, Isogai T'Masuho Y Asano S, Yamashita T. HSH2:A hovel SH2 domain, containing adapter protein involved in tyrosine kinase signaling in hematopoietic cells. Biochem Biophys Res Commun 2001; 288:1078-86.
    [69].Huang, C.N., S.P. Huang, and J.B. Pao, et al., Genetic polymorphisms in oestrogen receptor-binding sites affect clinical outcomes in prostate cancer patients receiving androgen-deprivation therapy. J Intern Med,2011.
    [70].Lonergan, P.E. and D.J. Tindall, Androgen receptor signaling in prostate cancer development and progression. J Carcinog,2011.10:20.
    [71].Rickman, D.S., Y.B. Chen, and S. Banerjee, et al., ERG cooperates with androgen receptor in regulating trefoil factor 3 in prostate cancer disease progression. Neoplasia,2010.12(12):1031-40.
    [72].Mahajan, N.P., Y. Liu, and S. Majumder, et al., Activated Cdc42-associated kinase Ackl promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci U S A,2007.104(20):8438-43.
    [73].MacKeigan JP, Murphy LO, Blenis J. Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 2005; 7:591-600.
    [74].van der Horst, E.H., Y.Y. Degenhardt, and A. Strelow, et al., Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci U S A,2005.102(44):15901-6.
    [75]. Kim SH, Kim SH. Antagonistic effect of EGF on FAK phosphorylation/dephosphorylation in a cell. Cell Biochem Function 2008; 26:539-547.
    [76].Choi UJ, Jee BK, Lim Y, Lee KH. KAI1/CD82 decreases Racl expression and cell proliferation through PI3K/Akt/mTOR pathway in H1299 lung carcinoma cells. Cell Biochem Function 2009; 27:40-47.
    [77].Yu, D., D. Chen, and C. Chiu, et al., Prostate-specific targeting using PSA promoter-based lentiviral vectors. Cancer Gene Ther,2001.8(9):628-35.
    [78]. Yu, D., W.W. Jia, and M.E. Gleave, et al., Prostate-tumor targeting of gene expression by lentiviral vectors containing elements of the probasin promoter. Prostate,2004.59(4):370-82.
    [79].Bu, W., L. Xin, and M. Toneff, et al., Lentivirus vectors for stably introducing genes into mammary epithelial cells in vivo. J Mammary Gland Biol Neoplasia, 2009.14(4):401-4.
    [80].Khetawat, D. and C.C. Broder, A functional henipavirus envelope glycoprotein pseudotyped lentivirus assay system. Virol J,2010.7:312.
    [81].Toscano, M.G., M. Delgado, and W. Kong, et al., Dendritic cells transduced with lentiviral vectors expressing VIP differentiate into VIP-secreting tolerogenic-like DCs. Mol Ther,2010.18(5):1035-45.
    [82].Krupka, N., P. Strappe, and J. Gotz, et al., Gateway-compatible lentiviral transfer vectors for ubiquitin promoter driven expression of fluorescent fusion proteins. Plasmid,2010.63(3):155-60.
    [83].Staunstrup, N.H. and J. Giehmmikkelsen, Integrase-Defective Lentiviral Vectors-A Stage for Nonviral Integration Machineries. Curr Gene Ther,2011.
    [84],Chambers AF, Groom AC, MacDonald IC Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer,2002; 2:563-72.
    [85].Campbell, P.J., S. Yachida, and L.J. Mudie, et al., The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature,2010.467(7319): 1109-13.
    [86].张平,张志培,李香敏等.,PRL-3和RhoC在A549细胞中的表达及意义.中国肺癌杂志,2010:1160-1164.
    [87].张红卫,吴逸明,王琳等.,体内外实验研究青蒿琥酯联合热疗对A549细胞生物学特性影响.现代预防医学,2009.36(14):2699-2701.
    [88].成志勇,潘峻,牛志云等.,PTEN基因转染对白血病细胞VEGF调控作用的影响.肿瘤,2010.11:34-35
    [89].于虹,怀娜,马秀梅等.,Src激酶抑制剂PP2对人胃癌细胞生物学行为的影响.肿瘤,2010:09:13-15
    [90].van der Horst, E.H., Degenhardt, Y.Y.,et al.. Metastatic propertiesand genomic amplification of the tyrosine kinase gene ACK1.Proc. Nat. Acad. Sci. U.S.A. 2005,102,15901-15906.
    [91].Mahajan, N.P., Liu, Y., Majumder, S., et al, Activated Cdc42-associated kinase Ackl promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc. Nat.Acad. Sci. U.S.A.2007.
    [92]. Wang, L., Zhu, J.S., Song, M.Q., et al. Comparison of gene expression profiles between primary tumor and metastatic lesions in gastric cancer patients using laser microdissection and cDNA microarray. World J.Gastroenterol. 2006,12:6949-6954
    [93].Chua BT, Lim SJ, Tham SC, et al. Somatic mutation in the ACK1 ubiquitin association domain enhances oncogenic signaling through EGFR regulation in renal cancer derived cells. Poh WJ, Ullrich A.Mol Oncol.2010 Aug;4(4):323-34.
    [94].赖永榕,彭志刚,MA方案与ID-Ara-C方案治疗难治性及复发性急性髓细胞性白血病疗发.临床内科杂志,1999.16(1):33-34.
    [95].吴晓雄,曹永彬,刘周阳等,伊立替康联合米托恩醌治疗难治/复发性非霍奇金淋巴瘤的疗效观察.临床血液学杂志,2009.22(4):366-367.
    [96].de Bono, J.S., S. Oudard, and M. Ozguroglu, et al., Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment:a randomised open-label trial. Lancet,2010.376(9747): 1147-54.
    [97].Harzstark, A.L., J.E. Rosenberg, and V.K. Weinberg, et al., Ixabepilone, mitoxantrone, and prednisone for metastatic castration-resistant prostate cancer after docetaxel-based therapy:a phase 2 study of the department of defense prostate cancer clinical trials consortium. Cancer,2010,
    [98].Arsov, C., C. Winter, and R. Rabenalt, et al., Current second-line treatment options for patients with castration resistant prostate cancer (CRPC) resistant to docetaxel. Urol Oncol,2010.
    [99].Zurita, A.J., D.J. George, and N.D. Shore, et al., Sunitinib in combination with docetaxel and prednisone in chemotherapy-naive patients with metastatic, castration-resistant prostate cancer:a phase 1/2 clinical trial. Ann Oncol,2011.
    [100]. Pond, G.R., A.J. Armstrong, and B.A. Wood, et al., Evaluating the Value of Number of Cycles of Docetaxel and Prednisone in Men With Metastatic Castration-Resistant Prostate Cancer. Eur Urol,2011.
    [101].祝海,綦海燕,孙小庆等,多西紫杉醇联合曲格列酮对人前列腺癌裸鼠移植瘤的抑制作用.肿瘤,2010:7:23-24.
    [102].李天庆,王剑松,联合多西紫杉醇治疗非激素依赖性前列腺癌临床进展.中华男科学杂志,2008.14(3):264-267.
    [103]. Beekman KW, Fleming MT, Scher HI, et al.Second-line chemotherapy for prostate cancer:patient characteristics and survival.Clin Prostate Cancer,2005,4(2):86-90.
    [104].丛林,索拉非尼对不同类型肝癌化疗效果的影响.肿瘤基础与临床,2010.23(5):394-395.
    [105].王瑛,肿瘤化疗与生物治疗:原理与实践.人民卫生出版社.2008,
    [106]. Singh, P.P., S. Joshi, and P.J. Russell, et al., Molecular chemotherapy and chemotherapy:a new front against late-stage hormone-refractory prostate cancer. Clin Cancer Res,2011.17(12):4006-18.
    [107]. Ray, M., D.R. Hostetter, and C.R. Loeb, et al., Inhibition of Granzyme B by PI-9 protects prostate cancer cells from apoptosis. Prostate,2011.
    [108]. Modzelewska K, Newman LP, Desai Keely PJ. Ackl mediates Cdc42-dependent cell migration and signaling to P130Cas. J Biol Chem 2006; 281:37527-35.
    [109]. Zhang, X.A., B. He, and B. Zhou, et al., Requirement of the p130cas-Crk coupling for metastasis suppressor KAI1/CD82-mediated inhibition of cell migration. J Biol Chem,2003.278(29):27319-28.
    [110]. Gustavsson, A., M. Yuan, and M. Fallman, Temporal dissection of betal-integrin signaling indicates a role for p130Cas-Crk in filopodia formation. J Biol Chem,2004.279(22):22893-901.
    [111]. Ambrogio, C., C. Voena, and A.D. Manazza, et al., p130Cas mediates the transforming properties of the anaplastic lymphoma kinase. Blood,2005. 106(12):3907-16.
    [112]. Sanders, M.A. and M.D. Basson, p130cas but not paxillin is essential for Caco-2 intestinal epithelial cell spreading and migration on collagen Ⅳ. J Biol Chem,2005.280(25):23516-22.
    [113]. Cabodi, S., P. Di Stefano, and M.P. Leal, et al., Integrins and signal transduction. Adv Exp Med Biol,2010.674:43-54.
    [114]. Cabodi, S. and D. Taverna, Interfering with inflammation:a new strategy to block breast cancer self-renewal and progression?. Breast Cancer Res,2010. 12(2):305.
    [115]. Liang, F., J. Liang, and W.Q. Wang, et al., PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation. J Biol Chem, 2007.282(8):5413-9.
    [116]. Liang, F., Y. Luo, and Y Dong, et al., Translational control of C-terminal Src kinase (Csk) expression by PRL3 phosphatase. J Biol Chem,2008.283(16): 10339-46.
    [117]. Guo, S. and K.J. Kemphues, par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell,1995.81(4):611-20.
    [118]. Etemad-Moghadam, B., S. Guo, and K.J. Kemphues, Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell,1995.83(5):743-52.
    [119]. Roner, M.R., Rescue systems for dsRNA viruses of higher organisms. Adv Virus Res,1999.53:355-67.
    [120]. Parrish, S., J. Fleenor, and S. Xu, et al., Functional anatomy of a dsRNA trigger:differential requirement for the two trigger strands in RNA interference. Mol Cell,2000.6(5):1077-87.
    [121]. Niwa, H., T. Anzai, and S. Hobo, Construction of a recombinant plasmid as reaction control in routine PCR for detection of contagious equine metritis (CEM-PCR). J Vet Med Sci,2007.69(11):1199-201.
    [122]. Hejazi, M.S., M.H. Pournaghi-Azar, and E. Alipour, et al., Construction, electrochemically biosensing and discrimination of recombinant plasmid (pEThIL-2) on the basis of interleukine-2 DNA insert. Biosens Bioelectron, 2008.23(11):1588-94.
    [123]. Kilonzo, P.M., A. Margaritis, and M.A. Bergougnou, Plasmid stability and kinetics of continuous production of glucoamylase by recombinant Saccharomyces cerevisiae in an airlift bioreactor. J Ind Microbiol Biotechnol, 2009.36(9):1157-69.
    [124]. Walker, L.E., L. Vang, and X. Shen, et al., Design and preclinical development of a recombinant protein and DNA plasmid mixed format vaccine to deliver HIV-derived T-lymphocyte epitopes. Vaccine,2009.27(50): 7087-95.
    [125]. Moazed, D., M. Buhler, and S.M. Buker, et al., Studies on the mechanism of RNAi-dependent heterochromatin assembly. Cold Spring Harb Symp Quant Biol,2006.71:461-71.
    [126]. Judge, A.D., M. Robbins, and I. Tavakoli, et al., Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J Clin Invest,2009.119(3):661-73.
    [127]. Jr Buchschacher, G.L. and F. Wong-Staal, Development of lentiviral vectors for gene therapy for human diseases. Blood,2000.95(8):2499-504.
    [128]. Woods, N.B., C. Fahlman, and H. Mikkola, et al., Lentiviral gene transfer into primary and secondary NOD/SCID repopulating cells. Blood,2000.96(12): 3725-33.
    [129]. Tannemaat, M.R., G.J. Boer, and J. Verhaagen, et al., Genetic modification of human sural nerve segments by a lentiviral vector encoding nerve growth factor. Neurosurgery,2007.61(6):1286-94; discussion 1294-6.
    [1].Kato-Stankiewicz J, Ueda S, Kataoka T, Kaziro Y, Satoh T.2001. Epidermal growth factor stimulation of the ACK1/Db1 pathway in a Cdc42 and Grb2-dependent manner. Biochem Biophys Res Commun 284:470-477.
    [2].Manser E, Leung T, Salihuddin H, Tan L, Lim L. A non-receptor tyrosine kinase that inhibits the GTPase activity of p21 cdc42. Nature,1993; 363:364-7.
    [3].Andreotti AH, Bunnell SC, Feng S, Berg LJ, Schreiber SL.1997. Regulatory intramolecular association in a tyrosine kinase of the Tec family. Nature 385:93-97.
    [4].Yang, W. and R.A. Cerione, Cloning and characterization of a novel Cdc42-associated tyrosine kinase, ACK-2, from bovine brain. J Biol Chem,1997. 272(40):24819-24.
    [5].Mahajan NP, Whang YE, Mohler JL, Earp HS.. Activated tyrosine kinase Ackl promotes prostate tumorigenesis:Role of Ackl in polyubiquitination of tumor suppressor Wwox. Cancer Res.2005,65:10514-10523.
    [6].Fiorentino L, Pertica C, Fiorini M, Talora C, Crescenzi M, Castellani L, Alema S, Benedetti P, Segatto O.2000. Inhibition of ErbB-2 mitogenic and transforming activity by RALT, a mitogen-induced signal transducer which binds to the ErbB-2 kinase domain. Mol Cell Biol 20:7735-7750.
    [7].Zhang X, Pickin KA, Bose R, Jura N, Cole PA, Kuriyan J.2007. Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface. Nature 450:741-744.
    [8].Shen F, Lin Q, Gu Y, Childress C, Yang W.2007. Activated Cdc42-associated kinase 1 is a component of EGF receptor signaling complex and regulates EGF receptor degradation.Mol Biol Cell 18:732-742.
    [9].Pao-Chun L, Chan PM, Chan W, Manser E.2009. Cytoplasmic ACK1 interaction with multiple receptor tyrosine kinases is mediated by Grb2:An analysis of ACK1 effects on Axl signaling. J Biol Chem.284:34954-34963.
    [10]. van der Horst EH, Degenhardt YY, Strelow A, Slavin A, Chinn L, Orf J, Rong M, Li S, See LH, Nguyen KQ, Hoey T, Wesche H, Powers S.2005. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci USA 102:15901-15906.
    [11]. Wang L, Shui Zhu J, Quan Song M, et al. Comparison of gene expression profiles between primary tumor and metastatic lesions in gastric cancer patients using laser microdissection and CDNA microarray. World J Gastroenterol 2006; 12:6949-54.
    [12].苏静,杨郁,马晓龙等,荧光原位杂交检测乳腺癌人表皮生长因子受体2基因扩增及与临床病理特征的关系.北京大学学报:医学版,2011.43(2):199-203.
    [13].卞学艺,叶青青,王瑶等,HER2基因扩增和蛋白表达与胃癌临床病理特征和预后的关系.胃肠病学,2011.16(5):267-271.
    [14]. Mahajan NP, Earp HS.2003. An SH2 domain-dependent, phosphotyrosine-independent interaction between Vavl and the Mer receptor tyrosine kinase:A mechanism for localizing guanine nucleotide-exchange factor action. J Biol Chem 278:42596-42603.
    [15]. Mahajan KN, Coppola D, Challa S, Fang B, Chen YA, Zhu W, Lopez AS, Koomen J, EngelmanRW, Rivera C, Rebecca S, Muraoka-Cook RS, Cheng JQ, Scho'nbrunn E, Sebti SM, Earp SH,Mahajan NP.2010b. Ack1 mediated AKT/PKB Tyrosine 176 Phosphorylation Regulates its Activation. PLoS ONE 5: e9646.
    [16]. Kato-Stankiewicz J, Ueda S, Kataoka T, Kaziro Y, Satoh T.2001. Epidermal growth factor stimulation of the ACKl/Dbl pathway in a Cdc42 and Grb2-dependent manner. Biochem Biophys Res Commun 284:470-477.
    [17]. Galisteo ML, Yang Y, Urena J, Schlessinger J.2006. Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proc Natl Acad Sci USA 103:9796-9801.
    [18]. Chan W, Tian R, Lee YF, Sit ST, Lim L, Manser E.2009. Down-regulation of active ACK1 is mediated by association with the E3 ubiquitin ligase Nedd4-2. J Biol Chem 284:8185-8194. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CL.2004. Molecular determinants of resistance to antiandrogen therapy. Nat Med 10:33-39.
    [19]. Yokoyama N, Miller WT.2003. Biochemical properties of the Cdc42-associated tyrosine kinase ACK1. Substrate specificity, authphosphorylation, and interaction with Hck. J Biol Chem 278:47713-47723.
    [20]. Yokoyama N, Lougheed J, Miller WT.2005. Phosphorylation of WASP by the Cdc42-associated kinase ACK1:Dual hydroxyamino acid specificity in a tyrosine kinase. J Biol Chem 280:42219-42226.
    [21]. Guler G, Uner A, Guler N, Han SY, Iliopoulos D, Hauck WW, McCue P, Huebner K.2004. The fragile genes FHIT and WWOX are inactivated coordinately in invasive breast carcinoma. Cancer 100:1605-1614.
    [22]. Howlin, J., J. Rosenkvist, and T. Andersson, TNK2 preserves epidermal growth factor receptor expression on the cell surface and enhances migration and invasion of human breast cancer cells. Breast Cancer Res,2008.10(2):R36.
    [23]. Worby, C.A., N. Simonson-Leff, and J.C. Clemens, et al., Drosophila Ack targets its substrate, the sorting nexin DSH3PX1, to a protein complex involved in axonal guidance. J Biol Chem,2002.277(11):9422-8.
    [24]. Mott, H.R., D. Owen, and D. Nietlispach, et al., Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK. Nature,1999. 399(6734):384-8.
    [25]. Kiyono, M., J. Kato, and T. Kataoka, et al., Stimulation of Ras guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm) upon tyrosine phosphorylation by the Cdc42-regulated kinase ACK1.J Biol Chem,2000. 275(38):29788-93.
    [26]. Linseman DA, Heidem'eich KA. Fisher SK. Stimulation of M3 muscarinic receptors induces phosphorylation of the Cdc42 effector activated Cdc42Hs-associated kinase-1 via a Fyn tyrosine kinase signaling pathway. J Biol Chem 2001; 276:5622-8.
    [27]. La Torre, A., R.J. del, and E. Soriano, et al., Expression pattern of ACK1 tyrosine kinase during brain development in the mouse. Gene Expr Patterns, 2006.6(8):886-92.
    [28]. Eley, L., S.H. Moochhala, and R. Simms, et al., Nephrocystin-1 interacts directly with Ackl and is expressed in human collecting duct. Biochem Biophys Res Commun,2008.371(4):877-82.
    [29]. Grovdal, L.M., L.E. Johannessen, and M.S. Rodland, et al., Dysregulation of Ackl inhibits down-regulation of the EGF receptor. Exp Cell Res,2008.314(6): 1292-300.
    [30].徐希岳,陶荣亚,肝硬化患者中性粒细胞吞噬及细胞内杀菌功能的研究.实用医学杂志,2004.20(1):26-28.
    [31].周建云,蒋建新,严军等,肾上腺素对巨噬细胞吞噬和分泌功能的影响.中华实验外科杂志,2008.25(5):650-652.
    [32]. Prieto-Echague, V., A. Gucwa, and B.P. Craddock, et al., Cancer-associated mutations activate the nonreceptor tyrosine kinase Ackl. J Biol Chem,2010. 285(14):10605-15.
    [33]. Qin, H.R., D. Iliopoulos, and S. Semba, et al., A role for the WWOX gene in prostate cancer. Cancer Res,2006.66(13):6477-81.
    [34]. Qin, H.R., D. Iliopoulos, and T. Nakamura, et al., Wwox suppresses prostate cancer cell growth through modulation of ErbB2-mediated androgen receptor signaling. Mol Cancer Res,2007.5(9):957-65.
    [35]. Hong, Q., C.I. Sze, and S.R. Lin, et al., Complement Clq activates tumor suppressor WWOX to induce apoptosis in prostate cancer cells. PLoS One, 2009.4(6):e5755.
    [36]. Braunreiter, C.L., J.D. Hancock, and C.M. Coffin, et al., Expression of EWS-ETS fusions in NIH3T3 cells reveals significant differences to Ewing's sarcoma. Cell Cycle,2006.5(23):2753-9.
    [37]. Kim, S.E. and K.Y. Choi, EGF receptor is involved in WNT3a-mediated proliferation and motility of NIH3T3 cells via ERK pathway activation. Cell Signal,2007.19(7):1554-64.
    [38]. Nur-E-Kamal A, Zhang AL, Keenan SM, et al. Requirement of activated Cdc42. associated kinase for survival of v-Ras transformed mammalian cells. Mol Cancer Res.2005; 3:297-305.
    [39].周际昌.实用肿瘤内科学,人民卫生出版社,2003.
    [40]. Shin, H.R., E. Masuyer, and J. Ferlay, et al., Cancer in Asia-Incidence rates based on data in cancer incidence in five continents Ⅸ (1998-2002). Asian Pac J Cancer Prev,2010.11 Suppl 2:p.11-6.
    [41]. Modzelewska K, Newman LP, Desai Keely PJ. Ackl mediates Cdc42-dependent cell migration and signaling to P130Cas. J Biol Chem 2006; 281:37527-35.
    [42]. Han, W., H.I. Rhee, and J.W. Cho, et al., Overexpression of Arabidopsis ACK1 alters leaf morphology and retards growth and development. Biochem Biophys Res Commun,2005.330(3):887-90.
    [43]. Suwannakham, S., Y. Huang, and S.T. Yang, Construction and characterization of ack knock-out mutants of Propionibacterium acidipropionici for enhanced propionic acid fermentation. Biotechnol Bioeng,2006.94(2):383-95.
    [44]. Xiao, S.H., E. Farrelly, and J. Anzola, et al., An ultrasensitive high-throughput electrochemiluminescence immunoassay for the Cdc42-associated protein tyrosine kinase ACK1. Anal Biochem,2007.367(2):179-89.
    [45]. Kopecky, D.J., X. Hao, and Y. Chen, et al., Identification and optimization of N3,N6-diaryl-1H-pyrazolo[3,4-d]pyrimidine-3,6-diamines as a novel class of ACK1 inhibitors. Bioorg Med Chem Lett,2008.18(24):6352-6.
    [46]. Reinscheid, D.J., S. Schnicke, and D. Rittmann, et al., Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase. Microbiology,1999.145 (Pt 2):503-13.
    [47]. Reschke, M., D. Mihic-Probst, and E.H. van der Horst, et al., HER3 is a determinant for poor prognosis in melanoma. Clin Cancer Res,2008.14(16): 5188-97.
    [48]. Sem, K.P., B. Zahedi, and I. Tan, et al., ACK family tyrosine kinase activity is a component of Dcdc42 signaling during dorsal closure in Drosophila melanogaster. Mol Cell Biol,2002.22(11):3685-97.
    [49]. Prieto-Echague, V., A. Gucwa, and B.P. Craddock, et al., Cancer-associated mutations activate the nonreceptor tyrosine kinase Ackl. J Biol Chem,2010. 285(14):10605-15.
    [50]. Yamazaki D, Kuri SUS. enawa T. Regulation of cancer cell motility through actin reorganization. Cancer Sci 2005;96:379.86.
    [51]. Hoshijima, M., Mechanical stress-strain sensors embedded in cardiac cytoskeleton:Z disk, titin, and associated structures. Am J Physiol Heart Circ Physiol,2006.290(4):H1313-25.
    [52]. Akisaka, T., H. Yoshida, and R. Suzuki, et al., Adhesion structures and their cytoskeleton-membrane interactions at podosomes of osteoclasts in culture. Cell Tissue Res,2008.331(3):625-41.
    [53]. Henriques, A.G., S.I. Vieira, and M.E. Crespo-Lopez, et al., Intracellular sAPP retention in response to Abeta is mapped to cytoskeleton-associated structures. J Neurosci Res,2009.87(6):1449-61.
    [54].张五德,周业江,上皮间质转化在肿瘤侵袭和转移中的研究进展.实用医学杂志,2010:3832-3834.
    [55].张育军,陈海珍,赵春丽等.,BCAR3诱导乳腺癌上皮间质转化及与癌细胞迁移、侵袭的关系.武汉大学学报:医学版,2010.31(4):471-475.
    [56]. Shapiro, I.M., A.W. Cheng, and N.C. Flytzanis, et al., An EMT-Driven Alternative Splicing Program Occurs in Human Breast Cancer and Modulates Cellular Phenotype. PLoS Genet,2011.7(8):e1002218.
    [57]. thiery JP. Epithelial-mesenchymal transitions in tumollr progression. Nat Rev Cancer 2002; 2:442-54.
    [58]. Prieto-Echague, V. and W.T. Miller, Regulation of ack-family nonreceptor tyrosine kinases. J Signal Transduct,2011.2011:742372.
    [59]. Galisteo, M.L., Y. Yang, and J. Urena, et al., Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proc Natl Acad Sci USA,2006.103(26):9796-801.
    [60]. Shen, H., S.M. Ferguson, and N. Dephoure, et al., Constitutive activated Cdc42-associated kinase (Ack) phosphorylation at arrested endocytic clathrin-coated pits of cells that lack dynamin. Mol Biol Cell,2011.22(4): 493-502.
    [1].Desgrosellier, J. S., Cheresh, D. A. Integrins in cancer:biological implications and therapeutic opportunities. Nature Rev. Cancer.2010,10:9-22.
    [2]. Cabodi, S., P. Di Stefano, and M.P. Leal, et al., Integrins and signal transduction. Adv Exp Med Biol,2010.674:43-54.
    [3].Tikhmyanova, N., Little, J. L., Golemis, E. A. cas proteins in normal and pathological cell growth control. Cell. Mol. Life Sci.2009,67,1025-1048.
    [4].Defilippi, P., Di Stefano, P., Cabodi, S. p130Cas:a versatile scaffold in signaling networks. Trends Cell Biol.2006,16,257-263.
    [5].Birge, R. B., Kalodimos, C., Inagaki, F. et al. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun. Signal. 20097,13.
    [6].Wickstrom, S. A., Lange, A., Montanez, E. et al. The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase! EMBO J.2009,29,281-291.
    [7]. Singh, M.K., D. Dadke, and E. Nicolas, et al., A novel Cas family member, HEPL, regulates FAK and cell spreading. Mol Biol Cell,2008.19(4):1627-36.
    [8].Ishino, M., Ohba, T., Sasaki, H.et al. Molecular cloning of a cDNA encoding a phosphoprotein, Efs, which contains a Src homology 3 domain and associates with Fyn. Oncogene.1995,11,2331-2338.
    [9]. Honda, H., H. Oda, and T. Nakamoto, et al., Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130Cas. Nat Genet,1998.19(4):361-5.
    [10]. Ambrogio, C., C. Voena, and A.D. Manazza, et al., p130Cas mediates the transforming properties of the anaplastic lymphoma kinase. Blood,2005. 106(12):3907-16.
    [11]. Cabodi, S., A. Tinnirello, and B. Bisaro, et al., p130Cas is an essential transducer element in ErbB2 transformation. FASEB J,2010.24(10):3796-808.
    [12]. Pylayeva, Y., K.M. Gillen, and W. Gerald, et al., Ras-and PI3K-dependent breast tumorigenesis in mice and humans requires focal adhesion kinase signaling. J Clin Invest,2009.119(2):252-66.
    [13].李莹,药立波,,刘新平等.,RNAi引起的Paxillin和pl30Cas下调抑制胃癌细胞失巢性生长.中国生物化学与分子生物学报,2005.21(3):408-414.
    [14]. Tornillo, G., B. Bisaro, and M.P. Camacho-Leal, et al., p130Cas promotes invasiveness of three-dimensional ErbB2-transformed mammary acinar structures by enhanced activation of mTOR/p70S6K and Racl. Eur J Cell Biol, 2011.90(2-3):237-48.
    [15]. van der Flier, S., C.M. Chan, and A. Brinkman, et al., BCAR1/p130Cas expression in untreated and acquired tamoxifen-resistant human breast carcinomas. Int J Cancer,2000.89(5):465-8.
    [16]. van der Flier, S., T.H. van der Kwast, and C.J. Claassen, et al. Immunohistochemical study of the BCAR1/p130Cas protein in non-malignant and malignant human breast tissue, Int J Biol Markers,2001.16(3):172-8.
    [17].Dorssers, L. C. et al. The prognostic value of BCAR1 in patients with primary breast cancer. Clin. Cancer Res.2004,10,6194-6202.
    [18].Chin, L. Modeling malignant melanoma in mice:pathogenesis and maintenance. Oncogene 1999,18:5304-5310.
    [19].Kim, M.I. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell.2006,125:1269-1281
    [20].Lucas, J. T., Salimath, B. P., Slomiany, et al. Regulation of invasive behavior by vascular endothelial growth factor is HEF1-dependent. Oncogene.2010,29: 4449-4459.
    [21].Izumchenko, E. et al. NEDD9 promotes oncogenic signaling in mammary tumor development. Cancer Res.2009,69:7198-7206.
    [22].Matsuda, M. et al. Two species of human CRK cDNA encode proteins with distinct biological activities. Mol. Cell. Biol.1992,12:3482-3489.
    [23].ten Hoeve, J., Morris, C., Heisterkamp, et al. Isolation and chromosomal localization of CRKL, a human crk-like gene. Oncogene.1993,8:2469-2474.
    [24]. Miller, C.T., G. Chen, and T.G. Gharib, et al., Increased C-CRK proto-oncogene expression is associated with an aggressive phenotype in lung adenocarcinomas. Oncogene,2003.22(39):7950-7.
    [25]. Nishihara, H., S. Tanaka, and M. Tsuda, et al., Molecular and immunohistochemical analysis of signaling adaptor protein Crk in human cancers. Cancer Lett,2002.180(1):55-61.
    [26]. Takino, T., M. Nakada, and H. Miyamori, et al., CrkI adapter protein modulates cell migration and invasion in glioblastoma. Cancer Res,2003.63(9):2335-7.
    [27]. Wang, L., K. Tabu, and T. Kimura, et al., Signaling adaptor protein Crk is indispensable for malignant feature of glioblastoma cell line KMG4. Biochem Biophys Res Commun,2007.362(4):976-81.
    [28]. Fathers, K.E., S. Rodrigues, and D. Zuo, et al., CrkⅡ transgene induces atypical mammary gland development and tumorigenesis. Am J Pathol,2010.176(1): 446-60.
    [29].Eke, I., Hehlgans, S., Cordes, N. There's something about ILK. Int. J. Radiat. Biol.2009,85:929-936.
    [30].McDonald, P. C, Fielding, A. B., Dedhar, S. Integrin-linked kinase-essential roles in physiology and cancer biology. J. Cell Sci.2008,121:3121-3132.
    [31].Hannigan, G., Troussard, A. A., Dedhar, S. Integrin-linked kinase:a cancer therapeutic target unique among its ILK. Nature Rev. Cancer.2005,5:51-63.
    [32]. Haase, M., C.C. Gmach, and I. Eke, et al., Expression of integrin-linked kinase is increased in differentiated cells. J Histochem Cytochem,2008.56(9):819-29.
    [33].White, D. E., Cardiff, R. D., Dedhar, et al. Mammary epithelial-specific expression of the integrin-linked kinase (ILK) results in the induction of mammary gland hyperplasias and tumors in transgenic mice. Oncogene.2001,20: 7064-7072.
    [34].Pontier, S. Ml. Integrin-linked kinase has a critical role in ErbB2 mammary tumor progression:implications for human breast cancer. Oncogene.2010,29: 3374-3385.
    [35].Oloumi, A. et al. Cooperative signaling between Wntl and integrin-linked kinase induces accelerated breast tumor development. Breast Cancer Res.2010,12: R38.
    [36]. Mongroo, P.S., C.N. Johnstone, and I. Naruszewicz, et al., Beta-parvin inhibits integrin-linked kinase signaling and is downregulated in breast cancer. Oncogene, 2004.23(55):8959-70.
    [37].Wang-Rodriguez, J., Dreilinger, A. D., Alsharabi, et al. The signaling adapter protein PINCH is up-regulated in the stroma of common cancers, notably at invasive edges. Cancer.2002,95:1387-1395.
    [38].Gao, J., Arbman, G., Rearden, A. et al. Stromal staining for PINCH is an independent prognostic indicator in colorectal cancer. Neoplasia. 2004,6:796-801
    [39]. Damiano, L., P. Di Stefano, and L.M. Camacho, et al., p140Cap dual regulation of E-cadherin/EGFR cross-talk and Ras signalling in tumour cell scatter and proliferation. Oncogene,2010.29(25):3677-90.
    [40]. Di Stefano, P., L. Damiano, and S. Cabodi, et al., p140Cap protein suppresses tumour cell properties, regulating Csk and Src kinase activity. EMBO J,2007. 26(12):2843-55.
    [41].Di Stefano, P. et al. P130Cas-associated protein (p140Cap) as a new tyrosine-phosphorylated protein involved in cell spreading. Mol. Biol. Cell.2004, 15:787-800.
    [42].Chin, L. S., Nugent, R. D., Raynor, M. C.,et al, a novel SNAP-25-interacting protein implicated in regulated exocytosis. J. Biol. Chem.2000,275:1191-1200.
    [43]. Semba, K., K. Araki, and Z. Li, et al., A novel murine gene, Sickle tail, linked to the Danforth's short tail locus, is required for normal development of the intervertebral disc. Genetics,2006.172(1):445-56.
    [44]. Karasugi, T., K. Semba, and Y. Hirose, et al., Association of the tag SNPs in the human SKT gene (KIAA1217) with lumbar disc herniation. J Bone Miner Res, 2009.24(9):1537-43.
    [45]. Ito, H., K. Atsuzawa, and K. Sudo, et al., Characterization of a multidomain adaptor protein, p140Cap, as part of a pre-synaptic complex. J Neurochem,2008. 107(1):61-72.
    [46].DeGiorgis, J. A. et al. Phosphoproteomic analysis of synaptosomes from human cerebral cortex. J. Proteome Res.2005,4:306-315.
    [47]. Collins, M.O., L. Yu, and M.P. Coba, et al., Proteomic analysis of in vivo phosphorylated synaptic proteins. J Biol Chem,2005.280(7):5972-82.
    [48]. Kennedy, S., M. Clynes, and P. Doolan, et al., SNIP/p140Cap mRNA expression is an unfavourable prognostic factor in breast cancer and is not expressed in normal breast tissue. Br J Cancer,2008.98(10):1641-5.
    [49].Katoh, M. Evolutionary recombination hotspot around GSDML-GSDM locus is closely linked to the oncogenomic recombination hotspot around the PPP1R1B-ERBB2-GRB7 amplicon. Int. J. Oncol.2004,24:757-763.
    [50].Ruest, P. J., Shin, N. Y., Polte, T. R., et al. Mechanisms ofcas substrate domain tyrosine phosphorylation by FAK and Src. Mol. Cell. Biol.2001,21,7641-7652
    [51].Heasman, S. J., Ridley, A. J. Mammalian Rho GTPases:new insights into their functions from in vivo studies. Nature Rev. Mol. Cell Biol.2008,9:690-701.
    [52].Soderling, S. H. Grab your partner with both hands:cytoskeletal remodeling by Arp2/3 signaling. Sci. Signal.2009,2:5.
    [53].Petrie, R. J., Doyle, A. D., Yamada, K. M. Random versus directionally persistent cell migration. Nature Rev. Mol. Cell Biol.2009,10:538-549.
    [54].Kobashigawa, Y. et al. Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK. Nature Struct. Mol. Biol.2007, 14:503-510.
    [55].Holcomb, M., Rufini, A., Barila, D. et al. Deregulation of proteasome function induces Abl-mediated cell death by uncoupling p130cas and c-Crkll. J. Biol. Chem.2006,281:2430-2440.
    [56].Janssen, H., Marynen, P. Interaction partners for human ZNF384/CIZ/NMP4-zyxin as a mediator for p130cas signaling? Exp. Cell Res. 2006,312:1194-1204.
    [57].Pratt, S. J. et al. The LIM protein Ajuba influences p130Cas localization and Rac1 activity during cell migration. J. Cell Biol.2005,168:813-824.
    [58]. Yi, J. et al. Members of the Zyxin family of LIM proteins interact with members of the p130Cas family of signal transducers. J. Biol. Chem. 2002,277:9580-9589.
    [59].Nakamoto, T. et al. CIZ, a zinc finger protein that interacts with p130(cas) and activates the expression of matrix metalloproteinases. Mol. Cell. Biol.2000,20: 1649-1658.
    [60].Brabek, J. et al. Crk-associated substrate tyrosine phosphorylation sites are critical for invasion and metastasis of SRC-transformed cells. Mol. Cancer Res. 2005,3:307-315.
    [61].Vultur, A. et al. SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells. Mol. Cancer Ther.2008,7: 1185-1194.
    [62].Yu, H., Mouw, J. K.,Weaver, V. M. Forcing form and function:biomechanical regulation of tumor evolution. Trends Cell Biol.2010,24
    [63].Moore, S. W., Roca-Cusachs, P., Sheetz, M. P. Stretchy proteins on stretchy substrates:the important elements of integrin-mediated rigidity sensing. Dev. Cell.2010,19:194-206.
    [64].Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell.2006,127:1015-1026.
    [65].Kostic, A., Sheetz, M. P. Fibronectin rigidity response through Fyn and p130Cas recruitment to the leading edge. Mol. Biol. Cell.2006,17:2684-2695.
    [66].Sanz-Moreno, V. et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell.2008,135:510-523.
    [67].Natarajan, M. et al. HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma cells. Oncogene. 2006,25:1721-1732.
    [68].Simpson, K. J. et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nature Cell Biol.2008,10:1027-1038.
    [69].Massague, J. TGFp in Cancer. Cell.2008,134:215-230.
    [70].Thiery, J. P., Acloque, H., Huang, R. Y. et al. Epithelial-mesenchymal transitions in development and disease. Cell.2009,139:871-890.
    [71].Zhang, H. et al. Transforming growth factor-β1-induced apoptosis is blocked by β1-integrin-mediated mitogen-activated protein kinase activation in human hepatoma cells. Cancer Sci.2004,95:878-886.
    [72].Kim, W. et al. The integrin-coupled signaling adaptor p130Cas suppresses Smad3 function in transforming growth factor-β signaling. Mol. Biol. Cell. 2008,19,2135-2146.
    [73].Wendt, M. K., Smith, J. A., Schiemann, W. P. p130Cas is required for mammary tumor growth and transforming growth factor-β-mediated metastasis through regulation of Smad2/3 activity. J. Biol. Chem.2009,284:34145-34156.
    [74].Giampieri, S. et al. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nature Cell Biol.2009,11: 1287-1296.
    [75].Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Nature Rev. Mol. Cell Biol.2006,7, 131-142.
    [76].Shintani, Y., Hollingsworth, M. A., Wheelock, M. J., et al. Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH2-terminal kinase 1 and up-regulating N-cadherin expression.Cancer Res.2006,66:11745-11753,
    [77].Shintani, Y., Wheelock, M. J., Johnson, K. R.Phosphoinositide-3 kinase-Racl-c-Jun NH2-terminal kinase signaling mediates collagen I-induced cell scattering and up-regulation of N-cadherin expression in mouse mammary epithelial cells. Mol. Biol. Cell.2006,17; 2963-2975.
    [78].Shintani, Y. et al. Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. J. Cell Biol. 2008,180:1277-1289.
    [79].Bhattacharya, S., Guo, H., Ray, R. M. et al. Basic helix-loop-helix protein E47-mediated p21Waf1/Cip1 gene expression regulates apoptosis of intestinal epithelial cells. Biochem. J.2007,407:243-254.
    [80].Kim, W., Kook, S., Kim, D. J.,et al. The 31-kDa caspase-generated cleavage product of p130cas functions as a transcriptional repressor of E2A in apoptotic cells. J. Biol. Chem.2004,279:8333-8342.
    [81].Law, S. F., O'Neill, G. M., Fashena, et al. The docking protein HEF1 is an apoptotic mediator at focal adhesion sites. Mol. Cell. Biol.2000,20:5184-5195.
    [82].Daouti, S. et al. A selective phosphatase of regenerating liver phosphatase inhibitor suppresses tumor cell anchorage-independent growth by a novel mechanism involving p130Cas cleavage. Cancer Res.2008,68:1162-1169.
    [83].Achiwa, H., Lazo, J. S. PRL-1 tyrosine phosphatase regulates c-Src levels, adherence, and invasion in human lung cancer cells. Cancer Res.2007,67, 643-650.
    [84].Wendt, M. K., Drury, L. J., Vongsa, R. A., et al. Constitutive CXCL12 expression induces anoikis in colorectal carcinoma cells. Gastroenterology. 2008,135; 508-517.
    [85].Gasparini, G., Longo, R., Sarmiento, et al. Inhibitors of cyclo-oxygenase 2:a new class of anticancer agents? Lancet Oncol.2003,4:605-615.
    [86].Casanova, I. et al. Celecoxib induces anoikis in human colon carcinoma cells associated with the deregulation of focal adhesions and nuclear translocation of p130Cas. Int. J. Cancer.2006,118:2381-2389.
    [87].Casanova, I. et al. A celecoxib derivative inhibits focal adhesion signaling and induces caspase-8-dependent apoptosis in human acute myeloid leukemia cells. Int. J. Cancer.2008,123:217-226.
    [88].Sakai, R., Nakamoto, T., Ozawa, K., et al. Characterization of the kinase activity essential for tyrosine phosphorylation of p130Cas in fibroblasts. Oncogene.1997,14:1419-1426.
    [89].Iwahara, T., Akagi, T., Fujitsuka, Y., et al. CrkⅡ regulates focal adhesion kinase activation by making a complex with Crk-associated substrate, p130Cas. Proc. Natl Acad. Sci. USA.2004,101:17693-17698.
    [90].Akagi, T., Shishido, T., Murata, K., et al. v-Crk activates the phosphoinositide 3-kinase/AKT pathway in transformation. Proc. Natl Acad. Sci. USA. 2000,97:7290-7295.
    [91].Watanabe, T. et al. Crk adaptor protein-induced phosphorylation of Gabl on tyrosine 307 via Src is important for organization of focal adhesions and enhanced cell migration. Cell Res.2009,19,638-650.
    [92].Watanabe, T. et al. Adaptor molecule Crk is required for sustained phosphorylation of Grb2-associated binder 1 and hepatocyte growth factor-induced cell motility of human synovial sarcoma cell lines. Mol. Cancer Res.2006,4:499-510.
    [93].Crawford, M. et al. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem. Biophys. Res. Commun.2008,373:607-612.
    [94].Legate, K. R., Montanez, E., Kudlacek, O., et al. ILK, PINCH and parvin:the tIPP of integrin signalling. Nature Rev. Mol. Cell Biol.2006,7:20-31
    [95].Attwell, S., Mills, J., Troussard, A., et al. Integration of cell attachment, cytoskeletal localization, and signaling by integrin-linked kinase (ILK), CH-ILKBP, and the tumor suppressor PTEN. Mol. Biol. Cell.2003,14: 4813-4825.
    [96].Yamaji, S. et al. A novel integrin-linked kinase-binding protein, affixin, is involved in the early stage of cell-substrate interaction. J. Cell Biol.2001,153: 1251-1264.
    [97].Lange, A. et al. Integrin-linked kinase is an adaptor with essential functions during mouse development. Nature.2009,461:1002-1006.
    [98].Maydan, M. et al. Integrin-linked kinase is a functional Mn 2+-dependent protein kinase that regulates glycogen synthase kinase-3β (GSK-3β) phosphorylation. PLoS ONE.2010,5:12356.
    [99].Fukuda, K., Gupta, S., Chen, K., et al. The pseudoactive site of ILK is essential for its binding to a-Parvin and localization to focal adhesions. Mol. Cell.2009,36: 819-830.
    [100].Somasiri, A., Howarth, A., Goswami, D., et al. Overexpression of the integrin-linked kinase mesenchymally transforms mammary epithelial cells. J. Cell Sci.2001,114:1125-1136.
    [101].Filipenko, N. R., Attwell, S., Roskelley, C., et al. Integrin-linked kinase activity regulates Rac-and Cdc42-mediated actin cytoskeleton reorganization via a-PIX. Oncogene.2005,24:5837-5849.
    [102].Troussard, A. A. et al. The integrin linked kinase (ILK) induces an invasive phenotype via AP-1 transcription factor-dependent upregulation of matrix metalloproteinase 9 (MMP-9). Oncogene.2000,19:5444-5452.
    [103].Fielding, A. B., Dobreva, I., McDonald, P. C., et al. Integrin-linked kinase localizes to the centrosome and regulates mitotic spindle organization. J. Cell Biol.2008,180,681-689.
    [104].Fielding, A. B., Lim, S., Montgomery, K., et al. A critical role of integrin-linked kinase, ch-TOG and TACC3 in centrosome clustering in cancer cells. Oncogene.2010,13
    [105].Durbin, A. D., Hannigan, G. E., Malkin, D. Oncogenic ILK, tumor suppression and all that JNK. Cell Cycle.2009,8:4060-4066.
    [106].Troussard, A. A. et al. Preferential dependence of breast cancer cells versus normal cells on integrin-linked kinase for protein kinase B/Akt activation and cell survival. Cancer Res.2006,66:393-403.
    [107].Durbin, A. D. et al. JNK1 determines the oncogenic or tumor-suppressive activity of the integrin-linked kinase in human rhabdomyosarcoma. J. Clin. Invest.2009,119; 1558-1570.
    [108].Wexler, L. H., Crist, W. M. & Helman, L. J. in In Principles and Practice of Pediatric Oncology (eds Pizzo, P. A.& Poplack, D. G.) 2002,939-971
    [109].Fukuda, T., Chen, K., Shi, X., et al. PINCH-1 is an obligate partner of integrin-linked kinase (ILK) functioning in cell shape modulation, motility, and survival. J. Biol. Chem.2003,278:51324-51333,
    [110].Johnstone, C. N. et al. Parvin-β inhibits breast cancer tumorigenicity and promotes CDK9-mediated peroxisome proliferator-activated receptor γ1 phosphorylation. Mol. Cell. Biol.2008,28:687-704.
    [111].Castellvi-Bel, S. et al. Evaluation of PARVG located on 22q13 as a candidate tumor suppressor gene for colorectal and breast cancer. Cancer Genet. Cytogenet.2003,144:80-82.
    [112].Chen, K. et al. PINCH-1 regulates the ERK-Bim pathway and contributes to apoptosis resistance in cancer cells. J. Biol. Chem.2008,283:2508-2517.
    [113].Liang, X. et al. Pinchl is required for normal development of cranial and cardiac neural crest-derived structures. Circ. Res.2007,100:527-535.
    [114].Latour, S., Veillette, A. Proximal protein tyrosine kinases in immunoreceptor signaling. Curr. Opin. Immunol.2001,13:299-306.
    [115].Perrais, M., Chen, X., Perez-Moreno,et al. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions. Mol. Biol. Cell.2007,18:2013-2025.
    [116].Qian, X., Karpova, T., Sheppard, A. M., et al. & Lowy, D. R. E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J.2004,23:1739-1748.
    [117].Takahashi, K., Suzuki, K. Density-dependent inhibition of growth involves prevention of EGF receptor activation by E-cadherin-mediated cell-cell adhesion. Exp. Cell Res.1996,226:214-222.
    [118].Prescott, J. et al. Androgen receptor-mediated repression of novel target genes. Prostate.2007,67,1371-1383.
    [119].Jaworski, J. et al. Dynamic microrubules regulate dendritic spine morphology and synaptic plasticity. Neuron.2009,61:85-100.
    [120].Cabodi, S. et al. p130Cas interacts with estrogen receptor a and modulates non-genomic estrogen signaling in breast cancer cells. J. Cell Sci. 2004,117:1603-1611.
    [121].Brinkman, A., van der Flier, S., Kok,et al. BCAR1, a human homologue of the adapter protein p130Cas, and antiestrogen resistance in breast cancer cells. J. Natl Cancer Inst.2000,92:112-120.
    [122].van Agthoven, T. et al. Identification of BCAR3 by a random search for genes involved in antiestrogen resistance of human breast cancer cells. EMBO J. 1998,17:2799-2808.
    [123].Dorssers, L. C. et al. Tamoxifen resistance in breast cancer:elucidating mechanisms. Drugs.2001,61:1721-1733.
    [124].Gotoh, T., Cai, D., Tian, X., et al, A. p130Cas regulates the activity of AND-34, a novel Ral, Rap1, and R-Ras guanine nucleotide exchange factor. J. Biol. Chem.2000,275:30118-30123.
    [125].路洪超耿翠芝,BCAR1/p130Cas蛋白与乳腺癌抗雌激素药物耐药的相关研究.中华乳腺病杂志(电子版),2007.1(1):52-56.
    [126].Brinkman, A. et al. The substrate domain of BCAR1 is essential for anti-estrogen-resistant proliferation of human breast cancer cells. Breast Cancer Res.2009,120:401-408.
    [127].Ta, H. Q., Thomas, K. S., Schrecengost, R. S. et al. H. A novel association between p130Cas and resistance to the chemotherapeutic drug adriamycin in human breast cancer cells. Cancer Res.2008,68:8796-804.
    [128].Thao le, B. et al. Cas-L was overexpressed in imatinib-resistant gastrointestinal stromal tumor cells. Cancer Biol. Ther.2009,8:683-688.
    [129]. Ed wards, L. A. et al. Inhibition of ILK in PTEN-mutant human glioblastomas inhibits PKB/Akt activation, induces apoptosis, and delays tumor growth. Oncogene.2005,24:3596-3605.
    [130].Wong, R. P., Ng, P., Dedhar, S. et al. The role of integrin-linked kinase in melanoma cell migration, invasion, and tumor growth. Mol. Cancer Ther.2007, 6:1692-1700.
    [131].Edwards, L. A. et al. Suppression of VEGF secretion and changes in glioblastoma multiforme microenvironment by inhibition of integrin-linked kinase (ILK). Mol. Cancer Ther.2008,7:59-70.
    [132].Liu, J. et al. Integrin-linked kinase inhibitor KP-392 demonstrates clinical benefits in an orthotopic human non-small cell lung cancer model. J. Thorac. Oncol.2006,1:771-779.
    [133].Yau, C. Y., Wheeler, J. J., Sutton, K. L., et al. Inhibition of integrin-linked kinase by a selective small molecule inhibitor, QLT0254, inhibits the PI3K/PKB/mTOR, Stat3, and FKHR pathways and tumor growth, and enhances gemcitabine-induced apoptosis in human orthotopic primary pancreatic cancer xenografts. Cancer Res.2005,65:1497-1504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700